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Analysis and Parameter Identification of Time-delay Systems
using the Chebyshev Wavelets

S.H. Nasehi, M. Samavat, and M.A. Vali

Abstract. A delay matrix Td is derived and used along with the Chebyshev
matrix of integration in a new algorithm for analysis and parameter identification
of time-delay systems. The method reduces the problem to a set of algebraic
equations. In addition, the Chebyshev wavelets are more successful in analyzing
and identifying time-delay systems when compared with the other algorithms
(polynomial series). The examples support this claim.

1. Introduction

Systems with time delay occur frequently in fields such as mechanical and
electrical systems, industrial processes, population growth, epidemic growth,
neural networks, etc. In general, they are difficult to be analyzed and identified,
therefore much effort has been devoted to the analysis and estimation of delay
systems. Orthogonal functions and polynomial series have received considerable
attention in dealing with various problems of dynamic systems. Examples are
the use of Walsh function (Chen and Shih, 1978; Chen and Hisao, 1975; Chen,
1982) [1, 2, 3], block-pulse function (Hwang and Shih, 1985; Chen and Chung,
1987; Hsu and Cheng, 1981; Hwang and Shih 1985) [4, 5, 6, 7], Shifted
Jacobi polynomials (Horng and Chou) [8], Legendre Polynomials (Hwang and
Chen, 1985; Wang and Chang, 1985; Razzaghi and Shafiee, 1997; Marzban and
Razzaghi, 2004) [9, 10, 11, 12], Laguerre polynomials (Kung and Lee, 1983;
Clement, 1982; Hwang and Shih, 1983) [13, 14, 15], Chebyshev polynomials
(Horng and Chou, 1985; Paraskevopoulos) [16, 17], Taylor series (Mouroutsos
and Sparis, 1985; Razzaghi, 1988; Yang and Chen, 1987) [18, 19, 20], Fourier
series (Paraskevopoulos, Sparis and Mouroutsos, 1985; Razzaghi, 1988; Ardekani,
Samavat and Rahmani, 1991; Samavat and Vali, 1992; Samavat and Rashidi,
1995; Ebrahimi, Samavat, Vali and Gharavisi, 2007) [21, 22, 23, 24, 25, 26].

Key words and phrases. Time-delay systems; Chebyshev wavelets; System Analysis; System
identification; Delay matrix.
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Wavelet theory is a relatively new and an emerging area in mathematical
research. It has been applied in a wide range of engineering science; particularly,
wavelets are successfully used in signal analysis for waveform representation
and segmentations, identification, optimal control and many other applications.
Wavelets permit the accurate representation of a variety of functions and operators.
The examples are (Tavassoli Kajani, Ghasemi and Babolian, 2007; Razzaghi,
Yousefi, 2002; Karimi, Lohmann, Moshiri and Maralani, 2006; Karami, Karimi,
Moshiri and Maralani, 2008; Sharif, Vali, Samavat and Gharavisi, 2011) [27, 28,
29, 30, 31]. The main characteristic of the mentioned algorithms is that it reduces
these problems to those of solving a system of algebraic equations thus greatly
simplifying the problem.

In this paper, the Chebyshev wavelets are used as orthogonal basis to
approximate the delayed systems. One of the advantages of the present method
is that we introduced only one algorithm which covers the entire simulation time
for analysis and identification of time delay systems. Also the derived Td has a
very simple form and has so many zero entries and therefore it makes it easy
for computer programming. Moreover, in this paper, for the first time, Chebyshev
wavelets are extended for arbitrary times from t1 to t2. The given examples show
the effectiveness of the proposed method. As it is shown in the tables, the proposed
method has more accurate results when compared with some of the existing
mentioned references.

This article is organized as follows: section 2 is about the preliminaries
and problem statement, section 3 focuses on the main results including some
benchmark examples and finally section 4 is the conclusion.

