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1. Introduction
The Restricted Three Body Problem (RTBP) is one of the most rigorously studied branch of
celestial mechanics since it plays an important role in studying the motion of not only artificial

http://dx.doi.org/10.26713/jims.v10i1-2.678


74 Dynamics of Oblate Test Particle under the Influence of Oblate and Radiating Primaries. . . : A. Narayan et al.

satellite but also planets, minor-planets, comets and many other celestial bodies. RTBP, however
neglects the effect of radiation force acting on the infinitesimal mass if one or both primaries
are intense emitter of radiation. It is observed that the motion of cosmic dust when near a
star is most affected by the repulsive force of radiation pressure and drag forces. Poynting [16]
studied that small meteors or cosmic dust are affected by not only gravitational force but also
the radiation force as they come near a luminous body. This effect is prominently apparent by
a gradual loss of angular momentum of the infinitesimal mass, as a result a net drag force is
active in the direction opposite to that of motion. Later the relativistic form of this problem was
given by Robertson [17]. Several studies [2,9,11,12,21] of the restricted problem have since
analyzed the effect of radiation pressure.

Another direction in which the Classical Restricted Three Body Problem (CRTBP) has been
enriched is the inclusion of additional effects observed when the primaries follows not the
circular but elliptical path. This generalization, referred to as Elliptical Restricted Three Body
Problem (ERTBP), is better equipped in studying the long-time behavior of important dynamical
systems. The reason being that in this problem though the position of the primaries are assumed
to be fixed the Hamiltonian depends explicitly on time [1,27,28].

In RTBP the bodies are assumed to be either point masses or spherical in shape. But it is
practically noticed that the celestial bodies are axis-symmetric bodies. Therefore, perturbation
effect due to the shape of the bodies on the dynamics of the system should also be taken into
account. The replacement of point mass by rigid-body is quite important because of its wide
applications in practical problems. The study in this direction was initiated by Nikolaev in 1970.
He studied the equilibrium points in the case when the larger primary is an oblate spheroid.
The work was extended by Sharma and Subba Rao [18, 19] by studying the characteristic
exponents when bigger or both the primaries are oblate spheroid. Since then many authors
have undertaken the study of CRTBP and ERTBP taking into account the oblateness of first or
second or both primaries and various other perturbing forces [4,10,14,15,22–25]. The restricted
three body problem when the oblateness of the infinitesimal is considered was also studied by
some authors [5,6]. Singh and Haruna [20] investigated the problem considering all the three
participating bodies as oblate spheroid and reported the presence of five collinear equilibrium
points. Also, they examined the stability of all the planar equilibrium points.

Singh and Umar [26] studied the dynamics of the planar ERTBP considering the oblateness
of all three participating bodies and applied the model to binary pulsars. This motivated us
to undertake the study of position and stability of triangular and collinear equilibrium points
when all the three bodies are oblate spheroid and the massive primaries are radiating. The
application of this problem can be found in many binary systems such as Alpha Centuari,
Luyten-726, Kruger-60 and many others.

The paper is organized as follows: Section 1 gives the introduction. The formulation of the
problem and equations of motion are described in Section 2. In Section 3, which is divided into
two subsections the triangular and collinear equilibrium points are obtained. In Section 4 and
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its subsections, the analysis for stability is conducted. The numerical application of the problem
is explored taking for instance four binary systems: Luyten-726, Sirius, Kruger-60 and Alpha
Centauri. Finally, discussion and conclusions are included in Section 5.

2. Formulation of Problem and Equations of Motion

Assume that m1, m2 and m are the masses of the bigger, smaller and infinitesimal bodies
respectively, where m1 and m2 have elliptical orbits and m is moving under their gravitational
effect but m being too small does not affect the motion of the primaries. Also, let R1 and R2 be
the distance of the mass m from m1 and m2 respectively and R is the distance between the
primaries. The Figure 1 shows the position of the three participating bodies with respect to the
inertial (OXY Z) and rotating (Oxyz)frame of reference.

m1

m2

m3

nt

X

Y
y

x

Figure 1. The position of the bodies with respect to the inertial and rotating frame of reference.

