Journal of Informatics and Mathematical Sciences Volume 4 (2012), Number 3, pp. 263–268 © RGN Publications

I-Convergence and Summability in Topological Group

Bipan Hazarika

Abstract. In this article we introduce the *I*-convergence of sequences in topological groups and give certain characterizations of *I*-convergent sequences in topological groups and prove some fundamental theorems for topological groups.

1. Introduction

The notion of statistical convergence is a very useful functional tool for studying the convergence problems of numerical sequences/matrices (double sequences) through the concept of density. It was first introduced by Fast [7], independently for the real sequences. Later on it was further investigated from sequence point of view and linked with the summability theory by Fridy [8] and many others. The idea is based on the notion of natural density of subsets of *N*, the set of positive integers, which is defined as follows: The natural density of a subset of *N* is denoted by $\delta(E)$ and is defined by $\delta(E) = \lim_{n\to\infty} \frac{1}{n} |\{k \in E : k \le n\}|$, where the vertical bar denotes the cardinality of the respective set. This notion was used by Cakalli [5] to extend to topological Hausdroff groups.

The notion of *I*-convergence (*I* denotes the ideal of subsets of *N*, the set of positive integers), which is a generalization of statistical convergence, was introduced by Kastyrko, Salat and Wilczynski [9] and further studied by many other authors. Later on it was further investigated from sequence space point of view and linked with summability theory by Salat, Tripathy and Ziman [11, 12], Tripathy and Hazarika [13, 14, 15, 16], Hazarika [17], Hazarika and Savas [18] and many other authors.

The purpose of this article is to give certain characterizations of *I*-convergent sequences in topological groups and to obtain fundamental theorems in topological groups.

²⁰¹⁰ Mathematics Subject Classification. 40A05; 40G15; 40J05; 22A05.

Key words and phrases. Ideal; I-convergent; I-Cauchy; topological groups.

2. Definitions and preliminaries

Definition 2.1. Let *S* be a non-empty set. A non-empty family of sets $I \subseteq P(S)$ (power set of *S*) is called an *ideal* in *S* if (i) for each $A, B \in I$, we have $A \cup B \in I$; (ii) for each $A \in I$ and $B \subseteq A$, we have $B \in I$.

Definition 2.2. Let *S* be a non-empty set. A family $F \subseteq P(S)$ (power set of *S*) is called a *filter* on *S* if (i) $\phi \notin F$; (ii) for each $A, B \in F$, we have $A \cap B \in F$; (iii) for each $A \in F$ and $B \supseteq A$, we have $B \in F$.

Definition 2.3. An ideal *I* is called *non-trivial* if $I \neq \phi$ and $S \notin I$. It is clear that $I \subseteq P(S)$ is a non-trivial ideal if and only if the class $F = F(I) = \{S - A : A \in I\}$ is a filter on *S*.

The filter F(I) is called the filter associated with the ideal I.

Definition 2.4. A non-trivial ideal $I \subseteq P(S)$ is called an *admissible ideal* in *S* if it contains all singletons, i.e., if it contains $\{\{x\} : x \in S\}$.

Definition 2.5. A sequence (x_k) of points in *X* is said to be *I*-convergent to an element x_0 of *X* if for each neighbourhood *V* of 0 such that the set

 $\{k \in N : x_k - x_0 \notin V\} \in I$

and it is denoted by $I - \lim_{k \to \infty} x_k = x_0$.

Definition 2.6. A sequence (x_k) of points in *X* is said to be *I*-Cauchy in *X* if for each neighbourhood *V* of 0, there is an integer n(V) such that the set

 $\{k \in N : x_k - x_{n(V)} \notin V\} \in I$

Definition 2.7. Let $A \subset X$ and $x_0 \in X$. Then x_0 is in the *I*-sequential closure of *A* if there is a sequence (x_k) of points in *A* such that $I - \lim_{k \to \infty} x_k = x_0$. We denote *I*-sequential closure of a set *A* by \overline{A}^I . We say that a set is *I*-sequentially closed if it contains all of the points in its *I*-sequential closure.

Throughout the article s(X), $c^{I}(X)$ and $C^{I}(X)$ denote the set of all *X*-valued sequences, the set of all *X*-valued *I*-convergent sequences and the set of all *X*-valued *I*-Cauchy sequences in *X*, respectively.

By a method of sequential convergence, we mean an additive function *B* defined on a subgroup of s(X), denoted by $c_B^I(X)$ into *X*.

Definition 2.8. A sequence $x = (x_k)$ is said to be *B*-convergent to x_0 if $x \in c_B^I(X)$ and $B(x) = x_0$.

Definition 2.9. A method *B* is called *regular* if every convergent sequence $x = (x_k)$ is *B*-convergent with $B(x) = \lim x$.

264

Definition 2.10. A point x_0 is called a *B*-sequential accumulation point of A (or is in the *B*-sequential derived set) if there is a sequence $x = (x_k)$ of points in $A - \{x_0\}$ such that $B(x) = x_0$.

Definition 2.11. A subset *A* of *X* is called *B*-sequentially countably compact if any infinite subset A has at least one B-sequentially accumulation point in A.

