On Achromatic Coloring of Corona Graphs

D. Vijayalakshmi and N. Nithya Devi*
Department Of Mathematics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India *Corresponding author: nitiviji@gmail.com

Abstract

Let $G=(V(G), E(G))$ be a simple graph and an achromatic coloring of G is a proper vertex coloring of G in which every pair of colors appears on at least one pair of adjacent vertices. The achromatic number of G denoted by $\psi(G)$, is the greatest number of colors in an achromatic coloring of G. In this paper, we find out the achromatic number for Corona graph of Cycle with Path graphs on the same order n, Path with Cycle graphs on the same order n, Path with Complete graphs on the same order n, Path of order n with Star graph on order $n+1$, Path with Wheel graphs on the same order n and Ladder graph with Path graph on the same order n.

Keywords. Achromatic coloring; Achromatic number; Corona graph
MSC. 05C15

Received: January 7, 2017
Accepted: March 4, 2017
Copyright © 2017 D. Vijayalakshmi and N. Nithya Devi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let G be a finite undirected graph with no loops and multiple edges. A coloring of a graph G is a partitioning of the vertex set V into color classes. In graph theory, coloring of graphs are very extended areas of research. A coloring of a graph can be described by a function that
maps elements of a graph which are vertex-vertex coloring, edge-edge coloring or total coloring into some set of numbers which are called colors such that some property is satisfied. A proper coloring of the vertices of a graph G assigns a color to each vertex of G in such a way that no two adjacent vertices have the same color. The chromatic number $\chi(G)$ is the minimum number of color required in any proper coloring of G. An achromatic coloring [2] of a graph is a proper vertex coloring such that each pair of color classes is adjacent by at least one edge. The achromatic number was defined and studied by Harary, Hedetniemi and Prins [3]. They shown that, for every complete n-coloring τ of a graph G, there exists a complete homomorphism ϕ of G onto K_{n} and conversely. They considered the largest possible number of colors in an achromatic coloring is called the achromatic number and is denoted by ψ. The greatest number of colors used in a complete coloring of G is the achromatic number $\alpha(G)$ of G. It is clear that $\chi(G) \leq \alpha(G) \leq \psi(G)$.

Computing the achromatic number of a general graph was proved to be NP complete by Yannakakis and Gavril [10] in 1980. In 1976, Hell and Miller [9] who found the achromatic number of Paths and Cycles.

Graph coloring problem is expected to have wide variety of applications such as scheduling, frequency assignment in cellular networks, timetabling, etc.,

2. Preliminaries

Graph products are interesting and useful in many situations [7]. Let G_{1} and G_{2} be two graphs on disjoint sets of n_{1} and n_{2} vertices respectively. The Corona $G_{1} \circ G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and then joining the i th vertex of G_{1} to every vertex in the i th copy of G_{2}. The Corona of two graphs was first introduced by Frucht and Harary in 1970 [8].

In this paper, we find the achromatic number for the Corona graph of Cycle with Path graph on the same order $C_{n} \circ P_{n}$, Path with Cycle on the same order $P_{n} \circ C_{n}$, Path with Complete graph on the same order $P_{n} \circ K_{n}$, Path graph on order n with Star graph on the order $n+1$ say $P_{n} \circ K_{1, n}$ and Path graph with Wheel graph on the same order $P_{n} \circ W_{n}$ and Ladder graph with Path on the same order $L_{n} \circ P_{n}$.

3. Achromatic Number on Corona Graphs

Theorem 3.1. For $n \geq 5$, the achromatic number of Corona of C_{n} with P_{n} is $n+4$.
i.e., $\psi\left(C_{n} \circ P_{n}\right)=n+4$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of Cycle graph C_{n} and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of Path graph P_{n}.
i.e., $V\left(C_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.

By the definition of Corona graph, each vertex of C_{n} is adjacent to every vertex of a copy of P_{n} ie., every vertex of $V\left(C_{n}\right)$ is adjacent to every vertex from the set $V\left(P_{n}\right)$. Thus the Corona of
two graphs can be defined as

$$
V\left(C_{n} \circ P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\} .
$$

Let $P_{n}^{(1)}, P_{n}^{(2)}, \ldots, P_{n}^{(n)}$ be the n-copies of the Path graph P_{n}.
Now assign a proper vertex coloring as follows:
Consider the color class $C=\left\{c_{1}, c_{2}, \ldots, c_{n+4}\right\}$.

