A Note on Right Full k-Ideals of Seminearrings

Nanthaporn Kornthorng and Aiyared Iampan

Abstract. This work extends the idea of k-ideals of semirings to seminearrings, the concept of k-ideals of seminearrings is introduced and investigated, which is an interesting for seminearrings and some interesting characterizations of k-ideals of seminearrings are obtained. Also, we prove that the set of all right full k-ideals of an additively inverse seminearring in which addition is commutative forms a complete lattice which is also modular in the same way as of the results of Sen and Adhikari.

1. Introduction and Preliminaries

2010 Mathematics Subject Classification. 16Y60, 16Y99, 06B23.
Key words and phrases. Semiring; (additively inverse) seminearring; (right full) k-ideal; (modular) complete lattice.

This research is supported by the Group for Young Algebraists in University of Phayao (GYA), Thailand. Correspondence author: Aiyared Iampan (aiyared.ia@up.ac.th)
generalization of semirings introduced and discussed by Rootsebaar [9] in 1963. Therefore, we will study \(k \)-ideals of seminearrings in the same way as of \(k \)-ideals of semirings which was studied by Sen and Adhikari [10].

The purpose of this paper is threefold.

(i) To introduce the concept of \((\text{left}, \text{right})\) \(k \)-ideals of seminearrings.
(ii) To introduce the concept of \((\text{left}, \text{right})\) full \(k \)-ideals of additively inverse seminearrings.
(iii) To characterize the properties of \((\text{left}, \text{right})\) full \(k \)-ideals of seminearrings, and (left, right) full \(k \)-ideals of additively inverse seminearrings.

For the sake of completeness, we state some definitions and notations that are introduced analogously to some definitions and notations in [10].

A seminearring [8] is a system consisting of a nonempty set \(S \) together with two binary operations on \(S \) called addition and multiplication such that

(i) \(S \) together with addition is a semigroup,
(ii) \(S \) together with multiplication is a semigroup, and
(iii) \((a+b)c = ac + bc\) for all \(a, b, c \in S \).

We define a subseminearring \(A \) of a seminearring \(S \) to be a nonempty subset \(A \) of \(S \) such that when the seminearring operations of \(S \) is restricted to \(A \), \(A \) is a seminearring in its own right. A seminearring \(S \) is said to be additively commutative if \(a + b = b + a \) for all \(a, b \in S \). A nonempty subset \(I \) of a seminearring \(S \) is called a right(left) ideal of \(S \) if

(i) \(a + b \in I \) for all \(a, b \in I \), and
(ii) \(ar \in I \) \((ar \in I)\) for all \(r \in S \) and \(a \in I \).

A nonempty subset \(I \) of a seminearring \(S \) is called an ideal of \(S \) if it is both a left and a right ideal of \(S \). A right(left) ideal \(I \) of a seminearring \(S \) is called a right(left) \(k \)-ideal of \(S \) if for any \(a \in I \) and \(x \in S \), \(a + x \in I \) or \(x + a \in I \) implies \(x \in I \). An \(a \) \in \(S \) is said to be additively inverse if for any \(a \in S \), there exists a unique element \(b \in S \) such that \(a = a + b + a \). A seminearring \(S \) is said to be additively regular if for any \(a \in S \), there exists an element \(b \in S \) such that \(a = a + b + a \) and \(b = b + a + b \). In an additively inverse seminearring, the unique inverse \(b \) of an element \(a \) is usually denoted by \(a' \). An element \(a \) of a seminearring \(S \) is called an additive idempotent of \(S \) if \(a + a = a \) and the set of all additive idempotents of \(S \) denoted by \(E^+ \). A right(left) \(k \)-ideal \(I \) of \(S \) is called a right(left) \(k \)-ideal of \(S \) if \(E^+ \subseteq I \). A nonempty subset \(I \) of an additively inverse seminearring \(S \) is called a full \(k \)-ideal of \(S \) if it is both a left and a right full \(k \)-ideal of \(S \). Let \(S \) be a seminearring and \(A \) a right ideal of \(S \). Define the set

