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1. Introduction

The graph we mean G = (V ,E) is a finite, simple, undirected and connected graph with p
vertices and q edges. Terms not defined here are used in the sense of Harary [1].
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A line graph L(G) is the graph whose vertices correspond to the edge of G and two vertices
in L(G) are adjacent if and only if the corresponding edges in G are adjacent. This was introduced
by Harary and Norman [3].

A set D ⊆ V (G) of a graph is a dominating set of G, if every vertex in V\D is adjacent
to some vertices in D. The domination number is the minimum cardinality taken over all the
dominating sets in G and is denoted by γ(G). This concept was introduced by Ore in [8].

A dominating set D ⊆V (G) is a non-split dominating set, if the induced subgraph 〈V \D〉
is connected. This concept was introduced by Kulli and Janakiram in [5].

In [7], a set D ⊆ V (L(G)) is said to be line dominating set of G, if every vertex not in
D is adjacent to some vertices in D. The domination number in line graph is the minimum
cardinality taken over all the dominating sets of L(G), and is denoted by γl(G).

AA set D ⊆ V (L(G)) is said to be complement line dominating set of G, if every vertex
not in D is adjacent to some vertices in D. The domination number in complement line graph is
the minimum cardinality taken over all the dominating sets in L(G), and is denoted by γl(G).

In this paper, we introduced this non-split parameter for complement of line graph. Also we
found the exact value of this parameter for some standard graphs and obtained the bounds in
terms of elements of G.

2. Main Results

Definition 2.1. A dominating set D of a complement line graph L(G) is said to be a non-
split complement line dominating set (NSCLD-set), if the induced subgraph 〈V (L(G))\ D〉 is
connected. The minimum cardinality of NSCLD-set is said to be non-split complement line
domination number of G and is denoted by γnsl(G).

Figure 1. G Figure 2. L(G) Figure 3. L(G)

Example 2.1. For the graph L(G) in Figure 3, the vertex set D = {e3, e4} is a γnsl -set and hence
γnsl(G)= 2.

Remark 2.1. Throughout this paper, we consider the graphs which has atleast one NSCLD-set.

Theorem 2.2. For the cycle graph Cn,

γnsl(Cn)=
{

3 if n = 5
2 if n ≥ 6
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Proof. Let G be a cycle graph Cn, n ≥ 5 with V (G)= {v1,v2, . . . ,vn} and E(G)= {e1, e2, . . . , en}.

Then V (L(G))= {e1, e2, . . . , en}, n ≥ 5.

Case i: n = 5. In this case, the set D = {e1, e2, e4} is a NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 3.

Case ii: n ≥ 6. In this case, the set D = {e1, e2} is a NSCLD-set with minimum cardinality, since
〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2,n ≥ 6.

Example 2.2.

Figure 4. C6 Figure 5. L(C6) Figure 6. L(C6)

For the graph L(C6) in Figure 6, the vertex set D = {e1, e2} is a γnsl -set and hence γnsl(C6)= 2.

Theorem 2.3. For the path graph Pn, γnsl(Pn)= 2,n ≥ 5.

Proof. Let G be a path graph Pn, n ≥ 5 with V (G)= {v1,v2, . . . ,vn} and E(G)= {e1, e2, . . . , en−1}.
Then V (L(G))= {e1, e2, . . . , en−1}, n ≥ 5.

Here the set D = {e2, e3} is a NSCLD-set with minimum cardinality, since 〈V (L(G))\D〉 is
connected. Hence, γnsl(G)= |D| = 2,n ≥ 5.

Example 2.3.

Figure 7. P7 Figure 8. L(P7)

Figure 9. L(P7)

For the graph L(P7) in Figure 9, the vertex set D = {e2, e3} is a γnsl -set and hence γnsl(P7)= 2.
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Theorem 2.4. For the complete bipartite graph Km,n,

γnsl(Km,n)=
{

2 if m (or) n = 2
3 if m ≥ 3, n ≥ 3

Proof. Let G be a complete bipartite graph Km,n, m,n ≥ 2 with

V (G)= {ui,v j/i = 1 to m, j = 1 to n} and E(G)= {uiv j/i = 1 to m, j = 1 to n}.