2. Preliminaries and problem statement

2.1. The definition and properties of kronecker product

Definition. Let A and B be two n× n and m×m square matrices respectively. The
kronecker product of A and B denoted by A∗ B is defined as follows:

A∗ B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

an1B an2B · · · annB




.

Which is an (nm)× (nm) matrix.
Let A, B and C be an n×n, n×m, m×m matrices respectively. We can identify the

matrix ABC with the vector (C T ∗A)bB, where bB is an (nm)×1 vector as bB =




BT
1
...

BT
n


,

and BT
i is the transpose of the ith row Bi of B. So (C T ∗ A)bB is a (nm)× 1 vector.
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2.2. The definition and properties of Chebyshev Wavelets

Wavelets have been used by many researchers in many scientific and
engineering fields. They constitute a family of functions constructed from the
dilation and translation of a single function called the mother wavelet. When the
dilation parameter a and the translation parameter b vary continuously, we have
the following family of continuous wavelets:

ψa,b = |a|−
1
2 ψ

�
t − b

a

�
, a, b ∈ R, a 6= 0 .

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a−k

0

where a0 > 1, b0 > 0 and n, k are positive integers, we have the following family
of discrete wavelets:

ψk,n = |a|
k
2ψ(ak

0 − t − nb0) .

In particular, when a0 = 2 and b0 = 1 then ψk,n forms an orthonormal basis.
Chebyshev wavelets ψn,m(t) =ψ(n, k, m, t) have four arguments:

m = 0, 1, . . . , M − 1, n = 1, 2, . . . , 2k−1, k = 0, 1, 2, . . . the values of m are given in
Eq. (2.3.1) and t is the normalized time. They are defined on the interval [0, 1)
[32]:

ψ(t)n,m =





2
k
2 eTm(2k t − 2n+ 1),

n− 1

2k−1
≤ t <

n

2k−1
,

0, otherwise .
(2.2.1)

Where

eTm(t) =





1p
π

, m= 0 ,

Ç
2

π
Tm(t) , m> 0 .

(2.2.2)

In Eq. (2.2.1) the coefficients are used for orthonormality. Here Tm(t) are
Chebyshev polynomials of the first kind of degree m which are orthogonal with
respect to weight function w(t) = 1p

1−t2
, on [−1, 1], and satisfy the following

recursive formula:

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t)− Tm−1(t), m= 1, 2, 3, . . . .
(2.2.3)

We should note that in dealing with Chebyshev wavelets the weight function w(x)
has to be dilated and translated as:

wn(t) = w(2k t − 2n+ 1) .
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Remark. The time interval [0, 1) in Chebyshev wavelets can be extended to an
arbitrary interval [t1, t2) as follows:

ψ(t)n,m =





2
k
2

2
p
∆t
eTm

�
2k

∆t
t − 2n+ 1

�
, t1 +∆t

n− 1

2k−1
≤ t < t1 +∆t

n

2k−1
,

0, otherwise .
(2.2.4)

Where ∆t = t2 − t1.

2.3. Function approximation

The function f (t) can be approximated as:

f (t) =
M−1∑

m=0

2k−1∑

n=1

Cn,mψ(t)n,m . (2.3.1)

Where Cn,m = 〈 f (t),ψ(t)n,m〉, in which 〈·, ·〉 denotes the inner product as:

Cn,m = 〈 f (t),ψ(t)n,m〉=
∫ +∞

−∞
f (t)ψ(t)n,mw(t)d t . (2.3.2)

Equation (2.3.1) can be written in a matrix form as:

f (t) = C Tψ(t) . (2.3.3)

Where C and ψ(t) are (2k−1M)× 1 matrices which are given by:

C T = [c0,0 c0,1 · · · c0,M−1 c1,0 · · · c1,M−1 c2k−1,0 · · · c2k−1,M−1] (2.3.4)

ψ(t) = [ψ(t)0,0 ψ(t)0,1 · · · ψ(t)0,M−1 · · · ψ(t)1,0 · · · ψ(t)1,M−1 · · ·
ψ(t)2k−1,0 · · · ψ(t)2k−1,M−1].

