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1. Introduction
Let H be a separable complex Hilbert space and B(H) denote the C∗-algebra of all bounded
linear operators acting on H. Recall that, T ∈ B(H) is called p-hyponormal for p > 0, if
(T∗T)p ≥ (TT∗)p [1], when p = 1 T is called hyponormal operator, when p = 1

2 T is called
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semihyponormal operators. An operator T is called log hyponormal operator if T is invertible
and satisfies log(T∗T)≥ log(TT∗). An operator T is paranormal operator if ‖Tx‖2 ≤ ‖T2x‖‖x‖,
for all x ∈ H [7,8]. It was originally introduced as an intermediate class between hyponormal
operators and normaloid one, i.e., ‖T‖ = r(T), where r(T) denotes the spectral radius of T .
Extensive studies on paranormal have been done by many authors, Halmos has discussed
many problems on paranormal and hyponormal operators. As a generalisation of the class
of hyponormal operators the class of p-hyponormal operators has been defined and studied
by Aluthge. T is called normaloid if ‖Tn‖ = ‖T‖n, for all n ∈ N (equivalently ‖T‖ = r(T), the
spectral radius of T). Mahmoud M. Kutkut introduced parahyponormal operator. An operator
T is parahyponormal operator if ‖Tx‖2 ≤ ‖TT∗x‖‖x‖ for all x ∈ H [14]. Spectral properties of
p-hyponormal operators, quasi hyponormal operators and paranormal operators have been
studied by many authors and they have also proved many interesting properties similar to those
of hyponormal operators [6,11,17]. The relations between paranormal and p-hyponormal and
log hyponormal operators, Furuta et al. introduced a very interesting class of bounded linear
Hilbert space operators: class A and they showed that class A is a subclass of paranormal and
contains p-hyponormal and log-hyponormal operators. One of the recent trends in operator
theory is studying natural extension of an operators. We introduce some of the operators as
follows.

For every positive integer k an operator T is said to be ∗parahyponormal operator, if
‖T∗x‖2 ≤ ‖T∗Tx‖‖x‖ for all x ∈ H. For every positive integer k an operator T is said to be k-
quasi ∗parahyponormal operator, if T∗k((T∗T)2−2λTT∗+λ2)Tk ≥ 0 for λ> 0 and when k = 1, it
is quasi-∗parahyponormal operator. Generally the following implications hold: parahyponormal
⊂ ∗parahyponormal ⊂ quasi ∗parahyponormal ⊂ k-quasi-∗parahyponormal

In this paper, we prove some basic properties of k-quasi-∗parahyponormal operators and
spectrum of class of k-quasi-∗parahyponormal operators is continuous. Also, we proved the
non zero points of its approximate point spectrum and joint approximate point spectrum are
identical.

2. Basic Properties of k-Quasi-∗Parahyponormal Operators

We derived some basic properties of k-quasi-∗parahyponormal operators as follows.

Theorem 2.1. Let T ∈ B(H) be k-quasi-∗parahyponormal operator for any positive integer k > 0

and let T =
(
T1 T2
0 T3

)
on H = ran(Tk)⊕kerT∗k be 2×2 matrix expression. Assume that ran(Tk) is

not dense if and only if (T∗
1 T1)2−2λ(T1T∗

1 +T2T∗
2 )+λ2)≥ 0 on ran(Tk) and Tk

3 = 0. Furthermore,
σ(T)=σ(T1)∪ {0}.

Proof. Let P be the projection of H onto ran(Tk). Then T1 = TP = PTP .

Since T is k-quasi-∗parahyponormal operator, we have P((T∗T)2 −2λTT∗+λ2)P ≥ 0. Then

P(T∗T)2P −2λP(TT∗)P +Pλ2P ≥ 0
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(PT∗TP)2 −2λP(TT∗)P +λ2 ≥ 0

(T∗
1 T1)2 −2λ(T1T∗

1 +T2T∗
2 )+λ2 ≥ 0

For any x = (x1, x2) ∈ H

〈Tk
3 x2, x2〉 = 〈Tk(I −P)x, (I −P)x〉

= 〈(I −P)x,T∗k(I −P)x〉
= 0

This implies Tk
3 = 0.

Since σ(T)∪M =σ(T1)∪σ(T3) where M is the union of the holes in σ(T), which happens
to be a subset of σ(T1)∪σ(T3) by [1, Corollary 7]. σ(T3)= 0 and σ(T1)∪σ(T3) has no interior
points we have σ(T)=σ(T1)∪ {0}.

