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1. Introduction

Let G be a connected graph of order n, with vertex set V (G)= {v1,v2,v3, . . . ,vn}. Let A = [ai j]n×n

be the adjacency matrix of G. The eigen values λ1,λ2,λ3, . . . ,λn of A, assumed to be in non-
increasing order, are the eigen values of the G. The Energy E(G) of G is defined to be the sum
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of the absolute values of the eigen values of G. That is

E(G)=
n∑

i=1
|λi|. [5,10,11]

Let L =Diag(Deg)− A, where Diag(Deg) is the diagonal matrix whose diagonal entries are
the degrees of vi , i = 1,2,3, . . . ,n in G is called the Laplacian matrix of G. The Laplacian eigen
values of L are denoted by µ1,µ2,µ3, . . . ,µn assumed to be in non-increasing order, are the
laplacian eigen values of G. The laplacian eigen values of G is defined as

LE(G)=
n∑

i=1
|µi|.

The distance laplacian matrix of G is defined as DL =Diag(D i)−D(G), where Diag(D i) denotes
the diagonal matrix of the distance degrees. The eigen values δL

1 (G),δL
2 (G),δL

3 (G), . . . ,δL
n(G) of

DL are assumed in non-increasing order, are the distance laplacian eigen values of G. The
distance laplacian energy of G is defined as

EDL(G)=
n∑

i=1
|δL

i (G)|. [3,16]

Analogous to the distance laplacian, we define the detour distance laplacian matrix of a
connected graph G as DDL(G)=Diag(Tr)−DD, where Diag(Tr) denotes the diagonal matrix of
the vertex transmissions in G. Let φDDL(γ) denotes the characteristic polynomial of DDL(G).
The eigen values of DDL(G) are such that γL

1 (G),γL
2 (G),γL

3 (G), . . . ,γL
n(G) are the detour distance

laplacian eigen values of G and form the DDL spectrum of G denoted by specDDL(G). The

detour distance laplacian energy is defined as EDDL(G)=
n∑

i=1
|γL

i (G)| [1,2,4,6–9,12–15,17,20,22].

Two Graphs with equal DDL energy are said to be DDL-equienergetic.

The detour index of the graph G is defined as DI(G)= 1
2

∑
u,v∈v(G)

D(u,v). The use of the detour

index in quantitative structure activity relationship (QSAR) is studied by Lukovits [18]. Further,
Trinajstic [21] analysed and compared, the wiener index and detour index in structure boiling
point modelling. In [19] the authors proved the detour index as a descriptor for boiling points of
acyclic and cyclic alkanes and saturated hydrocarbons.

Definition 1.1. An n×n circulant matrix C is defined as

C =


C0 Cn−1 · · · · · · C2 C1
C1 C0 Cn−1 · · · · · · C2
...

...
... . . . ...

...
Cn−2 · · · · · · · · · Cn−1 · · ·
Cn−1 Cn−2 · · · · · · C1 C0

 .

The eigen values of circulant matrix are

λ j = C0 +Cn−1ω
j +Cn−2ω

2 j + . . .+C1ω
(n−1) j, j = 0,1,2, . . . ,n−1

where ω j = exp
(

2πi j
n

)
are the nth roots of unity.
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Definition 1.2. The crown graph S0
n for an integer n ≥ 2 is the graph with vertex set

{u1,u2,u3, . . . ,un,v1,v2,v3, . . . ,vn} and edge set {uiv j : 1≤ i, j ≤ n, i 6= j}.

Definition 1.3. The cocktail party graph is denoted by Kn×2, is a graph having the vertex set
V =⋃n

i=1{ui,vi} and the edge set E = {uiu j,viv j : i 6= j}∪ {uiu j,viv j : 1≤ i < j ≤ n}.

Result 1.4. Let G be a connected graph with n ≥ 3 vertices. Then (n−1)2 ≤ DI(G)≤ n(n−1)2
2 [22].