Then V (L(G))= {uiv j/i = 1 to m, j = 1 to n}, m,n ≥ 2.

Case i: m (or) n = 2. In this case, the set D = {u1v1,u2v1} is the NSCLD-set with minimum
cardinality.

Therefore γnsl(G)= 2.

Case ii: m,n ≥ 3. In this case, the set D = {u1v1,u1v2,u2v1} is the NSCLD-set with minimum
cardinality, since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 3, m,n ≥ 3.

Example 2.4.

Figure 10. K3,3 Figure 11. L(K3,3) Figure 12. L(K3,3)

For the graph L(K3,3) in Figure 12, the vertex set D = {u1v1,u1v2,u2v1} is a γnsl -set and hence
γnsl(K3,3)= 3.

Theorem 2.5. For the wheel graph Wn,

γnsl(Wn)=


4 if n = 4
3 if n = 5
2 if n ≥ 6

Proof. Let G be a wheel graph Wn, n ≥ 4 with V (G)= {u,v1,v2, . . . ,vn} and E(G)= {e1, e2, . . . , e2n}.
Then V (L(G))= {e1, e2, . . . , e2n}, n ≥ 4.

Case i: n = 4. In this case, the set D = {e1, e3, e5, e6} is the NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 4.
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Case ii: n = 5. In this case, the set D = {e1, e2, e3} is the NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 5.

Case iii: n ≥ 6. In this case, the set D = {e1, e7} is the NSCLD-set with minimum cardinality,
since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2, n ≥ 6.

Example 2.5.

Figure 13. W4 Figure 14. L(W4) Figure 15. L(W4)

For the graph L(W4) in Figure 15, the vertex set D = {e1, e3, e5, e6} is a γnsl -set and hence
γnsl(W4)= 4.

Theorem 2.6. For the bistar tree Bn,n, γnsl(Bn,n)= 3, n ≥ 2.

Proof. Let G be a bistar tree Bn,n, n ≥ 2 with V (G) = {v1,v2, . . . ,v2n+2} and E(G) =
{e1, e2, . . . , e2n+1}. Then V (L(G)) = {e1, e2, . . . , e2n+1}, n ≥ 2. Here the set D = {e1, en+1, en+2}
is a NSCLD-set with minimum cardinality, since 〈V (L(G))\D〉 is connected. Which gives,
γnsl(G)= |D| = 3, n ≥ 2.

Example 2.6.

Figure 16. B3,3 Figure 17. L(B3,3) Figure 18. L(B3,3)

For the graph L(B3,3) in Figure 18, the vertex set D = {e1, e4, e5} is a γnsl -set and hence
γnsl(B3,3)= 3.
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Theorem 2.7. For the crown graph C+
n ,

γnsl(C
+
n )=

{
3 if n = 3
2 if n ≥ 4

Proof. Let G be a crown graph C+
n , n ≥ 3 with V (G)= {v1,v2, . . . ,v2n} and E(G)= {e1, e2, . . . , e2n}.

Then V (L(G))= {e1, e2, . . . , e2n}, n ≥ 3.

Case i: n = 3. In this case, the set D = {e2, e4, e6} is a NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 3.

Case ii: n ≥ 4. In this case, the set D = {e1, en+1} is a NSCLD-set with minimum cardinality,
since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2, n ≥ 4.

Example 2.7.

Figure 19. C+
5 Figure 20. L(C+

5 ) Figure 21. L(C+
5 )

For the graph L(C+
5 ) in Figure 21, the vertex set D = {e1, e6} is a γnsl -set and hence γnsl(C

+
5 )= 2.