Suppose that T =
(
T1 T2
0 T3

)
on H = ran(Tk)⊕kerT∗k

where ((T∗
1 T1)2 −2λ(T1T∗

1 +T2T∗
2 )+λ2)≥ 0, for every λ> 0 and Tk

3 = 0

Tk =
(
Tk

1
∑k−1

j=0 T j
1T2Tk−1− j

3
0 0

)
, (T∗T)2 =

(
(T∗

1 T1)2 +T∗
1 T2 +T∗

2 T1 B
B∗ D

)
where D = T∗

2 T1T∗
1 T2 + (T∗

2 T2)2 + (T∗
3 T3)2 +T∗

3 T3T∗
2 T2 +T∗

2 T2T∗
3 T3

and B = T∗
1 T1T∗

1 T2 +T∗
1 T2T∗

2 T2 +T∗
1 T2T∗

3 T3

TkT∗k =
(
(Tk

1 T∗k
1 )+∑k−1

j=0 T j
1T2Tk−1− j

3 (
∑k−1

j=0 T j
1T2Tk−1− j

3 )∗ 0
0 0

)

=
(
A 0
0 0

)
where A = A∗ = (Tk

1 T∗k
1 )+∑k−1

j=0 T j
1T2Tk−1− j

3 (
∑k−1

j=0 T j
1T2Tk−1− j

3 )∗ ≥ 0 for every λ> 0.

Therefore,

TkT∗k((T∗T)2 −2λTT∗+λ2)TkT∗k =
(
(A((T∗

1 T1)2 −2λ(T1T∗
1 +T2T∗

2 )+λ2)A) 0
0 0

)
≥ 0

It follows that T∗k((T∗T)2 −2λTT∗+λ2)Tk ≥ 0 for λ> 0 on H = ran(Tk)⊕kerT∗k. Thus T is
k-quasi-*parahyponormal operator.

Corollary 2.2. Let T be k-quasi-∗parahyponormal operator and ran(T) is not dense and T =(
T1 T2
0 T3

)
on H = ran(Tk)⊕kerT∗k . Then T1 is a parahyponormal operator, Tk

3 = 0.Furthermore,

σ(T)=σ(T1)∪ {0}.

Corollary 2.3. If T be k-quasi-∗parahyponormal operator and ran(T) is not dense and

T =
(
T1 T2
0 T3

)
on H. Then T1 is a parahyponormal operator on ran(T).

Corollary 2.4. Let T be k-quasi-∗parahyponormal operator and 0 6= µ ∈ σp(T). If T is of the

form T =
(
µ B
0 C

)
on H = N(T −µ)⊕N(T −µ)⊥ then B = 0.
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Proof. Let P be the projection onto N(T − µ) and x ∈ N(T − µ). Since T is k-quasi-
∗parahyponormal operator and x = 1

µk Tkx ∈ R(Tk), we have P((T∗T)2 − 2λTT∗ +λ2)P ≥ 0.

Then

P(T∗T)2P −2λP(TT∗)P +Pλ2P ≥ 0

(PT∗TP)2 −2λP(TT∗)P +λ2 ≥ 0

(T∗
1 T1)2 −2λ(T1T∗

1 +T2T∗
2 )+λ2 ≥ 0

which gives that

µ4 −2λµ2 +λ2 ≥ 2λBB∗ for all λ> 0

Hence B = 0.

Corollary 2.5. Let T ∈ B(H) be a k-quasi-∗parahyponormal operator for a positive integer k. If
M ⊂ His an invariant subspace of T , then the restriction T|M is also k-quasi-∗parahyponormal
operator.

Proof. Let P be the orthogonal projection of H onto M, and let T1 = T|M . Then TkP = PTkP
and T1 = PTP|M . Since T is a k-quasi-∗parahyponormal operator and by Theorem 2.1, we have
T1 is k-quasi-∗parahyponormal operator.

3. The Spectral Continuity of k-Quasi-∗Parahyponormal Operators

For every T ∈ B(H), σ(T) is compact subset of C. The function σ viewed as a function from B(H)
into the set of all compact subset of C, equipped with the Housdorff metric, is well known to be
upper semi continuous, but fails to be continuous in general. Conway and Morrel [3] have carried
out a detailed study of spectral continuity in B(H). Recently, the continuity of spectrum was
considered when restricted to some subsets of the entire manifold of Toeplitz operators in [13].
It has been proved that is continuous in the set of normal operators and hyponormal operators
in [9]. And this result has been extended to quasi hyponormal operators by Djordjevic in [8],
to p-hyponormal operators, (p,k)-quasi hyponormal operators, ∗-paranormal and paranormal
operators by many authors. In this section we extend this result to k-quasi-∗parahyponormal
operators.

A complex number λ is said to be in the point spectrum σp(T) of T if there is a non zero
x ∈ H such that (T −λ)x = 0. If in addition (T∗−λ)x = 0 then λ is said to be in the joint point
spectrum σ jp(T) of T . If T is hyponormal then σ jp(T)=σp(T).

The approximate point spectrum of an operator T is defined as follows σap(T)= {λ ∈ C : ∃ a
sequence of unit vectors xn such that ‖xn −λxn‖→ 0 as n → 0}.

Lemma 3.1. Let T be a k-quasi-∗parahyponormal operator. Then the following assertions hold.

(i) If T is quasi nilpotent, then Tk+1 = 0.
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(ii) For every nonzero λ ∈ σp(T), the matrix representation of T with respect to the

decomposition H = N(T−λ)+N(T−λ)⊥ is T =
(
λ 0
0 B

)
for some operator satisfying λ ∉σp(B)

and σ(T)=λ∪σ(B).