In this paper, we establish some properties of the detour distance laplacian energy via detour
index. We give bounds for the detour distance laplacian energy. Further the detour distance
laplacian energy of standard graphs and the Cartesian product of certain graphs with P2 are
computed.

2. Bound-I for Detour Distance Laplacian Energy

Lemma 2.1. Let G be a connected (n,m) graph and let γL
1 (G), γL

2 (G), γL
3 (G), . . . ,γL

n(G) are the
detour distance laplacian eigen values. Then

n∑
i=1

γL
i =

n∑
i=1

DDLii and
n∑

i=1
(γL

i )2 =
n∑

i=1
DDL2

ii +2
n∑

1≤i< j≤n
DDL2

i j .

Proof. trace(DDL(G))=
n∑

i=1
DDLii . Since

n∑
i=1

γL
i = trace(DDL(G)).

It follows that
n∑

i=1
γL

i =
n∑

i=1
DDLii(G).

For i = 1,2,3 . . . ,n, the (i, i) entry of (DDL(G))2 is equal to sum of square of (i, i)-entry of DDL(G)

and
n∑

i=1

(
DDLi j

)2. Hence

n∑
i=1

(γL
i )2 = trace(DDL(G))2

=
n∑

i=1
DDL2

ii +2
n∑

1≤i< j≤n
DDL2

i j .

Theorem 2.2. If G is a connected (n,m) graph, then√√√√ n∑
i=1

DDL2
ii +2

n∑
1≤i< j≤n

DDL2
i j ≤ EDDL(G)≤

√√√√n(
n∑

i=1
DDL2

ii +2
n∑

1≤i< j≤n
DDL2

i j) .

Proof. Consider the Cauchy-Schwartz inequality(
n∑

i=1
aibi

)2

≤
(

n∑
i=1

a2
i

)(
n∑

i=1
b2

i

)
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Let us choose ai = 1 and bi = |γl
i|, we get(

n∑
i=1

∣∣∣γL
i

∣∣∣)2

≤ n

(
n∑

i=1
(γL

i )2

)
,

EDDL(G)2 ≤ n

(
n∑

i=1
DDL2

ii +2
n∑

1≤i< j≤n
DDL2

i j

)
.

This is the upper bound for EDDL(G). Now,

EDDL(G)2 =
(

n∑
i=1

|γL
i (G)|

)2

EDDL(G)2 ≥
n∑

i=1
|γL

i (G)|2

≥
n∑

i=1
DDL2

ii +2
n∑

1≤i< j≤n
DDL2

i j .

This is the lower bound for EDDL(G).

Lemma 2.3. If G is a connected (n,m) graph, then EDDL(G)≤ n(n−1)
p

n(n−1) .

Proof. For any connected Graph DDLi j ≤ n−1, i 6= j. There are n(n−1)/2 pairs of vertices in G.

n∑
1≤i< j≤n

DD2
i j ≤

(n−1)2 n(n−1)
2

,

n∑
1=n

DD2
ii = n (n−1)4 .

From the upper bound of Theorem 2.2,

≤
√

n
(
n(n−1)4 +2

(
n (n−1)3

2

))
≤

√
n2(n−1)4 +n2(n−1)3

EDDL(G)≤ n(n−1)
√

n(n−1) .

3. Bound-II for Detour Distance Laplacian Energy

Lemma 3.1. For any connected graph G(n,m),2DI =
n∑

i=1
γL

i .

Proof. The Detour distance matrix is a lower or upper triangular square matrix of order n×n,
whose entries are D(ui,u j) for i 6= j and D(ui,ui)= 0.
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The detour index DI is defined as

DI(G)=
n∑

1≤i< j≤n
D(ui,u j) ,

2DI(G)= 2
n∑

1≤i< j≤n
D(ui,u j)

= trace(DDL(G)) ,

2DI =
n∑

i=1
γL

i .