Theorem 2.8. For the comb tree P+
n ,

γnsl(P
+
n )=

{
3 if n = 3
2 if n ≥ 4

Proof. Let G be a comb tree P+
n , n ≥ 3 with V (G)= {v1,v2, . . . ,v2n} and E(G)= {e1, e2, . . . , e2n−1}.

Then V (L(G))= {e1, e2, . . . , e2n−1}, n ≥ 3.

Case i: n = 3. In this case, the set D = {e2, e3, e4} is a NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 3.

Case ii: n ≥ 4. In this case, the set D = {e1, e2} is a NSCLD-set with minimum cardinality, since
〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2, n ≥ 4.
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Example 2.8.

Figure 22. P+
4 Figure 23. L(P+

4 ) Figure 24. L(P+
4 )

For the graph L(P+
4 ) in Figure 24, the vertex set D = {e1, e2} is a γnsl -set and hence γnsl(P

+
4 )= 2.

Theorem 2.9. For the helm graph W+
n ,

γnsl(W
+
n )=

{
3 if n = 2,3
2 if n ≥ 4

Proof. G be a helm graph W+
n , n ≥ 2 with V (G) = {u,u1,u2, . . . ,un,v1,v2, . . . ,vn} and E(G) =

{e1, e2, . . . , e3n+1}. Then V (L(G))= {e1, e2, . . . , e3n+1}, n ≥ 2.

Case i: n = 2,3. In this case, the set D = {e4, e5, e6} is a NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 3.

Case ii: n ≥ 4. In this case, the set D = {e1, en−1} is a NSCLD-set with minimum cardinality,
since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2, n ≥ 4.

Example 2.9.

Figure 25. W+
3 Figure 26. L(W+

3 ) Figure 27. L(W+
3 )

For the graph L(W+
3 ) in Figure 27, the vertex set D = {e4, e5, e6} is a γnsl -set and hence

γnsl(W
+
3 )= 3.
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Theorem 2.10. For the graph K+
n , γnsl(K

+
n )= 3, n ≥ 3.

Proof. Let G be a K+
n graph, n ≥ 3 with V (G) = {v1,v2, . . . ,v2n} and E(G) = {e1, e2, . . . , e n(n+1)

2
}.

Then V (L(G))= {e1, e2, . . . , e n(n+1)
2

}, n ≥ 3.

Case i: n = 3. In this case, the set D = {e2, e4, e5} is a NSCLD-set with minimum cardinality.

Therefore γnsl(G)= 3.

Case ii: n = 4. In this case, the set D = {e1, e2, e9} is a NSCLD-set with minimum cardinality,

since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 3.

Case iii: n ≥ 5. In this case, the set D = {e1, e2, e3} is a NSCLD-set with minimum cardinality,

since 〈V (L(G))\Dångle is connected. Hence, γnsl(G)= |D| = 3, n ≥ 5.

Example 2.10.

Figure 28. K+
4 Figure 29. L(K+

4 ) Figure 30. L(K+
4 )

For the graph L(K+
4 ) in Figure 30, the vertex set D = {e1, e2, e9} is a γnsl -set and hence

γnsl(K
+
4 )= 3.

Theorem 2.11. For the book graph Bn, γnsl(Bn)= 2, n ≥ 2.

Proof. Let G be a book graph Bn, n ≥ 2 with V (G) = {u,v,v1,v2, . . . ,v2n} and E(G) =
{e, e1, e2, . . . , e3n}. Then V (L(G)) = {e, e1, e2, . . . , e3n}, n ≥ 2. Here the set D = {e1, e2n} is the

NSCLD-set with minimum cardinality, since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2,

n ≥ 2.
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Example 2.11.

Figure 31. B3 Figure 32. L(B3) Figure 33. L(B3)

For the graph L(B3) in Figure 33, the vertex set D = {e1, e6} is a γnsl -set and hence γnsl(B3)= 2.