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
- For $P_{n}^{(i)}, i=1,2,3, j=2,3, \ldots, n$, assign the color c_{n+j-1} to $u_{i j}$.
- Assign the colors c_{i+2} to $u_{i j}$ for $i=1,2,3$.
- For $V\left(P_{n}^{i}\right)$ for $i=5,6, \ldots, n$, let us assign the colors to contribute some pairs as follows: Assign c_{i+j+1} colors to all the vertices of $V\left(P_{n}^{i}\right)$ for $i=5$ and $1 \leq j \leq n-2$. Assign c_{i+j+1} colors to all the vertices of $V\left(P_{n}^{i}\right)$ for $i=6$ and $1 \leq j \leq n-3$.

Assign c_{i+j+1} colors to all the vertices of $V\left(P_{n}^{i}\right)$ for $i=n$ and $1 \leq j \leq n-(n-3)$.
For the remaining vertices of $V\left(P_{n}^{i}\right)$ for $i=5,6 \ldots, n$, assign the colors c_{1} and c_{2} alternatively.

- In $V\left(P_{n}^{i}\right)$ for $i=4$ of every copy, assign the colors as follows:

Assign the colors $c_{n+3}, c_{n+1}, c_{n+4}$ and c_{n+2} to $u_{4 j}(1 \leq j \leq 4)$ and assign the colors c_{1} and c_{2} alternatively to the remaining vertices of V_{4} to make the coloring as achromatic.

Now the coloring makes the non-adjacency condition is possible. Thus by the procedure of achromatic coloring, the coloring accommodates all the pairs of the color class and hence it is maximal. An easy check shows that the above said coloring is achromatic.
Hence, $\psi\left(C_{n} \circ P_{n}\right)=n+4$, for $n \geq 5$.
Theorem 3.2. For $n \geq 5$, the achromatic coloring of Corona of Path graph P_{n} with Cycle graph C_{n} is $n+4$.
i.e., $\psi\left(P_{n} \circ C_{n}\right)=n+4$.

Proof. The proof is same as Theorem 3.1.
Theorem 3.3. For $n \geq 2$, the achromatic coloring of Corona of P_{n} with K_{n} is $2 n$.
i.e., $\psi\left(P_{n} \circ K_{n}\right)=2 n$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of Path graph P_{n} and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of Complete graph K_{n}.
i.e., $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.

Let $V\left(P_{n} \circ K_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} U\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\}$.

By the definition of Corona graph, each vertex of P_{n} is adjacent to every vertex of a copy of K_{n} i.e., every vertex $v_{i} \in V\left(P_{n}\right)$ is adjacent to every vertex from the set $\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\}$. Thus the Corona of two graphs Path with Complete graphs is

$$
V\left(P_{n} \circ K_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\} .
$$

Assign the following $2 n$ coloring for $P_{n} \circ K_{n}$ as achromatic:
Let $K_{n}^{(1)}, K_{n}^{(2)}, \ldots, K_{n}^{(n)}$ be the n-copies of the Complete graph K_{n}.
Consider the color class $C=\left\{c_{1}, c_{2}, \ldots, c_{2 n}\right\}$.

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
- For $1 \leq i \leq n-1$, assign the color c_{i+2} to $u_{i j}$.
- For $K_{n}^{(i)}$, where $1 \leq i \leq n-1,2 \leq j \leq n-1$, assign the color c_{n+j}.
- Assign the color c_{i} to all the vertices of $V\left(K_{n}^{(n)}\right)$ for $i=n$ and $1 \leq j \leq n-1$.
- Assign the color c_{n+1} to the missing vertex in $V\left(K_{n}^{(i)}\right)$ for $i=n$ and $j=n$.

Thus any pair in the color class is adjacent by atleast one edge and by the very construction this coloring accommodates maximum number of pairs in the color class.

Therefore, $\psi\left(P_{n} \circ K_{n}\right)=2 n$, for $n \geq 2$.
Theorem 3.4. For $n \geq 3$, the achromatic coloring of Corona of P_{n} with $K_{1, n}$ is $2 n$.
i.e., $\psi\left(P_{n} \circ K_{1, n}\right)=2 n$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n-vertices of P_{n} and $u_{1}, u_{2}, \ldots, u_{n}$ be the n-vertices of $K_{1, n}$. i.e., $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(K_{1, n}\right)=\left\{u_{i}, u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\}$.

By the definition of corona graph, each vertex of P_{n} is adjacent to every copy of $K_{1, n}$ i.e., every vertex $v_{i} \in V\left(P_{n}\right)$ is adjacent to every vertex from the set $\left\{u_{i}, u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\}$. Thus the Corona of two graphs is,

$$
V\left(P_{n} \circ K_{1, n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\} .
$$

Let $K_{1, n}^{(1)}, K_{1, n}^{(2)}, \ldots, K_{1, n}^{(n)}$ be the n-copies of the Star graph $K_{1, n}$.
Now assign a proper vertex coloring as follows:
Consider the color class $C=\left\{c_{1}, c_{2}, \ldots, c_{2 n}\right\}$.