Remark 3.2. By the result [22], 2(n−1)2 ≤ EDDL(G)≤ n(n−1)2. The left inequality holds if and
only if G = Sn and the right inequality holds if and only if G = Kn.

4. Detour Distance Laplacian Energy of Standard Graphs

Theorem 4.1. If G is a complete graph of order n, then the detour distance laplacian energy of
G is EDDL(G)= n(n−1)2.

Proof. In G, the detour distance between two adjacency vertices is (n−1). The transmission
Tr(V ) of a vertex v is defined as the sum of the detour distances from v to all other vertices in
G. It follows that, Diag(Tr)= (n−1)(n−1).

Then the detour distance laplacian matrix DDL(G)= (n−1)(n−1)−DD.

The characteristic polynomial of DDL(G) is

φDDL(γL)= (γL)(γL −n(n−1))n−1.

Detour distance laplacian spectra is specDDL(G)=
(
0 n(n−1)
1 n−1

)
.

Hence EDDL(G)= n(n−1)2.

Corollary 4.2. The detour distance laplacian energy of circulant graph Cn
(±{

1,2,3, . . . ,
⌊n

2

⌋})
,

Cocktail party graph and wheel graph is same as complete graph.

Theorem 4.3. If G is a complete bipartite graph Kn1,n2 (n1+n2 = n) then the detour distance
laplacian energy of Kn1,n2 is EDDL(G)= n/2(2n2 −5n+4), when n1 = n2 and

EDDL(G)= 2n1(n−1)2, when n1 < n2.

Proof. Let V (G)=V1 ∪V2.

Case (i): n1 = n2

In Kn1,n2 the detour distance between the vertices of V1 to V2 is (2n−1) and the detour distance
between the vertices of V1 to itself is 2(n−1) and vice-versa.
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It follows that Diag(Tr)= (2n2−5n+4)
2 .

Then DDL(G) is (2n2−5n+4)
2 −DD.

The characteristic polynomial of G is φDDL(γL)= (γL)(γL −n(n−1))
(
γ2 − n

2 (4n−3)
)(n−2). Detour

distance laplacian spectra is specDDL(G)=
(
0 n(n−1) n

2 (2n−3)
1 1 n−2

)
.

Hence EDDL(G)= n/2(2n2 −5n+4).

Case (ii): n1 < n2

In Kn1,n2 with n1 = |V1| < |V2| = n2, n1 + n2 = n. The detour distance between the distinct
vertices u,v ∈V1 is 2n1−2 and the detour distance between the distinct vertices u,v ∈V2 is 2n1

and the detour distance between the vertices u ∈V1 and v ∈V2 is 2n1 −1 then

DI(G)= (2n1 −2)[n1(n1 −1)]/2+2n1[n2(n2 −1)]/2+ (2n1 −1)n1n2 = n1(n−1)2 ,

EDDL(G)= 2n1(n−1)2 .

Corollary 4.4. If G is a crown graph, n ≥ 4, then EDDL(G) is same as Kn,n.

Theorem 4.5. If G is a cycle of length n, then the detour distance laplacian energy of G is

EDDL(G)=
{

3n3−4n2+n
4 , if n is odd

3n3−4n2

4 , if n is even.

Proof. Let G = Cn be the cycle graph of order n. Let V (Cn) = {u1,u2,u3, . . . ,un} and E(Cn) =
{uiui+1;1 ≤ i ≤ n−1}∪ {unu1} be respectively the vertex set and edge set of G. Assume the
vertices of G are arranged in clockwise direction. The detour distance matrix DDM = (DDi j) is
a n×n matrix, where DDi j are the detour distances from ui to u j (i 6= j) and DDii = 0.

Case (i): when n is odd, the detour distance values in the first row of detour distance matrix are
0,n−1,n−2, . . . ,

(n+1
2

)
,
(n+1

2

)
,
(n+1

2 +1
)
, . . . ,n−2,n−1.

All the entries of other rows are formed cyclically.

