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1. Introduction

1.1 Strong and Weak Forms of Open Sets and Closed Sets in Topological Spaces

Stone [35] and Tong [36] were investigated regular open sets and strong regular open sets,
which are strong forms of open sets in topological spaces. Complements of regular open sets and
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strong regular open sets are called regular closed sets and strong regular closed sets respectively.
Semi open set, a weak form of open set was introduced by Levine [16]. Semi closed set was
introduced by Biswas [8]. Njastad [24], Levine [19], Mashhour [20], Abd El-Monsef et al. [20],
Andrijevic [3], Battacharyya and Lahiri [10], Arya and Nour [5], Maki et al. [21], Pallaniappan
et al. [32], Maki et al. [21], Sundaram and Nagaveni [29] and Pushpalatha [27] have formulated
α-closed sets, generalized closed sets, pre-closed sets, β-closed sets, semi generalized closed
sets, generalized semi closed sets, αg-closed sets, regular generalized closed sets, generalized
α-closed sets, weakly generalized closed sets, and strongly generalized closed sets, which are
some weak forms of closed sets. Tong [36] and Hatir et al. [15] introduced B-sets and t-sets
and α∗-sets as weaker forms of closed sets. B-sets are weak forms of open sets. Sundaram [33]
introduced c-set and c(s)-set and Rajamani [28] introduced c∗-set. We recall the following
definitions, which are used in this paper.

Definition 1.1. A subset S of X is called a

(i) regular closed [35] if S = cl(int(S)) and regular open [35] if S = int(cl(S)).

(ii) semi open [18] if there exist an open set G such that G ⊆ S ⊆ cl(G) and semi closed [9] if
there exist a closed set F such that int(F)⊆ S ⊆ F . Equivalently, a subset S of X is called
semi-open if S ⊆ cl(int(S)) and semi-closed if S ⊆ int(cl(S)) [3].

(iii) α-closed if cl(int(cl(S)))⊆ S and α-open if S ⊆ int(cl(int(S))) [24].

(iv) pre-closed if cl(int(S))⊆ S and pre-open if S ⊆ int(cl(S)) [20].

(v) β-closed [1] (semi pre-closed [5]) if int(cl(S)))⊆ S and a β-open [1] (semi pre-open [3]) if
S ⊆ cl(int(cl(S))).

Definition 1.2. For a subset S of X , the semi closure of S, denoted by scl(S), is defined as
the intersection of all semi closed sets containing S in X and the semi interior of S, denoted
by sint(S), is the union of all semi open sets contained in S in X [11]. Pre closure [3] of S,
denoted by pcl(S), pre interior of S, denoted by pint(S), α-closure [24] of S, denoted by αcl(S),
α-interior of S, denoted by αint(S), semi pre closure [3] of S, denoted by spcl(S) and semi-pre
interior of S, denoted by spint(S).

Result 1.3. For a subset S of X ,

(i) the semi closure is denoted by scl(S), defined as scl(S)= S∪ int(cl(S)) [3].

(ii) the semi interior is denoted by sint(S), defined as sint(S)= S∩cl(int(S) [3].

(iii) the pre closure is denoted by pcl(S), defined as pcl(S)= S∪cl(int(S)) [3].

(iv) the pre interior is denoted by pint(S), defined as pint(S)= S∩ int(cl(S) [3]

(v) the α-closure is denoted by αcl(S), defined as αcl(S)= S∪cl(int(cl(S))) [24].

(vi) the α-interior is denoted by αint(S), defined as αint(S)= S∩ int(cl(int(S))) [24].

(vii) the semi pre closure is denoted by spcl(S), defined as spcl(S)= S∪ int(cl(int(S))) [3].

(viii) the semi pre interior is denoted by spint(S), defined as spint(S)= S∩cl(int(cl(S))) [3].
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Definition 1.4. A subset A of X is called

(i) generalized closed (briefly g-closed) set if cl(A) ⊆ U whenever A ⊆ U and U is open in
X [19].

(ii) semi generalized closed (briefly sg-closed) if scl(A) ⊆U whenever A ⊆U and U is semi
open in X [10].