- Assign the color c_{1} to v_{1} and for $1 \leq i \leq n$, assign the color $c_{1+2 i}$ to v_{i+1}.
- For $1 \leq i \leq n$, color the vertices u_{i} with color $c_{2 i}$.

To make the coloring as achromatic one, color the remaining vertices as follows:

- Color the vertices $u_{i j}$ with color $c_{u i+j}$ up to $c_{2 n}, n \geq 3$, for $1 \leq i \leq n$ and $1 \leq j \leq n$.

Now this coloring will accommodates maximum number of pairs of the color class and an easy check shows that the above said coloring is achromatic.
Hence $\psi\left(P_{n} \circ K_{1, n}\right)=2 n$, for $n \geq 3$.
Theorem 3.5. For $n \geq 3$, the achromatic coloring of Corona of P_{n} with W_{n} is $2 n$.
i.e., $\psi\left(P_{n} \circ W_{n}\right)=2 n$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of Path graph P_{n} and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of Wheel graph W_{n} with u_{n} as the hub.
i.e., $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(W_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.

By the definition of corona graph, each vertex of P_{n} is adjacent to every vertex of a cop of W_{n} i.e., every vertex of $V\left(P_{n}\right)$ is adjacent to every vertex from the set $V\left(W_{n}\right)$. Thus the Corona of two graphs Path with Wheel is,

$$
V\left(P_{n} \circ W_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\} .
$$

Let $G_{1}=P_{n}$ be a Path graph with n-vertices and $G_{2}=W_{n}$ be a Wheel graph with n-vertices. Now the corona $G=P_{n} \circ W_{n}$ is obtained by taking one copy of P_{n} of order n and n-copies of W_{n} and then joining the i th vertex of P_{n} to every vertex on the i th copy of W_{n}.

Let $W_{n}^{(1)}, W_{n}^{(2)}, \ldots, W_{n}^{(n)}$ be the n-copies of the Wheel graph W_{n}.
Now we consider the following two cases:
Case (i): when n is odd
Consider the color class $C=\left\{c_{1}, c_{2}, \ldots, c_{2 n}\right\}$.

- Assign the color c_{1} to v_{1} and assign the color $c_{1+2 i}$ to the vertices v_{i+1} for $1 \leq i<n$.
- Assign the color $c_{2 i}$ to $u_{i 1}$ for $1 \leq i \leq n$.
- Assign the color $c_{i j}$ to $u_{i j}$ and assign $c_{u i 1+j-1}$ to $u_{i j}$ up to $c_{2 n}, n \geq 3$ for $1 \leq i \leq n, 2 \leq j \leq n$.
- Color the remaining vertices of $u_{i j}$ with the color c_{i} for $1 \leq i<n$.

This makes the above said coloring is achromatic one, since we have assigned colors to satisfy the definition of achromatic coloring.

Case (ii): when n is even

- Assign the color c_{1} to v_{1} and assign the color $c_{1+2 i}$ to the vertices v_{i+1} for $1 \leq i<n$.
- Assign the color $c_{2 i}$ to $u_{i 1}$ for $1 \leq i \leq n$.
- For $1 \leq i \leq n / 2,2 \leq j \leq n$, assign the color $c_{u i 1+j-1}$ to $u_{i j}$ up to $c_{2 n}, n \geq 3$ and for the remaining $u_{i j}$'s, assign the color c_{i} for $1 \leq i \leq n$.
This coloring will accommodate all the missing pairs and an easy check shows that the above said coloring is achromatic. Therefore $\psi\left(P_{n} \circ K_{1, n}\right)=2 n$, for $n \geq 3$.

Theorem 3.6. For $n \geq 6$, the achromatic coloring of corona of L_{n} with P_{n} is $2 n+2$.
i.e., $\psi\left(L_{n} \circ P, n\right)=2 n+2$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the Ladder graph L_{n} and $p_{1,} p_{2}, \ldots, p_{n}$ be the vertices of the Path graph P_{n}.
i.e., $V\left(L_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\left(P_{n}\right)=\left\{p_{1,} p_{2, \ldots, p_{n}}\right\}$.

Let $P_{n}^{(1)}, P_{n}^{(2)}, \ldots, P_{n}^{(n)}$ be the n-copies of the Path graph P_{n} and $p_{i j}$ be the corresponding vertices of each $P_{n}^{(i)}$ where $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.