Diag(Tr)= 2(n−1)+2(n−2)+2(n−3)+ . . .+2
(

n+1
2

+1
)
+2

(
n+1

2

)
,

Diag(Tr)= 3n2 −4n+1
4

,

DI(G)=
(

n(3n2 −4n+1)
8

)
,

EDDL(G)=
(
3n3 −4n2 +n

4

)
.

Case (ii): when n is even, the detour distance values in the first row of detour distance matrix
are 0,n−1,n−2, . . . ,

(n
2 +1

)
,
(n

2

)
,
(n

2 +1
)
, . . . ,n−2,n−1.
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All the entries of other rows are formed cyclically.

Diag(Tr)= 2(n−1)+2(n−2)+2(n−3)+ . . .+2
(n

2
+1

)
+ n

2
,

Diag(Tr)= 3n2 −4n
4

,

DI(G)=
(

n(3n2 −4n)
8

)
,

EDDL(G)=
(
3n3 −4n2

4

)
.

Aliter. If G is a cycle of length n, then the detour distance laplacian energy of G is

EDDL(G)=
n−1∑
j=0

∣∣∣∣∣∣
n−1

2∑
k=1

[
2(n−k)−2(n−k)cos

(
2π jk

n

)]∣∣∣∣∣∣ , when n is odd

=
n−1∑
j=0

∣∣∣∣∣∣
n−2

2∑
k=1

[
2(n−k)−2(n−k)cos

(
2π jk

n

)]
+ n

2

[
cos

(
nπ j

n

)
+ isin

(
nπ j

n

)]∣∣∣∣∣∣ ,

when n is even.

Proof. Let n be odd, the detour distance values in the first row are

0, (n−1), (n−2), . . . ,
(

n+1
2

)
,
(

n+1
2

)
,
(

n+1
2

+1
)
, . . . , (n−2), (n−1).

It follows that Diag(Tr)= (3n2−4n+1)
4 .

Let n be even,the detour distance values in the first row are

0, (n−1), (n−2), . . . ,
(n

2
+1

)
,
(n

2

)
,
(n

2
+1

)
, . . . , (n−2), (n−1).

It follows that Diag(Tr)= (3n2−4n)
4 .

All the entries of other rows are formed cyclically, it provides a circulant matrix.

The eigen values of G is

(γL
j )=

n−1
2∑

k=1

[
2(n−k)−2(n−k)cos

(
2π jk

n

)]
, j = 0,1,2, . . . ,n−1, when n is odd

=
n−2

2∑
k=1

[
2(n−k)−2(n−k)cos

(
2π jk

n

)]
+ n

2

[
cos

(
nπ j

n

)
+ isin

(
nπ j

n

)]
,

j = 0,1,2, . . . ,n−1, when n is even.

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 721–732, 2017



728 On Detour Distance Laplacian Energy: V. Kaladevi and A. Abinayaa

Hence

EDDL(G)=
n−1∑
j=0

∣∣∣∣∣∣
n−1

2∑
k=1

[
2(n−k)−2(n−k)cos

(
2π jk

n

)]∣∣∣∣∣∣ , when n is odd

=
n−1∑
j=0

∣∣∣∣∣∣
n−2

2∑
k=1

[
2(n−k)−2(n−k)cos

(
2π jk

n

)]
+ n

2

[
cos

(
nπ j

n

)
+ isin

(
nπ j

n

)]∣∣∣∣∣∣ ,

when n is even.

Theorem 4.6. If G is a ladder graph,then the detour distance laplacian energy of G is

EDDL(G)

{
8n3 −115n2 +830n−1537, when n is odd.
8n3 −13n2 +14n−8, when n is even.

Proof. Let G be a ladder graph. Let V (G) = {u1,u2,u3, . . . ,un} and E(G) = {uiui+1; i =
1,3,5, . . . ,2n−1}∪ {uiui+2; i = 1,3,5, . . . ,2n−3}∪ {uiui+2; i = 2,4,6, . . . ,2n−2} be the vertex set
and edge set, respectively.