The terminologies and notations used are adapted from [27]. In this frame of reference
the distance between the primaries and gravitational constant are unity. Also the sum of the
masses of the primaries is taken to be unity and mass ratio is given as µ= m2

m1+m2
. Since both

the primaries are assumed to be luminous bodies, q1 and q2 are assumed to be mass reduction
factors of the two primaries, where 0< qi < 1, i = 1,2. If we assume the oblateness of primary,
secondary and infinitesimal bodies are given by the factors A1, A2 and A3 respectively, where
0 < A i < 1, i = 1,2,3, then we obtain the force function given by (2.2) (Ref. [13] and [7]). The
equation of motion in dimension-less pulsating rotating barycentric reference frame is given as:

x′′−2y′ = 1
1+ ecos f

Ux ;

y′′+2x′ = 1
1+ ecos f

Uy ; (2.1)

z′′ = 1
1+ ecos f

Uz ;
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where

U = x2 + y2 − z2ecos f
2

+ 1
n2

[
−(1−µ)

(
q1

r1
+ q1A1 + A3

2r3
1

)
+µ

(
q2

r2
+ q2A2 + A3

2r3
2

)]
. (2.2)

Here, the prime ′ denotes differentiation with respect to true anomaly f . Using Kepler’s law
and further simplifying to linear terms, we get the mean motion n is given by:

n2 = 1
a3

(
1+ 3

2
(e2 + A1 + A2)

)
. (2.3)

3. Position of Equilibrium Points

The Lagrangian or Libration points in the case of planar three body problem is obtained by
solving the equations, U∗

x = 0, U∗
y = 0 for x′ = x′′ = y′ = y′′ = 0= z; that is we need to solve the

following two equations:

n2x− q1(1−µ)(x+µ)
r3

1
− q2µ(x+µ−1)

r3
2

− 3(1−µ)(x+µ)(A1q1 + A3)

2̄r5
1

− 3µ(x+µ−1)(A2q2 + A3)
2r5

2
= 0 , (3.1)

n2 y− q1(1−µ)y
r3

1
− q2µy

r3
2

− 3(1−µ)y(A1q1 + A3)

2̄r5
1

− 3µy(A2q2 + A3)
2r5

2
= 0 . (3.2)

It is well known that on solving these two equation five equilibrium points are obtained on
the xy-plane which is taken to be the plane of motion of the primaries. These points are:
(a) Triangular points (L4,L5) when y 6= 0 and (b) Collinear points (L1,L2,L3) lying on the line
joining the primaries. The two cases are discussed as follows:

3.1 Triangular Points

Multiplying (3.1) by (x+µ) and multiplying (3.2) by y and subtracting, we get(
n2 − q2

r3
2
− 3(A2q2 + A3)

2r5
2

)
µy= 0 . (3.3)

When A1 = A2 = A3 = 0, equation (3.2) and (3.3) yields

r1 =
( q1

n2

)1/3
and r2 =

( q2

n2

)1/3
. (3.4)

Substituting n2 and simplifying, we get

r1 = δ1/3
1

(
1− e2

2

)
and r2 = δ1/3

2

(
1− e2

2

)
, (3.5)

where

δi = a3qi, i = 1,2 . (3.6)
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So that the triangular equilibrum points on neglecting the oblateness is given by

x0 = 1
2
−µ+ 1

2
(δ1/3

1 −δ1/3
2 )(1− e2), (3.7)

y0 =±
(
δ2/3

1 (1− e2)− 1
4

(
1+ (1− e2)(δ2/3

1 −δ2/3
2 )

)2
)1/2

. (3.8)

Let ε1 and ε2 are the factors denoting perturbation due to oblateness such that

r1 = δ1/3
1

(
1− e2

2

)
+ε1 and r2 = δ1/3

2

(
1− e2

2

)
+ε2, (3.9)