\[\bar{A} = \{ a \in S \mid a + x \in A \text{ for some } x \in A \}. \]
Let S be an additively inverse seminearring. Define the set of all right full k-ideals of S by $I(S)$. An equivalence relation ρ on a seminearring S is called a congruence if for any $a, b, c \in S, (a, b) \in \rho$ implies
\[(c + a, c + b) \in \rho \quad \text{and} \quad (a + c, b + c) \in \rho \]
and
\[(ca, cb) \in \rho \quad \text{and} \quad (ac, bc) \in \rho. \]

We can easily prove that the set of all congruence classes S/ρ is a seminearring under addition and multiplication defined by
\[(a)_{\rho} + (b)_{\rho} = (a + b)_{\rho} \quad \text{and} \quad (a)_{\rho}(b)_{\rho} = (ab)_{\rho} \]
for all $a, b \in S$.

A lattice A is said to be modular [3] if for any $x, y, z \in A$, $y \leq x$, $x \wedge z = y \wedge z$ and $x \vee z = y \vee z$ implies $x = y$.

2. Lemmas

Before the characterizations of k-ideals of seminearrings for the main results, we give some auxiliary results which are necessary in what follows. The following lemma is easy to verify.

Lemma 2.1. Let S be a seminearring and I a right(left) ideal of S. Then I is a subseminearring of S.

Corollary 2.2. Let S be a seminearring and I an ideal of S. Then I is a subseminearring of S.

Lemma 2.3. Let S be an additively commutative seminearring, and A and B two right ideals of S. Then $A + B$ is a right ideal of S.

Proof. Let $x, y \in A + B$ and $r \in S$. Then $x = a_1 + b_1$ and $y = a_2 + b_2$ for some $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Thus
\[x + y = (a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2) \in A + B. \]

Since A and B are right ideals of S, we have
\[xr = (a_1 + b_1)r = a_1r + b_1r \in A + B. \]

Hence $A + B$ is a right ideal of S. □

Lemma 2.4. Let S be a seminearring and $\mathcal{X} = \{ J \mid J$ is a right(left) ideal of $S \}$. Then $\bigcap_{J \in \mathcal{X}} J$ is a right(left) ideal of S where $\bigcap_{J \in \mathcal{X}} J \neq \emptyset$.

Proof. Let $x, y \in \bigcap_{J \in \mathcal{X}} J$ and $r \in S$. Then $x, y \in J$ for all $J \in \mathcal{X}$, so $x + y, xr \in J$ for all $J \in \mathcal{X}$. Thus $x + y, xr \in \bigcap_{J \in \mathcal{X}} J$. Hence $\bigcap_{J \in \mathcal{X}} J$ is a right ideal of S. □

Corollary 2.5. Let S be a seminearring and $\mathcal{X} = \{ J \mid J$ is an ideal of $S \}$. Then $\bigcap_{J \in \mathcal{X}} J$ is an ideal of S where $\bigcap_{J \in \mathcal{X}} J \neq \emptyset$.
Lemma 2.6. Let S be a seminearring and $\mathcal{X} = \{J \mid J$ is a right(left) k-ideal of $S\}$. Then $\bigcap_{J \in \mathcal{X}} J$ is a right(left) k-ideal of S where $\bigcap_{J \in \mathcal{X}} J \neq \emptyset$.

Proof. By Lemma 2.4, we have $\bigcap_{J \in \mathcal{X}} J$ is a right ideal of S. Let $x \in \bigcap_{J \in \mathcal{X}} J$ and $r \in S$ be such that $x + r \in \bigcap_{J \in \mathcal{X}} J$. Then $x, x + r \in J$ for all $J \in \mathcal{X}$, so $r \in J$ for all $J \in \mathcal{X}$. Thus $r \in \bigcap_{J \in \mathcal{X}} J$. Hence $\bigcap_{J \in \mathcal{X}} J$ is a right k-ideal of S. \hfill \Box

Corollary 2.7. Let S be a seminearring and $\mathcal{X} = \{J \mid J$ is a k-ideal of $S\}$. Then $\bigcap_{J \in \mathcal{X}} J$ is a k-ideal of S where $\bigcap_{J \in \mathcal{X}} J \neq \emptyset$.