Proof. (i) Suppose T is k-quasi-∗parahyponormal operator. If the range of Tk is dense, then T
is parahyponormal operator, which leads to that T is normaloid. Hence T = 0.

If the range of Tk is not dense, then T =
(
T1 T2
0 T3

)
on H = ran(Tk)⊕kerT∗k where T1 is a

parahyponormal operator, Tk
3 = 0 and σ(T)=σ(T1)∪ {0} (by Theorem 2.1).

Since σ(T1)= 0, we have T1 = 0.

Thus

Tk+1 =
(
0 T2

0 T3

)

=
(
0 T2Tk

3

0 Tk+1
3

)
= 0

(ii) If λ 6= 0 and λ ∈σp(T), we have that N(T −λ) reduces T by Corollary 2.4. So, we have that(
λ 0
0 B

)
for some operator B satisfying λ ∉σp(B) and σ(T)=λ∪σ(B).

Lemma 3.2 ([1]). Let H be a complex Hilbert space. Then there exists a Hilbert space K such
that H ⊂ Kand a map φ : B(H)→ B(K) such that

(i) φ is a faithful ∗representation of the algebra B(H) on K .

(ii) φ(A)≥ 0 for any A ≥ 0 in B(H)

(iii) σa(T)=σa(φ(T))=σp(φ(T)) for any T ∈ B(H).

Lemma 3.3 ([1]). Let ϕ : B(H)→ B(K) be Berberian’s faithful ∗ representation. Then σ ja(T)=
σ jp(ϕ(T)).

Lemma 3.4. The spectrum σ is continuous on the set of k-quasi-∗parahyponormal operators.

Proof. Suppose T is k-quasi-∗parahyponormal operator. Let ϕ : B(H) → B(K) be Berberian’s
faithful ∗ representation of Lemma 3.2.

Now, we will show that ϕ(T) is also k-quasi-∗parahyponormal operator.

Since

T∗k((T∗T)2 −2λTT∗+λ2)Tk ≥ 0 for every λ> 0

(ϕ(T))∗k((ϕ(T)∗ϕ(T))2 −2λϕ(T)ϕ(T)∗+λ2)(ϕ(T))k ≥ 0 for every λ> 0

ϕ(T∗k((T∗T)2 −2λTT∗+λ2)Tk)≥ 0 for every λ> 0

(by Lemma 3.2).
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Therefore, ϕ(T) is also k-quasi-∗parahyponormal operator by Lemma 3.1, we have T belongs
to the set C(i) [5].

Therefore, we have that the spectrum σ is continuous on the set of k-quasi-∗parahyponormal
operators (by [5, Corrollary 7]).

Lemma 3.5. Let T be a k-quasi-∗parahyponormal operator and λ 6= 0 then Tx = λx implies
T∗x =λx.

Proof. We may assume that x 6= 0. Let M0 be a span of {0} then is an invariant subspace of T

and T =
(
µ T2
0 T3

)
on H = M0 ⊕M⊥

0 .

Let P be the projection of H onto M0. It sufficient to show that T2 = 0 in the above equation.
Since T is a k-quasi-parahyponormal operator, we have

P((T∗T)2 −2λTT∗+λ2)P ≥ 0 .

By expanding this and by simple calculations we have
∑

T2T∗
3 = 0.

Since T is k-quasi-parahyponormal operator,

T∗k((T∗T)2 −2λTT∗+λ2)Tk ≥ 0 .

Recall that
(

X Y
Y ∗ Z

)
≥ 0 if and only if X , Z ≥ 0 and Y = X

1
2 WY

1
2 for some contractions W .

Therefore, T2Tk
3 = 0.

Since λ 6= 0 and T2 = 0 , we have Tx =λx and T∗x =λx.

Hence (T −λ)x = 0 and (T∗−λ)x = 0.

Theorem 3.6. Let T be a k-quasi-∗parahyponormal operator then σ jp| {0} = σp| {0} and if
(T −λ)x = 0, (T −µ)y= 0 and λ 6=µ, then 〈x, y〉 = 0.

Proof. Suppose T is k-quasi-∗parahyponormal operator. Then

T∗k((T∗T)2 −2λTT∗+λ2)Tk ≥ 0

(T −λ)x = 0 and (T∗−λ)x = 0 for x 6= 0 ∈ H (by Lemma 3.5)

By the definition of joint point spectrum and point spectrum and by the above equation, we
have σ jp| {0}=σp| {0}.

Without the loss of generality, we may assume that µ 6= 0. Then, we have (T −µ)∗y= 0 (by
Lemma 3.5).

Then, we have µ〈x, y〉 = 〈x,T∗y〉 = 〈Tx, y〉 = 〈x, y〉.
Since λ 6=µ, 〈x, y〉 = 0.

Theorem 3.7. Let T be a k-quasi-parahyponormal operator for a positive integer. Then

σ ja(T)| {0}=σa(T)| {0} .
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Proof. By continuity of the spectrum and by Lemma 3.4, Lemma3.5 the result is true. That is
the non zero points of its approximate point spectrum and joint approximate point spectrum
are identical.
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