Solving the equations (3.2), (3.3) on the basis of the assumptions given by (3.9), we get the
triangular points as

x∗ =1
2
−µ+ ∆2

2
(1− e2)− A1

2

(
1−∆1

(
1− 5e2

2

))
− A2

2

(
1+∆1

(
1− 5e2

2

))
− A3

2

(
1
q1

+ 1
q2

)
, (3.10)

y∗ =±
[
−1

4
(1−∆1)2 + e2

2
(∆2

2 −∆1)+ A1

2

(
−(1−∆2(∆1 −2))+ 7e2

2
∆3

)

+ A2

2
((1−∆2(∆1 −2))+ 7e2

2
∆3)+ A3

2

(
1
q2

(1+∆2)− 1
q1

(1−∆2)− e2
(

1
q1

+ 1
q2

)
∆2

)]1/2

, (3.11)

where

∆1 = δ2/3
1 +δ2/3

2 ,

∆2 = δ2/3
1 −δ2/3

2 ,

∆3 =−δ2/3
1 (1−δ2/3

1 )+δ2/3
2 (1−δ2/3

2 ). (3.12)

The problem discussed in this paper is also explored numerically by applying the results
obtained to the four binary systems: Luyten-726, Sirius, Kruger-60 and Alpha Centauri, the
data used in this paper are presented in Table 1.

Table 1. Some relevant data of the binary systems.

Binary system M1(M¯) M2(M¯) a(AU) e

Luyten-726 0.109 0.102 2.5 0.62

Sirius 2.02 0.978 6.43 0.59

Kruger-60 0.271 0.176 9.5 0.41

Alpha Centauri 1.1 0.907 10.9 0.5179

Figure 2 and 3 represents the parametric plot of the triangular point L4, taken as a function
of β1 and β2, varying the values of A3 from 0 to 0.01, for the four Binary systems. The oblateness
parameter for the primaries are assumed as A1 = 0.001 and A2 = 0.002.
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Figure 2. The parametric plot of the equilibrium point L4, taken as a function of β1 and β2 for the two
binary systems Luyten-726 and Sirius. Here the x and y-axis represent the respective coordinate of the
triangular point L4.
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Figure 3. The parametric plot of the equilibrium point L4, taken as a function of β1 and β2for the two
binary systems: Kruger 60 and Alpha Centauri.

3.2 Collinear Points

In order to obtain the position of planar equilibrium points lying on the line joining the two
primaries, that is the collinear points, along with equations (3.1) and (3.2), the additional
condition y= 0 is applied. That is the points are obtained by solving the equation:

n2x− q1(1−µ)(x+µ)
|x+µ|3 − q2µ(x+µ−1)

|x+µ−1|3 − 3(1−µ)(x+µ)(q1A1 + A3)
2|x+µ|5

− 3µ(x+µ−1)(q2A2 + A3)
2|x+µ−1|5 = 0. (3.13)
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The collinear equilibrium points L1, L2 and L3 are defined as follows:

(1) L1 lies between the bigger and smaller primary: −µ< x < 1−µ,

(2) L2 lies to the right of the smaller primary: x > 1−µ,

(3) L3 lies to the left of the bigger primary: x <−µ.

3.2.1 Location of the Collinear Point L1

The position of the collinear point L1 is given by −µ < x < 1−µ, then |x+µ| = x+µ and
|x+µ−1| = −(x+µ−1). Then, assuming x+µ−1=−ρ and substituting in Equation (3.13), we
obtain:

µK2

5(1−µ)K1
= ρ5N1

(1−ρ)4D1
, (3.14)

where

K1 = 1
5

(n2 −4q1 −9(A1q1 + A3)),

K2 = −3
2

(q2A2 + A3),

N1 = 1+
ρ

(
9A1q1

2 + 9A3
2 −n2 + 14q1

5

)
K1

+ ρ2 (−6A1q1 −6A3 +2n2 −4q1
)

K1
+
ρ3

(
9A1q1

2 + 9A3
2 −2n2 +3q1

)
K1

+
ρ4

(
−9A1q1

5 − 9A3
5 +n2 − 6q1

5

)
K1

+
ρ5

(
3A1q1

10 + 3A3
10 − n2

5 + q1
5

)
K1

,

D1 = 1+ q2ρ
2

K2
− n2ρ5

K2
.