Lemma 2.8. Let S be a seminearring and $\mathcal{X} = \{J \mid J$ is a right(left) full k-ideal of $S\}$. Then $\bigcap_{J \in \mathcal{X}} J$ is a right(left) full k-ideal of S.

Proof. By Lemma 2.6, we have $\bigcap_{J \in \mathcal{X}} J$ is a right k-ideal of S. Since $E^+ \subseteq J$ for all $J \in \mathcal{X}$, we have $E^+ \subseteq \bigcap_{J \in \mathcal{X}} J$. Hence $\bigcap_{J \in \mathcal{X}} J$ is a right full k-ideal of S. \hfill \Box

Corollary 2.9. Let S be a seminearring and $\mathcal{X} = \{J \mid J$ is a full k-ideal of $S\}$. Then $\bigcap_{J \in \mathcal{X}} J$ is a full k-ideal of S.

Lemma 2.10. Let S be a seminearring, and A and B two right k-ideals of S. If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.

Proof. Let $a \in \overline{A}$. Then $a + x \in A$ for some $x \in A$. Thus $a + x \in A \subseteq B$ for some $x \in A \subseteq B$, so $a \in \overline{B}$. Hence $\overline{A} \subseteq \overline{B}$. \hfill \Box

Lemma 2.11. Let S be an additively regular seminearring in which addition is commutative. Then E^+ is a right ideal of S.

Proof. Let $x, y \in E^+$ and $r \in S$. Then $x = x + x$ and $y = y + y$. Thus $(x + y) + (x + y) = (x + x) + (y + y) = x + y$ and $xr + xr = (x + x)r = xr$, so $x + y, xr \in E^+$. Hence E^+ is a right ideal of S. \hfill \Box

Lemma 2.12. For an additively inverse seminearring S, $I(S)$ is a partially ordered set under inclusion. Moreover, if $\mathcal{X} = \{J \mid J \in I(S)\}$, then $\bigcap_{J \in \mathcal{X}} J$ is an infimum of \mathcal{X}.

Proof. By Lemma 2.8, we have $\bigcap_{J \in \mathcal{X}} J \in I(S)$. Since $\bigcap_{J \in \mathcal{X}} J \subseteq J$ for all $J \in \mathcal{X}$, we have $\bigcap_{J \in \mathcal{X}} J$ is a lower bound of \mathcal{X}. Let C be a lower bound of \mathcal{X}. Then $C \subseteq J$ for all $J \in \mathcal{X}$, so $C \subseteq \bigcap_{J \in \mathcal{X}} J$. Hence $\bigcap_{J \in \mathcal{X}} J$ is an infimum of \mathcal{X}. \hfill \Box

Lemma 2.13. Let S be an additively commutative seminearring. If $e, f \in E^+$ and $r \in S$, then $e + f, er \in E^+.

Proof. Now, $(e + f) + (e + f) = (e + e) + (f + f) = e + f$ and $er + er = (e + e)r = er$. Hence $e + f, er \in E^+$. \hfill \Box
3. Main Results

In this section, we give some characterizations of k-ideals of seminearrings. Finally, we prove that the set of all right full k-ideals of an additively inverse seminearring in which addition is commutative forms a complete lattice which is also modular.

Theorem 3.1. Let S be an additively inverse seminearring. Then every right (left) k-ideal of S is an additively inverse subseminearring of S.