(iii) generalized semi-closed (briefly gs-closed) if scl(A)⊆U whenever A ⊆U and U is open in
X [6].

(iv) generalized α-closed (briefly gα-closed) if αcl(A)⊆U whenever A ⊆U and U is α-open in
X [21].

(v) α-generalized closed (briefly αg-closed) if αcl(A)⊆U whenever A ⊆U and U is open in
X [21].

(vi) generalized semi-pre closed(briefly gsp-closed) if spcl(A)⊆U whenever A ⊆U and U is
open in X [14].

(vii) regular generalized closed (briefly rg-closed) cl(A)⊆U whenever A ⊆U and U is regular
open in X [32].

(viii) weakly generalized closed (briefly wg-closed) cl(int(A)) ⊆ U whenever A ⊆ U and U is
open in X [23].

(ix) strongly generalized closed (briefly strongly g-closed) cl(A)⊆U whenever A ⊆U and U is
g-open in X [27].

(x) semi c generalized-closed (briefly scg-closed) set if scl(A)⊆U whenever A ⊆U and U is
c-set in X [34].

(xi) semi c∗ generalized-closed (briefly sc∗g-closed) set if scl(A)⊆U whenever A ⊆U and U
is c∗-set in X [34].

The complements of the above mentioned closed sets are their respective open sets.

Definition 1.5. A subset S of X is called a

(i) regular closed if S = cl(int(S)) [35],

(ii) t-set if int(S)= int(cl(S)) [36],

(iii) α∗-set if int(A)= int(cl(int(A))),

(iv) c-set if S =G ⊆ F where G is open and F is α∗-set in X [33],

(v) c∗-set if S =G ⊆ F where G is g-open and F is α∗-set in X [30],

(vi) c(s)-set if S =G ⊆ F where G is g-open and F is t-set in X [33].

Remark 1.6. Every c-set in X is a c∗-set in X [28].
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2. Semi c(s)-Generalized Closed Set in Topological Spaces

In 1970, Levine [19] introduced the concept of generalized closed (briefly g-closed) sets in
topological spaces and investigated some of their properties. Semi closed sets was introduced by
Biswas [8]. Nagaveni [23], Pushpalatha [27], Pallaniappan and Rao [32], and Arya and Nour [5]
have introduced weakly generalized closed sets (wg-closed sets), strongly generalized closed
sets (strongly g-closed sets), regular generalized closed sets (rg-closed sets) and generalized
semi closed sets respectively. Tong [36] and Hatir et al. [15] introduced B-sets and t-sets and
α∗-sets are weaker forms of closed sets, α∗-sets, t-sets and B-sets are weak forms of open sets.
Sundaram [33] introduced c-set and c(s) set and Rajamani [28] introduced c∗-set. We have
introduced new class of set called sc(s)g-closed set in topological spaces and study some of their
properties.

In this paper, we have introduced concept of semi c(s)-generalized closed set in topological
spaces.

Definition 2.1. A subset A of X is called a semi c(s)-generalized closed (briefly sc(s)-g closed)
set if scl(A)⊆U whenever, A ⊆U and U is c(s)-set in X . The complement of sc(s)-g closed set
is called a sc(s)-g open set in topological spaces.

Theorem 2.2. Every closed set in X is sc(s)-g closed in X but not conversely.

Proof. Assume that A is a closed set in X . Let U be a c(s)-set such that A ⊆ U . Since A is
closed, cl(A)= A. Therefore, cl(A)⊆U . Since scl(A)⊆ cl(A), scl(A)⊆U . Hence A is (s)-g closed
set in X .

The converse of the above theorem need not be true as seen from the following example.

Example 2.3. Consider the topological space X = {a,b, c} with topology τ= {ϕ, X , {a}, {a,b}}. The
set {a, c} is sc(s)-g closed set but not closed set in X .

Theorem 2.4. Every semi closed set in X is (s)-g closed set in X but not conversely.

Proof. Assume that A is a semi closed set. Let A ⊆ U , U is a c(s)-set. Since scl(A) = A,
scl(A)⊆U . Therefore A is (s)-g closed set in X .

The converse of the above theorem need not be true as seen from the following example.