Assuming,

λ=
(

µK2

5(1−µ)K1

) 1
5

.

For very small value of ρ, we have ρ ≈λ. Then a series expansion of ρ can be given by

ρ =λ(1+ c1λ+ c2λ
2 +·· · ). (3.15)

The value ρ in the series form is substituted from equation (3.15) into equation (3.14), then on
comparing the coefficients, we get:

c1 = 1
50K1

(
4−4β1 +27A1 +27A3 + 1

a3 (2+3e2 +3A1 +3A2)
)
,

c2 = 1
625K2

1K2
(80(1−2β1 −β2)+360A1 −96A2 +264A3

− 1
a3 (40(1−β1 −β2)+60e2 +150A1 +6A2 +36A3)). (3.16)

Thus, substituting equations (3.16) and (3.15) in the equation x = 1−µ−ρ, we get the coordinate
for L1.
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3.2.2 Location of the Collinear Point L2

The position of collinear point L2 is given by x > 1−µ, which implies |x +µ| = x +µ and
|x+µ−1| = x+µ−1. Assuming x+µ−1 = ρ and substituting in the value of x in terms of
ρ in equation (3.13), we obtain:

µK3

5(1−µ)K4
= ρ5N2

(1+ρ)4D2
, (3.17)

where

K3 =1
5

(11n2 −8q1 −9(A1q1 + A3)),

K4 =3
2

(q2A2 + A3),

N2 =1+
ρ

(
9A1q1

2 + 9A3
2 −n2 + 14q1

5

)
K3

+ ρ2 (−6A1q1 −6A3 +6n2 −4q1
)

K3

+
ρ3

(
9A1q1

2 + 9A3
2 −2n2 +3q1

)
K3

+
ρ4

(
−9A1q1

5 − 9A3
5 + 7n2

5 − 6q1
5

)
K3

+
ρ5

(
3A1q1

10 + 3A3
10 − n2

5 + q1
5

)
K3

.

D2 =1+ q2ρ
2

3A2q2
2 + 3A3

2

− n2ρ5

3A2q2
2 + 3A3

2

. (3.18)

Assuming

λ=
(

µK3

5(1−µ)K4

)1/5
.

The value of ρ in series form is substituted from Equation (3.15) into (3.17). Thus, we have
obtained the values of the coefficients as:

c1 = −1
(50K3)

(
92(1−β1)+117A1 +117A3 − 1

a3 (98+147e2 +147A1 +147A2)
)
,

c2 = 1
625K2

3K4
(320(1−2β1 −β2)+720A1 +3336A2 +456A3

− 1
a3 (880(1−β1 −β2)+1320e2 +2310A1 +5898A2 +5568A3)). (3.19)

Thus, substituting equation (3.15) and (3.19) in the equation x = 1−µ+ρ, we get the coordinate
for L2.

3.2.3 Location of the Collinear Point L3

The position of the collinear point L3 is given by x <−µ, then |x+µ| = −(x+µ) and |x+µ−1| =
−(x+µ−1). Assuming x+µ = −ρ, then substituting in equation (3.13) and rearranging the
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terms, we obtain:

µ

(1−µ)
= (1+ρ)4 [

q1ρ
2 + 3

2 (q1A1 + A3)−n2ρ5]
ρ4

[
n2(1+ρ)5 − 3

2 (A2q2 + A3)− q2(1+ρ)2
] . (3.20)

Now replacing ρ = 1+γ and expanding 1/ρ upto [ρ3] in equation (3.20), we get

µ

(1−µ)
=T1 +T2u+T3u2 +T4u3 +·· · , (3.21)

where

T1 =− 6
7

(
1+2e2 + A2 − A3 + 2

3
β1

)
,

T2 =1− 11
7

e2 − 22
7
α+ 11

14
A1 − 85

56
A2 + 135

56
A3 − 19

21
β1 − 1

7
β2 ,

T3 =1− 1277
672

e2 − 1277
336

α+ 341
168

A1 − 37
21

A2 + 1376
336

A3 − 989
1008

β1 − 2
7
β2 ,

T4 =1567
1728

− 2207
1152

e2 − 2207
576

α+ 25987
8064

A1 − 13705
8064

A2 + 10795
2016

A3 − 5465
6048

β1 − 4519
12096

β2 ,

u =− 12
7
γ, and

α= 1−a .