Proof. Let I be a right k-ideal of S. By Lemma 2.1, we have I is a subseminearring of S. Let arbitrary $a \in I$. Since S is an additively inverse seminearring, we obtain $a + a' + a = a$ and $a' + a + a' = a'$. Now, $a + (a' + a) = a + a' + a = a \in I$. Since I is a right k-ideal of S, we have $a' + a \in I$. Again, $a' \in I$. Therefore I is an additively inverse subseminearring of S. \qed

Corollary 3.2. Let S be an additively inverse seminearring. Then every k-ideal of S is an additively inverse subseminearring of S.

Theorem 3.3. Let S be an additively inverse seminearring in which addition is commutative and A a right ideal of S. Then

$$\bar{A} = \{a \in S \mid a + x \in A \text{ for all } x \in A\}$$

is a right k-ideal of S such that $A \subseteq \bar{A}$.

Proof. Let $a, b \in \bar{A}$ and $r \in S$. Then $a + x, b + y \in A$ for some $x, y \in A$. Since $(a + b) + (x + y) = a + x + b + y \in A$ and $x + y \in A$, we have $a + b \in \bar{A}$. Since $ar + xr = (a + x)r \in A$ and $xr \in A$, we have $ar \in \bar{A}$. Hence \bar{A} is a right ideal of S. Let $d \in S$ and $c \in \bar{A}$ be such that $c + d \in \bar{A}$. Then there exist $x, y \in A$ such that $c + x \in A$ and $c + d + y \in A$. Thus $d + (c + x + y) = (c + d + y) + x \in A$. Since $c + x + y \in A$, we have $d \in \bar{A}$. Therefore \bar{A} is a right k-ideal of S. Let $a \in A$. Then $(a + a') + a = a \in A$, so $a + a' \in \bar{A}$. Suppose that $a \notin \bar{A}$. Since $a + a' \notin \bar{A}$, we get $a' \notin \bar{A}$. Since $a' + (a + a) = a + a' + a = a \in A$, we have $a' \notin \bar{A}$ that is a contradiction. Hence $a \in \bar{A}$ and so $A \subseteq \bar{A}$. \qed

Corollary 3.4. Let S be an additively inverse seminearring in which addition is commutative and A a right ideal of S. Then \bar{A} is an additively inverse subseminearring of S such that $A \subseteq \bar{A}$.

Corollary 3.5. Let S be an additively inverse seminearring in which addition is commutative and A a right ideal of S. Then $\bar{A} = A$ if and only if A is a right k-ideal of S.

Proof. Assume that $\bar{A} = A$. Then, by Lemma 3.3, we have \bar{A} is a right k-ideal of S. Hence A is a right k-ideal of S.

Conversely, assume that A is a right k-ideal of S. Then, by Lemma 3.3, we have $A \subseteq \bar{A}$. Let $x \in \bar{A}$. Then $x + y \in A$ for some $y \in A$. Since A is a right k-ideal of S, we have $x \in A$. Thus $\bar{A} \subseteq A$, so $\bar{A} = A$. \qed
Lemma 3.6. Let \(S \) be an additively inverse seminearring in which addition is commutative, and \(A \) and \(B \) two right full \(k \)-ideals of \(S \). Then \(\overline{A \cap B} \) is a right full \(k \)-ideal of \(S \) such that \(A \subseteq \overline{A + B} \) and \(B \subseteq \overline{A + B} \).

Proof. By Lemma 2.3, we have \(A + B \) is a right ideal of \(S \). By Lemma 3.3, we have \(\overline{A + B} \) is a right \(k \)-ideal of \(S \) such that \(A + B \subseteq \overline{A + B} \). Since \(A \) and \(B \) are right full \(k \)-ideals of \(S \), we have \(E^+ \subseteq A \) and \(E^+ \subseteq B \). Now, let \(x \in E^+ \). Then \(x \in A \) and \(x \in B \), so \(x = x \in A + B \). Thus \(E^+ \subseteq A + B \subseteq \overline{A + B} \). Hence \(\overline{A + B} \) is a right full \(k \)-ideal of \(S \). Let \(a \in A \). Then \(a = a + a' + a \). We can show that \(a' + a \in E^+ \). Thus

\[
a = a + a' + a = a + (a' + a) \in A + E^+ \subseteq A + B \subseteq \overline{A + B}.
\]

Hence \(A \subseteq \overline{A + B} \). We can prove in a similar manner that \(B \subseteq \overline{A + B} \). This completes the proof. \(\square \)

Theorem 3.7. For an additively inverse seminearring \(S \) in which addition is commutative, \(I(S) \) is a complete lattice which is also modular.