Case (i): when n is odd and n ≥ 3.
The following table shows that the number of vertices and its detour distances of G.

Number of vertices Detour distance
n2 −n+2 2n−1

n2 −3n+6 2n−2
2 2n−3
4 2n−4
2 2n−5
4 2n−6
...

...
2 n+2
4 n+1
1 n

= (2n−1)n2 −n+2+ (2n−2)n2 −3n+6+ . . .+2{2n−3+2n−5+ . . .+n+2}

+ 4{2n−4+2n−6+ . . .+n+1}+n ,

DI(G)=
(
8n3 −115n2 +830n−1537

2

)
, when n is odd ,

EDDL(G)= 8n3 −115n2 +830n−1537, when n is odd.

Case (ii): when n is even.
The following table shows that the number of vertices and its detour distances of G.
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Number of vertices Detour distance
n2 −n+2 2n−1

n2 −3n+6 2n−2
2 2n−3
4 2n−4
2 2n−5
4 2n−6
...

...
2 n+3
4 n+2
1 n+1
2 n

= (2n−1)n2 −n+2+ (2n−2)n2 −3n+6+ . . .+2{2n−3+2n−5+ . . .+n+1+n}

+ 4{2n−4+2n−6+ . . .+n+2} ,

DI(G)=
(
8n3 −13n2 +14n−8

2

)
, when n is even ,

EDDL(G)= 8n3 −13n2 +14n−8, when n is even.

5. The Detour Distance Laplacian Energy of Cartesian product of
certain Graphs with P2

Theorem 5.1. If G is a complete graph then the detour distance laplacian energy of P2 ×G is
EDDL(P2 ×G)= 2n(2n−1)2.

Proof. Let V (P2) = {u1,u2} and V (G) = {v1,v2,v3, . . . ,vn} be the vertex set of P2 and G,
respectively.

Let V (P2 ×G)= {(u1,v j), (u2,v j);1≤ j ≤ n} be the vertex set of P2 ×G.

In P2 ×G the detour distance between any two vertices (ui,v j), i = 1 to 2, j = 1,2,3, . . . ,n is
2n−1.

Diag(Tr)= (2n−1)2 then DDL(G)= (2n−1)2 −DD.

The characteristic polynomial of P2 ×G is φDDL(γL)= (
γL)(

γL −2n(2n−1)
)2n−1.

Detour distance laplacian spectra is specDDL(P2 ×G)=
(
0 2n(2n−1)
1 2n−1

)
.

Hence EDDL(P2 ×G)= 2n(2n−1)2.

Corollary 5.2. If G is a cocktail party graph then EDDL(P2 ×G)= 2n(2n−1)2.

Theorem 5.3. If G is a complete bipartite graph Kn1,n2 when n1 +n2 = n and n1 = n2, then the
detour distance laplacian energy of P2 ×G is EDDL(P2 ×G)= 2n(4n2 −5n+2).
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Proof. Let V (P2)= {u1,u2} be the vertex set of P2.

Let V (G) = X ∪ Y be the partition of V (G) with V (X ) = {x1, x2, x3, . . . , xn1} and V (Y ) =
{y1, y2, y3, . . . , yn}.

Let V (P2 ×G)= {(u1, x j), (u1, yj), (u2, x j), (u2, yj)}, j = 1,2,3, . . . ,n/2 be the vertex set of P2 ×G.

The detour distance between the vertices (u1, x j) and (u2, x j), (u1, yj) and (u2, yj), j =
1,2,3, . . . ,n/2 is 2n−1. The detour distance between any two vertices in (ui, x j) and the detour
distance between any two vertices in (ui, yj), i = 1 to 2 and j = 1,2,3, . . . ,n/2, i 6= j is 2n−2 and
0 if i = j.

It follows that Diag(Tr)= 4n2 −5n+2.

Then DDL(G)= 4n2 −5n+2−DD.