Definition 2.12. A subset A of X is called B-sequentially compact if $x = (x_k)$ is a sequence of points of *A*, there is a subsequence $y = (y_{k_n})$ of *x* with $B(y) = x_0$.

3. Main results

Theorem 3.1. A sequence (x_k) is I-convergent if and only if for each neighbourhood *V* of 0 there exists a subsequence $(x_{k'(r)})$ of (x_k) such that $\lim x_{k'(r)} = x_0$ and

 $\{k \in N : x_k - x_{k'(r)} \notin V\} \in I.$

Proof. Let $x = (x_k)$ be a sequence in X such that $I - \lim_{k \to \infty} x_k = x_0$. Let $\{V_n\}$ be a sequence of nested base of neighbourhoods of 0. We write $E^{(i)} = \{k \in N : x_k - x_o \notin k \in N\}$ V_i for any positive integer *i*. Then for each *i*, we have $E^{(i+1)} \subset E^{(i)}$ and $E^{(i)} \in F(I)$. Choose n(1) such that k > n(1), then $E^{(1)} \neq \phi$. Then for each positive integer r such that $n(p+1) \le r < n(2)$, choose $k'(r) \in E^{(p)}$, i.e., $x_{k'(r)} - x_0 \in V_1$. In general, choose n(p+1) > n(p) such that r > n(p+1), then $E^{(p+1)} \neq \phi$. Then for all r satisfying $n(p) \le r < n(p+1)$, choose $k'(r) \in E^{(p)}$, i.e. $x_{k'(r)} - x_0 \in V$. Also for every neighbourhood V of 0, there is a symmetric neighbourhood W of 0 such that $W \cup W \subset V$. Then we get

$$\{k \in N : x_k - x_{k'(r)} \notin V\} \subseteq \{k \in N : x_k - x_0 \notin W\} \cup \{r \in N : x_{k'(r)} - x_0 \notin W\}.$$

Since $I - \lim_{k \to \infty} x_k = x_0$, therefore there is a neighbourhood *W* of 0 such that

$$\{k \in N : x_k - x_0 \notin W\} \in \mathbb{N}$$

and $\lim_{r \to \infty} x_{k'(r)} = x_0$ implies $\{r \in N : x_{k'(r)} - x_0 \notin W\} \in I$.

Thus we have

$$\{k \in N : x_k - x_0 \notin V\} \in I$$

Next suppose for each neighbourhood V of 0 there exists a subsequence $(x_{k'(r)})$ of (x_k) such that $\lim_{r\to\infty} x_{k'(r)} = x_0$ and $\{k \in N : x_k - x_{k'(r)} \notin V\} \in I$.

Since V is a neighbourhood of 0, we may choose a symmetric neighbourhood *W* of 0 such that $W \cup W \subset V$. Then we have

$$\{k \in N : x_k - x_0 \notin V\} \subseteq \{k \in N : x_k - x_{k'(r)} \notin W\} \cup \{r \in N : x_{k'(r)} - x_0 \notin W\}.$$

Since both the sets on the right hand side of the above relation belongs to I. Therefore $\{k \in N : x_k - x_0 \notin V\} \in I$.

This completes the proof.

Bipan Hazarika

Theorem 3.2. Any *B*-sequentially closed subset of a *B*-sequentially compact subset of *X* is *B*-sequentially compact.

Proof. Let A be a B-sequentially compact subset of X and E be a B-sequentially closed subset of A. Let $x = (x_k)$ be a sequence of points in E. Then x is a sequence of points in A. Since A is B-sequentially compact, there exists a subsequence $y = (y_r) = (x_{k_r})$ of the sequence (x_k) such that $B(y) \in A$. The subsequence (y_r) is also a sequence of points in E and E is B-sequentially closed, therefore $B(y) \in E$. Thus $x = (x_k)$ has a B-convergent subsequence with $B(y) \in E$, so E is B-sequentially compact.

Theorem 3.3. Let *B* be a regular subsequential method. Any *B*-sequentially compact subset of *X* is *B*-sequentially closed.

Proof. Let *A* be any *B*-sequentially compact subset of *X*. For any $x_0 \in \overline{A}^B$, then there exists a sequence $x = (x_k)$ be a sequence of points in *A* such that $B(x) = x_0$. Since *B* is a subsequential method, there is a subsequence $y = (y_r) = (x_{k_r})$ of the sequence $x = (x_k)$ such that *I*-lim $x_{k_r} = x_0$. Since *B* is regular, so $B(y) = x_0$. Since *A* is *B*-sequentially compact, there is a subsequence $z = (z_r)$ of the subsequence $y = (y_r)$ such that $B(z) = y_0 \in A$. Since *I*-lim $z_r = x_0$ and *B* is regular, so $B(z) = x_0$. Then $x_0 = y_0$ and hence $x_0 \in A$. Thus *A* is *B*-sequentially closed.

Theorem 3.4. Let *B* be a regular subsequential method. Then a subset of *X* is *B*-sequentially compact if and only if it is *B*-sequentially countably compact.