Using Lagrange’s inversion integral formula, γ is obtained in terms of µ

(1−µ) as

γ=T11 + µ

(1−µ)
T21 +

(
µ

(1−µ)

)2
T31 +

(
µ

(1−µ)

)3
T41 , (3.22)

where

T11 =−
(

e2

2
+α+ A2

2
− A3

2
+ β1

3

)
,

T21 =−
(

7
12

− e2

12
− α

6
− 11A1

24
− 11A2

96
− 13A3

32
− 5β1

36
+ β2

12

)
,

T31 =
(

7
12

+ e2

576
+ α

288
− 55A1

288
− 13A2

1152
− 79A3

384
− 71β1

864
+ β2

12

)
,

T41 =
(
13223
20736

+ 3103e2

41472
+ 3103α

20736
− 2677A1

41472
− 751A2

10368
− 5879A3

41472
− 1009β1

31104
+ 569β2

6912

)
.

Figures 4, 5 and 6 show the plot of the collinear points L1, L2 and L3, respectively. Here the
x-coordinate of the collinear equilibrium point is taken as a function of β2, varying the values
of A3 from 0 to 0.05, taking the values β1 = 0.1 A1 = 0.001 and A2 = 0.002 for the four above
mentioned Binary systems.
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Figure 4. The plot of the collinear points L1, taken as a function of β1, varying the values of A3 from 0
to 0.05, taking the values β2 = 0.0112, A1 = 0.001 and A2 = 0.002 for the four Binary systems.
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Figure 5. The plot of the collinear points L2, taken as a function of β1, varying the values of A3 from 0
to 0.05, taking the values β2 = 0.0112, A1 = 0.001 and A2 = 0.002 for the four Binary systems.
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Figure 6. The plot of the collinear points L3, taken as a function of β1, varying the values of A3 from 0
to 0.05, taking the values β2 = 0.0112, A1 = 0.001 and A2 = 0.002 for the four Binary systems.

4. Stability of Equilibrium Points

Let the position of the equilibrium points be denoted by (a0,b0) and consider a small
displacement (u,v) from the point such that x = a0 + u and y = b0 + v. Substituting these
values in (2.1), we obtain the system of equations, taking only linear terms of u and v given
below:

u′′−2v′ = 1
1+ ecos f

((U∗
xx)0u+ (U∗

xy)0v),

v′′+2u′ = 1
1+ ecos f

((U∗
yx)0u+ (U∗

yy)0v), (4.1)

here, the superscript 0 indicates that the derivatives are to be evaluated at the equilibrium
points (a0,b0). The values of second order derivatives of the function Ω, on taking the averaged
values, are as follows:

U∗
xx =

[
1− 1

n2

(
q1(1−µ)

r5
1

(r2
1 −3(x+µ)2)+ q2µ

r5
2

(r2
2 −3(x+µ−1)2)
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+ 3(q1A1 + A3)(1−µ)
2r7

1
(r2

1 −5(x+µ)2)+ 3(q2A2 + A3)µ
2r7

2
(r2

2 −5(x+µ−1)2)

)]
,

U∗
xy =

[
1− 1

n2

(
3q1(1−µ)(x+µ)y

r5
1

+ 3q2µ(x+µ−1)y
r5

2

+ 15(q1A1 + A3)(1−µ)(x+µ)y
r7

1
+ 15(q2A2 + A3)µ(x+µ−1)y

2r7
2

)]
=U∗

yx , (4.2)

U∗
yy =

[
1− 1

n2

(
q1(1−µ)

r5
1

(r2
1 −3y2)+ q2µ

r5
2

(r2
2 −3y2)

+ 3(q1A1 + A3)(1−µ)
2r7

1
(r2

1 −5y2)+ 3(q2A2 + A3)µ
2r7

2
(r2

2 −5y2)

)]
.