Example 2.5. Consider the topological space X = {a,b, c} with topology τ= {ϕ, X , {a}, {a,b}}. The
set {a, c} is scg-closed set but not semi closed set in X .

Theorem 2.6. Every sc∗g-closed set in X is (s)-g closed set in X but not conversely.

Proof. Assume that A is sc∗g-closed set in X . Let A ⊆ G, where G is c(s)-set. Since every
c(s)-set in X is a c∗-set in X [28], G is a c∗-set and since A is sc∗g-closed, scl(A)⊆G. Therefore,
A is a (s)-g closed set.
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The converse of the above theorem is need not be true as seen from the following example.

Example 2.7. Consider the topological space X = {a,b, c} with topology τ = {ϕ, X , {a,b}}. The
set {a, c} is (s)-g closed set but not sc∗g-closed set in X .

Theorem 2.8. Every (s)-g closed set in X is gs-closed set in X but not conversely.

Proof. Assume that A is sc(s)-g closed set in X . Let A ⊆U , where U is a c(s)-set, then U can be
written as U =G∩X , where G is g-open and X is t-set. Since A is sc(s)-g closed set. Therefore,
scl(A)⊆G where G is open. Hence A is gs-closed set in X .

The converse of the above theorem need not be true as seen from the following example.

Example 2.9. Consider the topological space X = {a,b, c} with topology τ= {ϕ, X , {a}}. The set
{a, c} is gs-closed set but not a (s)-g closed set in X .

Remark 2.10. From the above results, we obtain the following diagram:

closed→ semi closed→ sc∗g-closed→ sc(s)-g closed→ gs-closed

Figure 1

In the above diagram none of the implications can be reversed.

Remark 2.11. The concept of (s)-g closed set is independent with the following classes of sets
namely pre-closed, β-closed, gα-closed, wg-closed, g-closed, sg-closed, rg-closed, αg-closed and
strongly g-closed sets in topological spaces.

Example 2.12. Consider the topological space X = {a,b, c} with topologies τ1 = {ϕ, X , {a}} and
τ2 = {ϕ, X , {a,b}. In (X ,τ1) the set {a,b} is sc(s)-g closed set in X , but not pre-closed, β-closed,
gα-closed and sg-closed set in X . In (X ,τ2) the set {b, c} is pre-closed, β-closed, gα-closed, and
sg-closed set but not (s)-g closed set in X .

Example 2.13. Consider the topological space X = {a,b, c} with topologies τ1 = {ϕ, X , {a}, {a,b}}
and τ2 = {ϕ, X , {a}, {b, c}}. In (X ,τ1) the set {a, c} is sc*g-closed set in X , but not pre-closed,
β-closed and sg-closed set in X . In (X ,τ2) the set {a,b} is pre-closed, β-closed and sg-closed set
but not sc(s)-g closed set in X .

Example 2.14. Consider the topological space X = {a,b, c} with topologies τ1 = {ϕ, X , {a}, {a,b}}
and τ2 = {ϕ, X , {a,b}}. In (X ,τ1) the set {b} is both sc(s)-g closed and sc∗g-closed set in X ,
but not g-closed, αg-closed and strongly g-closed set in X . In (X ,τ2) the set {b, c} is g-closed,
αg-closed and strongly g-closed set but not (s)-g closed and sc∗g-closed set in X .

Example 2.15. Consider the topological space X = {a,b, c} with topologies τ1 = {ϕ, X , {a}, {b},
{a,b}} and τ2 = {ϕ, X , {a,b}}. In (X ,τ1) the set {b} is both scg-closed and sc∗g-closed set in X ,
but not rg-closed set and wg-closed set in X . In (X ,τ2) the set {b, c} is rg-closed and wg-closed
set but not scg-closed set in X .
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Remark 2.16. From the above discussion and known results we have the following diagram:
REMARK 2.1.16: From the above discussion and known results we have the following diagram: 

                                            

       β-closed      sg-closed 

     pre-closed            

                                                       αg-closed 

          

sc*g-closed           sc(s)-g closed       strongly g-closed 

 

 

                gα-closed               wg-closed 

             

g-closed        rg-closed 

      

Figure 2.1.2 

 

***** 

 

  

Figure 2
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