Proof. Let A be any B-sequentially compact subset of X and E be an infinite subset of A. Let $x = (x_k)$ be a sequence of different points of E. Since A is B-sequentially compact, so this implies that the sequence x has a convergent subsequence $y = (y_r) = (x_{k_r})$ with $B(y) = x_0$. Since B is subsequential method, y has a convergent subsequence $z = (z_r)$ of the subsequence y with $I-\lim_r z_r = x_0$. Since B is regular, we obtain that x_0 is a B-sequentially accumulation point of E. Then A is B-sequentially compact.

Next suppose *A* is any *B*-sequentially countably compact subset of *X*. Let $x = (x_k)$ be a sequence of different points in *A*. Put $G = \{x_k : k \in N\}$. If *G* is finite, then there is nothing to prove. If *G* is infinite, then *G* has a *B*-sequentially accumulation point in *A*. Also each set $G_n = \{x_n : n \ge k\}$, for each positive integer *n*, has a *B*-sequentially accumulation point in *A*. Also each set $G_n = \{x_n : n \ge k\}$, for each positive integer *n*, has a *B*-sequentially accumulation point in *A*. Therefore $\bigcap_{n=1}^{\infty} \bar{G}_n^B \neq \phi$. So there is an element $x_0 \in A$ such that $x_0 \in \bigcap_{n=1}^{\infty} \bar{G}_n^B$. Since *B* is a regular subsequential method, so $x_0 \in \bigcap_{n=1}^{\infty} \bar{G}_n$. Then there exists a subsequence $z = (z_r)$ of the sequence $x = (x_k)$ with $B(z) \in A$. This completes the proof.

266

Theorem 3.5. The B-sequential continuous image of any B-sequentially compact subset of X is B-sequentially compact.

Proof. Let f be any B-sequentially continuous function on X and A be any B-sequentially compact subset of X. Let $y = (y_k) = (f(x_k))$ be a sequence of points in f(A). Since A is B-sequentially compact, there exists a subsequence $z = (z_r) = (x_{k_r})$ of the sequence $x = (x_k)$ with $B(z) \in A$. Then the sequence $f(z) = (f(z_r)) = (f(x_{k_r}))$ is a subsequence of the sequence y. Since f is B-sequentially continuous, $B(f(z)) = f(x) \in f(A)$. Then f(A) is B-sequentially compact.

References

- J. Antoni and T. Salat, On the A-continuity of real functions, *Acta Math. Univ. Comenian* 39(1980), 159–164.
- [2] V. Balaz, J. Cervenansky, P. Kostrysko and T. Salat, *I*-convergence and *I*-continuity of real functions, *Acta Math.* 5(2002), 43–50.
- [3] J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, Oxford, 2000.
- [4] J. Connor and K.G. Grosse-Erdmann, Sequential definition of continuity for real functions, *Rocky Mountains Jour.* **33**(1)(2003), 93–121.
- [5] H. Cakalli and B. Thorpe, On summability in topological groups and a theorem of D.L. Prullage, Ann. Soc. Math. Polon. Comm. Math. Ser I 29(1990), 139–148.
- [6] H. Cakalli, On statistical convergence in topological groups, Pure Appl. Math. Sci. 43(1-2)(1996), 27–31.
- [7] H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
- [8] J.A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.
- [9] P. Kostrysko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26(2) (2000-2001), 669–686.
- [10] D.L. Prullage, Summability in topological group, Math. Z. 96(1967), 259–279.
- [11] T. Salat, B.C. Tripathy and M. Ziman, On some properties of *I*-convergence, *Tatra Mt. Math. Publ.* 28(2004), 279–286.
- [12] T. Salat, B.C. Tripathy and M. Ziman, On *I*-convergence field, *Italian Jour. Pure Appl. Math.* 17(2005), 4–54.
- [13] B.C. Tripathy and B. Hazarika, *I*-convergent sequence spaces associated with multiplier sequences, *Math. Ineq. Appl.* 11(3) (2008), 543–548.
- [14] B.C. Tripathy and B. Hazarika, Paranorm *I*-convergent sequence spaces, *Math. Slovaca* 59(4) (2009), 485–494.
- [15] B.C. Tripathy and B. Hazarika, Some *I*-convergent sequence spaces defined by Orlicz function, *Acta Mathematica Applicatae Sinica* 27(1) (2011), 149–154.
- [16] B.C. Tripathy and B. Hazarika, *I*-monotonic and *I*-convergent sequences, *Kyungpook Math. J.* 51(2011), 233-239, DOI 10.5666/KMJ.2011.51.2.233.
- [17] B. Hazarika, On paranormed ideal convergent generalized difference strongly summable sequence spaces defined over n-normed spaces, *ISRN Math. Anal.* Vol. 2011(2011), 1–17, doi:10.5402/2011/317423.

Bipan Hazarika

[18] B. Hazarika and E. Savas, Some *I*-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, *Math. Comp. Model.* 54(11-12) (2011), 2986–2998.

Bipan Hazarika, Department of Mathematics, Rajiv Gandhi University, Itanagar 791112, Arunachal Pradesh, India. E-mail: bh_rgu@yahoo.co.in

Received March 13, 2011 Accepted September 12, 2011

268