Now by the definition of corona graph, each vertex of L_{n} is adjacent to every vertex in each copy of P_{n} i.e., every vertex $v_{i}, u_{i} \in V\left(L_{n}\right), i=1,2, \ldots, n$ is adjacent to every vertex in each copy of $P_{n}^{(i)}, i=1,2, \ldots, n$. i.e.,

$$
\begin{aligned}
V\left(L_{n} \circ P_{n}\right) & =v_{i} \cup u_{i} \cup p_{i j} \\
& =\left\{v_{i: 1} \leq i \leq n\right\} \cup\left\{u_{i: 1} \leq i \leq n\right\} \cup\left\{p_{i j}: 1 \leq i \leq n \text { and } 1 \leq j \leq n\right\} .
\end{aligned}
$$

Assign the following $2 n+2$ coloring for $L_{n} \circ P_{n}$ as achromatic:
Consider the color class $C=\left\{c_{1}, c_{2}, \ldots, c_{2 n+2}\right\}$.

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i} and for $1 \leq i \leq n$, assign the color c_{n+i} to $u_{n}, u_{n-1}, \ldots, u_{n-(n-1)}$.
- Assign the color c_{i+2} to $p_{i 1}$, where $1 \leq i \leq n$ for all v_{i} and $u_{n}, u_{n-1}, \ldots, u_{n-(n-1)}$.
- For $P_{n}^{(i)}, 1 \leq i \leq n / 2, j=2,3, \ldots, n-2$, assign the color c_{i+j+2} and for $p_{i, n-1}$ and $p_{i, n}$, where $i=1,2, \ldots, 2 n-1$, assign the colors $c_{2 n+1}$ and $c_{2 n+2}$.
- For all $p_{i j}$, assign the color c_{i+j+1}, where $n / 2<i \leq n-1$ and $2 \leq j \leq n-2$. But for v_{n-i}, $i=1,2, \ldots, n-1$.
- For $n<i \leq 2 n-2,2 \leq j \leq 2 n-i-1$, assign the color c_{i+j+1} for some $p_{i j}$, for $i>n$ and for the remaining vertices of $p_{i j}$, assign the color c_{i} where $1 \leq i \leq n$.
- For $i=2 n-1$,
(i) Assign the colors $c_{1}, c_{3}, c_{5}, \ldots, c_{n-2}$, for $j=3,5,7, \ldots, n$.
(ii) Assign the colors $c_{4}, c_{6}, c_{8}, \ldots, c_{n-1}$, for $j \equiv 0 \bmod 2$ but $j \neq 2$.
- For $i=2 n$,
(i) Assign the color $c_{2 n+2}$ for $j=1$.
(ii) Assign the color c_{j} for $j \equiv 0 \bmod 2$.
(iii) Assign the color c_{j+2}, where $j=3,5,7, \ldots, n+2$.

If we add one more color we will miss some more pairs. This will contradict the non adjacency condition. Hence $\psi\left(L_{n} \circ P_{, n}\right) \leq 2 n+2$. This proves that this coloring is maximal and achromatic one. Therefore, $\psi\left(L_{n} \circ P, n\right)=2 n+2$, for $n \geq 6$.

4. Conclusion

In this paper, we have presented an achromatic coloring for corona graphs on several graphs which are Cycle with Path, Path and Cycle, Path with Complete, Path with Wheel and Ladder with Path on the same order and nth order Path graph with $n+1$ th order Star graph.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan, London (1976).
[2] J. Gross and J. Yellen, Handbook of Graph Theory, CRC Press, New York (2004).
[3] F. Harrary and S. Hedetniemi, The achromatic number of graph, Journal of Combinational Theory 8 (1970), 154 - 161.
[4] D.B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall of India, Private Limited, New Delhi (2006).
[5] K. Thilagavathi, K.P. Thilagavathy and N. Roopesh, The achromatic coloring of graphs, Electronic Notes in Discrete Mathematics 33 (2009), 153-156.
[6] K. Venkatesan, V.V.Joseph and V. Mathiyazhagan, On star coloring of corona graphs, Applied Mathematics E-Noted 15 (2015), 97 - 104.
[7] S. Klavzar, R. Hammack and W. Imrich, Handbook of Graph Products, CRC Press (2011).
[8] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970), $322-325$.
[9] P. Hell and D.J. Miller, Graphs with given achromatic number, Discrete Mathematics 16 (1976), $195-207$.
[10] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM Journal of Applied Mathematics 38 (1980), $364-372$.