The characteristic polynomial of P2 ×G is

φDDL(γL)= (γL)(γL −n(4n−3))2n−2(γL −n(4n−2)).

Detour distance laplacian spectra is specDDL(P2 ×G)=
(
0 n(4n−3) n(4n−2)
1 2n−2 1

)
.

Hence EDDL(P2 ×G)= 2n(4n2 −5n+2).

Corollary 5.4. If G is a crown graph, n ≥ 4, then EDDL(P2 ×G)= 2n(4n2 −5n+2).

Theorem 5.5. If G is a cycle Cn, then the detour distance laplacian energy of P2 ×G is
EDDL(P2 ×G)= 2n(2n−1)2, when n is odd, EDDL(P2 ×G)= 2n(4n2 −5n+2), when n is even.

Proof. Let V (P2) = {u1,u2} and V (G) = {v1,v2,v3, . . . ,vn} be the vertex set of P2 and G,
respectively.

Let V (P2 ×G)= {(u1,v j), (u2,v j);1≤ j ≤ n} be the vertex set of P2 ×G.

Case (i): when n is odd and n ≥ 3.
In P2 ×G the detour distance between any two vertices (ui,v j), i = 1 to 2, j = 1,2,3, . . . ,n is
2n−1.

Diag(Tr)= (2n−1)2.

Then DDL(G)= (2n−1)2 −DD.

The characteristic polynomial of P2 ×G is φDDL(γL)= (γL)(γL −2n(2n−1))2n−1.

Detour distance laplacian spectra is specDDL(P2 ×G)=
(
0 2n(2n−1)
1 2n−1

)
.

Hence EDDL(P2 ×G)= 2n(2n−1)2.

Case (ii): when n is even and n > 4.

In P2 ×G, the detour distance between (u1,v1) and (u1,v j), j = 1,2,3, . . . ,n are 0,2n−2,2n−
1,2n − 2, . . . ,2n − 2,2n − 1. All the other entries between (u1,v2) and (u1,v j), (u1,v3) and
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(u1,v j), . . . , (u1,vn) and (u1,v j) are formed cyclically. The detour distance between (u1,v1)
and (u2,v j), j = 1,2,3, . . . ,n are 2n − 1,2n − 2,2n − 1,2n − 2, . . . ,2n − 1,2n − 2. All the other
entries between (u1,v2) and (u2,v j), (u1,v3) and (u2,v j), . . . , (u1,vn) and (u2,v j) are formed
cyclically. The detour distance between (u2,v1) and (u1,v j), j = 1,2,3, . . . ,n are 2n−1,2n−
2,2n−1,2n−2, . . . ,2n−1,2n−2. All the other entries between (u2,v2) and (u1,v j), (u2,v3) and
(u1,v j), . . . , (u2,vn) and (u1,v j) are formed cyclically. The detour distance between (u2,v1) and
(u2,v j), j = 1,2,3, . . . ,n are 0,2n−1,2n−2,2n−1,2n−2, . . . ,2n−1. All the other entries between
(u2,v2) and (u2,v j), (u2,v3) and (u2,v j), . . . , (u2,vn) and (u2,v j) are formed cyclically.

It follows that Diag(Tr)= 4n2 −5n+2.

Then DDL(G)= 4n2 −5n+2−DD.

The characteristic polynomial of P2 ×G is

φDDL(γL)= (γL)(γL −n(4n−3))2n−2(γL −n(4n−2)).

Detour distance laplacian spectra is

specDDL(P2 ×G)=
(
0 n(4n−3) n(4n−2)
1 2n−2 1

)
.

Hence EDDL(P2 ×G)= 2n(4n2 −5n+2).

6. Conclusion

From the results of this paper it is concluded that the complete graph, wheel graph, cocktail
party graph and circulant graph are detour distance laplacian equienergetic graphs. Further if
the detour index is known the detour distance laplacian energy of a graph can be obtained.
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