Theorem 2.12. For the friendship graph C(m)
3 ,

γnsl(C
(m)
3 )=

{
3 if m = 2,3
2 if m ≥ 4

Proof. Let G be a friendship graph C(m)
3 , m ≥ 2 with V (G) = {u,v1,v2, . . . ,v3m} and E(G) =

{e1, e2, . . . , e3m}. Then V (L(G))= {e1, e2, . . . , e3m}, m ≥ 2.

Case i: m = 2,3. In this case, the set D = {e1, e2, e3m} is a NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 3.

Case ii: n ≥ 4. In this case, the set D = {e1, e4} is a NSCLD-set with minimum cardinality, since
〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2, m ≥ 4.

Example 2.12.

Figure 34. C3
3 Figure 35. L(C3

3) Figure 36. L(C3
3)

For the graph L(C3
3) in Figure 36, the vertex set D = {e1, e2, e9} is a γnsl -set and hence

γnsl(C
3
3)= 3.
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Theorem 2.13. For the triangular snake graph mC3,

γnsl(mC3)=
{

4 if m = 2
2 if m ≥ 3

Proof. Let G be a triangular snake graph mC3, m ≥ 2 with V (G) = {v1,v2, . . . ,v2m+1} and
E(G)= {e1, e2, . . . , e3m}. Then V (L(G))= {e1, e2, . . . , e3m}, m ≥ 2.

Case i: m = 2. In this case, the set D = {e2, e3, e5, e6} is a NSCLD-set with minimum cardinality.
Therefore γnsl(G)= 4.

Case ii: m ≥ 3. In this case, the set D = {e1, e3m} is a NSCLD-set with minimum cardinality,
since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2, m ≥ 3.

Example 2.13.

Figure 37. 3C3 Figure 38. L(3C3) Figure 39. L(3C3)

For the graph L(3C3) in Figure 39, the vertex set D = {e1, e9} is a γnsl -set and hence
γnsl(3C3)= 2.

Theorem 2.14. For the dragon graph Cm@Pn, m ≥ 3, n ≥ 1,

γnsl(Cm@Pn)=
{

3 if m+n = 5
2 otherwise

Proof. Let G be a dragon graph Cm@Pn, m ≥ 3, n ≥ 1 with V (G) = {v1,v2, . . . ,vm+n} and
E(G)= {e1, e2, . . . , em+n}. Then V (L(G))= {e1, e2, . . . , em+n}.

Case i: m+ n = 5. In this case, the set D = {em−2, em, em+1} is a NSCLD-set with minimum
cardinality. Therefore γnsl(G)= 3.

Case ii: m = 3, n ≥ 3. In this case, the set D = {em+n−1, em+n} is a NSCLD-set with minimum
cardinality. Therefore γnsl(G)= 2.

Case iii: m > 3, n ≥ 3. In this case, the set D = {em−2, em−1} is a NSCLD-set with minimum
cardinality, since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2.
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Example 2.14.

Figure 40. C3@P4 Figure 41. L(C3@P4) Figure 42. L(C3@P4)

For the graph L(C3@P4) in Figure 42, the vertex set D = {e6, e7} is a γnsl -set and hence
γnsl(C3@P4)= 2.

Theorem 2.15. For the quadrilateral snake graph mC4, γnsl(mC4)= 2, m ≥ 2.

Proof. Let G be a quadrilateral snake graph mC4, m ≥ 2 with V (G) = {v1,v2, . . . ,v3m+1} and
E(G) = {e1, e2, . . . , e4m}. Then V (L(G)) = {e1, e2, . . . , e4m}, m ≥ 2. Here the set D = {e1, e2} is a
NSCLD-set with minimum cardinality, since 〈V (L(G))\D〉 is connected. Hence, γnsl(G)= |D| = 2,
m ≥ 2.

Example 2.15.

Figure 43. 3C4 Figure 44. L(3C4) Figure 45. L(3C4)

For the graph L(3C4) in Figure 45, the vertex set D = {e1, e2} is a γnsl -set and hence
γnsl(3C4)= 2.