The characteristic equation for the system of equation (4.1), taking u = A exp(λ f ), v = Bexp(λ f )
is given as

λ4 − (
((Cxx)0 + (Cxy)0)−4

)
λ2 + (

Cxx)0(Cyy)0 − (Cxy)0(Cyx)0)= 0 . (4.3)

where

Cxx = 1
1+ ecos f

U∗
xx, Cxy = 1

1+ ecos f
U∗

xy ,

Cyx = 1
1+ ecos f

U∗
yx, Cyy = 1

1+ ecos f
U∗

yy .

4.1 Stability of Triangular Points

In order to study the stability of the equilibrium points, we introduce the following new variables:

x1 = x, x2 = y, x3 = dx
d f

, x4 = d y
d f

. (4.4)

Substituting in equation (4.1), the system of equations takes the form:

dxi

d f
= Pi1x1 +Pi2x2 +Pi3x3 +Pi4x4, i = 1,2,3,4, (4.5)

where

P11 =P12 = P14 = P21 = P22 = P23 = P33 = P44 = 0,

P13 =1, P24 = 1, P34 = 2, P43 =−2,

P31 =Cxx, P32 = P41 = Cxy = Cyx andP42 = Cyy.

Then the coefficients of system of equations (4.5) are periodic function of ′ f ′ with period 2π. For
further calculation, the averaged values has been considered

dx(0)
i

d f
= P (0)

i1 x(0)
1 +P (0)

i2 x(0)
2 +P (0)

i3 x(0)
3 +P (0)

i4 x(0)
4 , i = 1,2,3,4; (4.6)
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where

P (0)
is =

∫ 2 f

0
Pis( f )d f , i, s = 1,2,3,4 .

Thus, we get

P (0)
31 =3

4

[
1+ e2 +3A1 −4A1µ+2A2 −3A2µ− 13A3

4
+ 15A3µ

2
+ 4β2

3
−2β2µ− 7β1

12
+2β1µ

+α

(
9
4
− 47e2

8
+4A1 − 67A1µ

8
− 19A2

8
+ 59A2µ

8
− 47A3

8
+ 55A3µ

2

− 19β1

3
+ 29β1µ

4
+ 5β2

3
− 29β2µ

4

)]
,

P (0)
41 =3

p
3

4

[
1−2µ+ e2

3
− 1

3
2e2µ+ 5A1

3
− 4A1µ

3
− 8A2

3
+ 7A2µ

3
+ 7A3

4
−5A3µ

+ β1

12
− 5β1µ

6
+ 4β2

9
− 2β2µ

9

+α

(
19
12

− 19µ
6

− 159e2

8
+ 159e2µ

4
+ 28A1

3
+ 67A1µ

8
+ 311A2

24
− 463A2µ

24

+29A3

24
− 245A3µ

12
− 101β1

6
+ 775β1µ

36
− 5β2

9
+ 53β2µ

4

)]
, (4.7)

P (0)
42 =9

4

[
1− e2

3
+ A1

3
−2A2 + 11A2µ

3
+ 11A3

4
− 11A3µ

6
+ 11β1

36
− 2β1µ

3
− 4β2

9
+ 2β2µ

3

+α

(
− 5

12
− 1175e2

72
+ 64A1

9
− 601A1µ

24
+ 1381A2

72
− 415A2µ

24
− 73A3

24
+ 83A3µ

6

+ 5β2

27
− 45β2µ

4
− 128β1

9
+ 45β1µ

4

)]
. (4.8)

Then the characteristic equation (4.3) for the system can be represented as

λ4 −Dλ2 +R = 0, (4.9)

where

D =P (0)
31 +P (0)

42 −4, (4.10)

R =P (0)
31 P (0)

42 −P (0)
41 P (0)

32 . (4.11)

So that the characteristic roots are purely imaginary if and only if

D < 0, (4.12)

D2 −4R ≥ 0 . (4.13)