Proof. By Lemma 2.12, we have \(I(S) \) is a partially ordered set under inclusion. Let \(A, B \in I(S) \). By Lemma 2.8, we have \(A \cap B \in I(S) \). By Lemma 3.6, we have

\[
A + B = \overline{A \cap B} \quad \text{and} \quad A \cap B = \overline{A + B}.
\]

Since \(A \cap B = A \cap B \subseteq A \) and \(A \cap B = A \cap B \subseteq B \), we have \(A \cap B \) is a lower bound of \(A \) and \(B \). Let \(C \in I(S) \) be such that \(C \subseteq A \) and \(C \subseteq B \). Then \(C \subseteq A \cap B = A \cap B \), so \(A \cap B \) is an infimum of \(A \) and \(B \). Since \(A \cap B = \overline{A + B} \) and \(\overline{A + B} \) is a right \(k \)-ideal of \(S \), we have \(A \subseteq \overline{A + B} = A \cap B \) and \(B \subseteq \overline{A + B} = A \cap B \). Thus \(A \cap B \) is an upper bound of \(A \) and \(B \). Let \(D \in I(S) \) be such that \(A \subseteq D \) and \(B \subseteq D \). Then \(A + B \subseteq D \). By Lemma 2.10, we have \(\overline{A + B} \subseteq \overline{D} \). By Corollary 3.5, we have \(\overline{D} = D \) and so \(\overline{A + B} \subseteq D \). Thus \(\overline{A + B} \) is a supremum of \(A \) and \(B \). Hence \(I(S) \) is a lattice. We shall show that \(I(S) \) is a modular lattice. Let \(A, B, C \in I(S) \) be such that \(A \cap B = A \cap C \) and \(A \cap B = A \cap C \) and \(B \subseteq C \). Now, let \(x \in C \). Then \(x \in A \cap C = A \cap B = A \cap B \). Thus there exists \(a + b \in A + B \) such that \(x + a + b \in A + B \), so \(x + a + b = a_1 + b_1 \) for some \(a_1 \in A \) and \(b_1 \in B \). This implies that \(x + a + a' + b = x + a + b + a' = a_1 + b_1 + a' \). Since \(x \in C, a + a' \in C \) and \(b \in B \subseteq C \), we have \(a_1 + b_1 + a' \in C \) but \(b_1 \in C \). Thus \(a_1 + a' \in C \). By Lemma 3.1, we have \(a_1 + a' \in A \) and so \(a_1 + a' \in A \cap C = A \cap B \). Thus \(a_1 + a' \in B \). Since \(x + a + b = a_1 + b_1 \), we have \(x + a + a' + b = a_1 + a' + b_1 \in B \). Since \((a + a') + b \in B \) and \(B \) is a right \(k \)-ideal of \(S \), we have \(x \in B \) and so \(C \subseteq B \). Thus \(B = C \). Therefore \(I(S) \) is a modular lattice. By Lemma 2.12, we get that \(I(S) \) is complete. \(\square \)

In comparison our above results with results of \(k \)-ideals of semirings, we see that the set of all right full \(k \)-ideals of an additively inverse seminearring in which addition is commutative forms a complete lattice which is also modular which is an analogous result of full \(k \)-ideals of semirings.
Acknowledgement

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

Nanthaporn Kornthorng, Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.

Aiyared Iampan, Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.

E-mail: aiyared.ia@up.ac.th

Received December 4, 2011
Accepted May 23, 2012