Theorem 2.16. For the graph K+
m,n,

γnsl(K
+
m,n)=


0 if m = n = 1
3 if m+n = 3
2 otherwise

Proof. Let G be a K+
m,n graph, m,n ≥ 1 with V (G) = {u1,u2, . . . ,u2m,v1,v2, . . . ,v2n} and E(G) =

{e1, e2, . . . , em+n,uiv j/i = 1 to m, j = 1 to n}. Then V (L(G)) = {e1, e2, . . . , em+n,uiv j/i = 1 to m, j =
1 to n}.
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Case i: m = n = 1. In this case, the NSCLD does not exist.

Case ii: m+n = 3. In this case, the set D = {e2,uiv j/i = 1,2; j = 1,2} is a NSCLD-set of G with
minimum cardinality. Therefore γnsl = 3.

Case iii: m = 1,n = 3. In this case, the set D = {e2,u1v1} is a NSCLD-set of G with minimum
cardinality. Therefore γnsl(G)= 2.

Case iv: m = 2 and n = 2. In this case, the set D = {em+n−1, em+n} is a NSCLD-set of G with
minimum cardinality, since 〈V (L(G))\D〉 is disconnected. Hence, γnsl(G)= |D| = 2.

Case v: m = 3,n = 1. In this case, the set D = {e1,u1v1} is a NSCLD-set of G with minimum
cardinality, since 〈V (L(G))\D〉 is disconnected. Hence, γnsl(G)= |D| = 2.

Case vi: m > 3 and n > 3. In this case, the set D = {em+n−1, em+n} is a NSCLD-set of G with
minimum cardinality, since 〈V (L(G))\D〉 is disconnected. Hence, γnsl(G)= |D| = 2.

Example 2.16.

Figure 46. K+
2,2 Figure 47. L(K+

2,2) Figure 48. L(K+
2,2)

For the graph L(K+
2,2) in Figure 48, the vertex set D = {e3, e4} is a γnsl -set and hence

γnsl(K
+
2,2)= 2.

3. Bounds

Theorem 3.1. For any graph G, γl(G)≤ γnsl(G).

Proof. Since every non-split complement line dominating set is necessarily a complement line
dominating set, and hence we have γl(G)≤ γnsl(G).

The following result is obvious from the bounds of standard simple graphs.

Theorem 3.2. For any graph G, 2≤ γnsl(G)≤ 4.

Theorem 3.3. For any graph G, γl(G)= γnsl(G), if δ(L(G))≥ 4.
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Proof. For the graph L(G) with minimum degree≥ 4, every non-split complement line
dominating set is a line dominating set, hence

γl(G)≤ γnsl . (3.1)

Also, every complement line dominating set is a non-split complement line dominating set, and
hence

γl(G)≥ γnsl . (3.2)

The result is followed from (3.1) and (3.2).

Theorem 3.4. For any graph G, γnsl(G)≤ q−∆(L(G))+1.

Proof. Let V be a vertex set of L(G) with maximum degree ≥2 implies there exist two vertices
v1 and v2 adjacent to v.

Consider the vertex set D = {V\N(v)}∪ {v1,v2}, clearly v and the vertices N(v) are dominated
by v1 and v2. So, D is a vertex set of L(G). Also, V\D = N(v)\{v1,v2} which is connected.

Therefore,

γnsl(G)≤ |D| = q− (∆(L(G))+1)+2

= q−∆(L(G))+1.

4. Conclusion

In this paper, we found the non-split complement line domination number for the standard
graphs Cycle, Path, Complete bipartite graph, Wheel graph, Banana graph, Crown graph, Comb
tree, Helm graph, K+

n graph, K+
m,n graph, Book graph, Friendship graph, Triangular snake

graph, Dragon graph and Quadrilateral snake graph. Also we studied the relationship with
other domination parameters.
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