Substituting the values of the triangular equilibrium points and using equation (4.2) and (4.7)
in (4.11), we get

0< e2 ≤ 7
16

[
1− 39A1

14
− 15

14
α+ 18A1µ

7
+ 33A2

14
− 36A2µ

7
+ 9A3µ

7
− 9A3

2
− 3β1

14

]
. (4.14)
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The condition given by (4.14) coincides with the condition for eccentricity as given by [8], for
β1 =β2 = 0= A1 = A2 = A3. From the inequality (4.13), we get the critical value of µ given as µ∗

µ∗ =1
2

1−
√

23
27

+ 85α

9
p

69
+ e2

9
p

69

(
22−

(
703

p
69

4
− 10775

23

)
α

)

− 1
9

 1
828

(
83283−7748

p
69

)
α−

√
23
3

+1

 A1 − 1
9

(
−

(
665
12

− 67

6
p

69

)
α+ 11p

69
+4

)
A2

+ 1
3

((
679 3

4
p

69
− 3605

36

)
α+ 5

6
+ 4p

69

)
A3 + 1

9

(
5p
69

− 35
276

(
529+4

p
69

)
α

)
β1

− 1
27

((
51
2

− 3977

12
p

69

)
α+ 2p

69

)
β2 . (4.15)

The region plot showing the stability region in the µ− e plane satisfying equation (4.13),
taking A1 = 0.0001, A2 = 0.001, a = 0.99, β1 = 0.0002 and β2 = 0.0112 has been plotted and
shown in the Figure 7. The points in the plot shows the position in the µ− e plane for the
respective binary systems.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
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Sirius

Kruger-60

Alpha Centauri

Figure 7. The stability region plot on µ− e plane for the triangular point L4. The dots denotes the
position corresponding to the known value of µ and e for the four binary systems.

4.2 The Collinear Points

For the collinear points y= 0. Consequently, we get the values:

P (0)
31 =1+2(Φ1 +2Φ2) ,

P (0)
42 =1− (Φ1 +Φ2) , (4.16)
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P (0)
32 =P (0)

41 = 0 ,

where

Φ1 = 1
n2

(
(1−µ)q1

r3
1

+ µq2

r3
2

)
,

Φ2 = 3
2n2

(
(1−µ)(q1A1 + A3)

r5
1

+ µ(q2A2 + A3)
r5

2

)
. (4.17)

Let the two square roots of the biquadratic equation given by (4.3) be λ2
1 and λ2

2. Then using
relation between roots and coefficient we have,

λ2
1λ

2
2 =

1
(1− e2)

(1+2Φ1 +4Φ2)(1−Φ1 −Φ2) (4.18)

and

λ2
1 +λ2

2 =−
(
4− 1p

1− e2
(2+Φ1 +3Φ2)

)
. (4.19)

Now the system will be stable if the roots of characteristic equation are purely imaginary, that
is the roots λ2

1 and λ2
2 are negative, thus we get the conditions

4− 1p
1− e2

(2+Φ1 +3Φ2)> 0

⇒ Φ1 +3Φ2 < 2(1− e2) (4.20)

and

(1+2Φ1 +4Φ2)(1−Φ1 −Φ2)> 0 . (4.21)

Now, taking both the brackets of the Equation (4.21) negative yields contradictory condition.
Therefore, taking both the brackets positive, we get, the condition for stability of collinear point
as

−1
2
<Φ1 +Φ2 < 1 . (4.22)

Therefore, the stability condition for the collinear points comprises of two inequalities (4.20)
and (4.22) which need to be satisfied simultaneously. We have analyzed the stability condition
for each of the collinear points graphically.

Assuming St1 =Φ1 +Φ2 and St2 =Φ1 +3Φ2 −2(1− e2), we plot St1 and St2 as functions of
A3 for three collinear points around the respective binary system. Figure 8 shows the variation
of St1 and St2 for the collinear point L1 for the four binary systems. Similarly, Figures 9 and
10 shows the variation of St1 and St2 for the collinear point L2 and L3 respectively for the four
binary systems.
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Figure 8. The plot of the stability conditions ∆1 and ∆2 for the collinear points L1 taking the values
β1 = 0.0002, β2 = 0.0112, A1 = 0.001 and A2 = 0.002 for the four Binary systems.
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Figure 9. The plot of the stability conditions ∆1 and ∆2 for the collinear points L2 taking the values
β1 = 0.0002, β2 = 0.0112, A1 = 0.001 and A2 = 0.002 for the four Binary systems.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 73–92, 2018



Dynamics of Oblate Test Particle under the Influence of Oblate and Radiating Primaries. . . : A. Narayan et al. 89

0.01 0.02 0.03 0.04 0.05
A3

2.70

2.75

2.80

2.85

St1 or St2

(a) Luyten726-8

0.01 0.02 0.03 0.04 0.05
A3

1.78

1.80

1.82

1.84

1.86

1.88

St1 or St2

(b) Sirius

0.01 0.02 0.03 0.04 0.05
A3

1.40

1.42

1.44

1.46

1.48

1.50

1.52

St1 or St2

(c) Kruger60

0.00 0.01 0.02 0.03 0.04 0.05
A3

1.85

1.90

1.95

2.00

St1 or St2

(d) Alpha Centauri

St1

St2

Figure 10. The plot of the stability conditions ∆1 and ∆2 for the collinear points L3 taking the values
β1 = 0.0002, β2 = 0.0112, A1 = 0.001 and A2 = 0.002 for the four Binary systems.

5. Discussion and Conclusions
The three dimensional elliptical restricted three-body problem is investigated, considering the
effect of radiation pressure due to luminous primaries and the oblateness of all the participating
bodies. The problem models the system of an infinitesimal particle of irregular shape orbiting
a pair of stars. In particular, the binary systems: Luyten-726, Sirius, Kruger-60 and Alpha
Centauri has been studied. From the computations, it is evident that the position of the
Lagrangian points are affected by the oblateness of all three bodies. Figures 2 and 3 shows the
parametric plot of the triangular point L4 taken as a function of β1 and β2 for varying values
of the oblateness factor A3 of the infinitesimal body and it was observed that the triangular
points are affected by the oblateness of the infinitesimal. Figures 4, 5 and 6 show the plot of
the collinear points L1, L2 and L3 taken as a function of β1, varying the values of A3 from 0 to
0.05, for the four Binary systems. From these graphs it is evident that the collinear points are
also affected by the oblateness of the infinitesimal. It was observed that the collinear point L2

is most affected by A3, especially for the binary system Alpha Centauri.

Taking q1 = q2 = 1, our problem reduces to the problem discussed by [26] and the values of
the coordinates of the L4 and L5 points agrees with their result when the product of oblateness
term with eccentricity and radiation factor is neglected. However, the collinear points are
obtained using the method developed in [29].
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The stability of the triangular and collinear equilibrium points was analyzed by Lyapunov’s
first method. The value of the critical value of µ is obtained for the triangular points. The
region plot showing the stability region in the µ− e plane satisfying equation (4.13) is shown
in the Figure 7. The points in the plot shows the position in the µ− e plane for the respective
binary systems. From the graph it is evident that the increase in the value of oblateness of the
infinitesimal increases the possible stable region. However, the four binary systems considered
in this paper are still beyond the stable region. Therefore, we conclude that the triangular
equilibrium points around these binary system are unstable.

The Stability criteria for the collinear points are obtained and presented by equation (4.20)
and (4.22). The Figures 8, 9 and 10 shows the plot of the two stability conditions taken as a
function of the oblateness factor A3 of the infinitesimal. From equation (4.20) and (4.22), it is
evident that the collinear points will be stable if −1

2 < St1 < 1 and St2 < 0. But it is observed in
the graphs plotted that the values of both St1 and St2 is well beyond the range for the collinear
points L1 and L3 around all four binary systems considered. Whereas, for the collinear point L2

the stability condition (4.20) is satisfied but the stability condition (4.22) is not satisfied. Thus,
we conclude that all the three collinear equilibrium points around these binary system are also
unstable.
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