(2.3.5)

2.4. Operational matrix of integration

Integration of the vector ψ(t) defined in Eq. (2.3.1) can be written as:
∫ t

0

ψ(s)ds = P(2k−1 M)×(2k−1 M)ψ(t)(2k−1 M)×1 . (2.4.1)

Where P is a (2k−1M) × (2k−1M) matrix called the operational matrix of
integration.

By the use of Eq. (2.4.1), the P matrix is obtained as:

P =
1

2k




F S · · · S
0 F · · · S
...

...
. . .

...
0 0 · · · F




2k−1×2k−1

,
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S =




2 0 · · · 0
0 0 · · · 0
−2
p

2
3

0 · · · 0
...

...
. . .

...
p

2
2

�
1−(−1)m+1

m+1
− 1− (−1)m−1

m− 1

�
0 · · · 0

...
...

. . .
...

p
2

2

�
1−(−1)M

M
− 1− (−1)M−2

M − 2

�
0 · · · 0




,

F =




1 1
2p2

0 · · · · · · 0

− 2p2
4

0 1
4

0 · · · 0

− 2p3
4

− 1
2

0 1
6

· · · 0
... 0

.. . 0
.. . 0

p
2

2

�
(−1)m−1

m−1
− (−1)m+1

m+1

� ... 0 −1
2(m−1)

. . . 1
2(m+1)

...
...

... 0
.. . 0

p
2

2

�
(−1)M−1

M−1
− (−1)M+1

M+1

� ... 0 · · · . . . −1
2(M−2)



(M)×(M)

.

2.5. Delay operational matrix

The delay operational matrix Td can be defined as follows:

ψ(t − d)(2k−1 M)×1 = Td(2k−1 M)×(2k−1 M)ψ(t)(2k−1 M)×1 . (2.5.1)

Where d is a known time and Td is a constant matrix given by:

TD =




0 · · · I · · · 0
... · · · ...

. . .
...

0 · · · 0 · · · I
... · · · ...

. . .
...

0 · · · 0 · · · 0




.

This is true if d = N × 1
2k , where N is an integer.

2.6. Problem statement

Consider the following time-delay system:

ẋ(t) = Ax(t) + Bx(t −τx) + Cu(t) + Eu(t −τu), (2.6.1)

x(t) = g(t) for t < 0 .

Where x(t) is the n dimensional state vector, u(t) is the m dimensional input
vector. τx , τu are fixed delays and A, B, C , E are n× n, n× n, n×m and n×m
constant matrices respectively.

In section 3.1 by using Eq. (2.6.1), we assume that an input u is given and then
by using the approximation and changing the system to a set of algebraic equation,
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we solve for x(t). In section 3.2, we assume u and x are given, and then using the
same method as above, we solve for the unknown coefficients.

3. Main results

3.1. Analysis of time-delay systems

Integrating Eq. (2.6.1) from zero to t yields:
∫ t

0

ẋ(s)ds = A

∫ t

0

x(s)ds+ B

∫ t

0

x(s−τx)ds+ C

∫ t

0

u(s)ds+ E

∫ t

0

u(s−τx)ds.

(3.1.1)

Using equations (3.1.1), (2.3.1) implies that:
∫ t

0

x(s)ds =

∫ t

0

X Tψ(s)ds = X T

∫ t

0

ψ(s)ds = X T Pψ(t) . (3.1.2)

Where X T is a n× r, coefficient matrix that its ith row X T
i is the coefficient vector

of x i(s).

For i = 1, . . . , n, and r = 2k−1M . Also
∫ t

0

ẋ(s)ds = x(t)− x(0) = X Tψ(t)− X T
0ψ(t) (3.1.3)

Where X T
0 is a n× r coefficient matrix defined by:

x T
0 =

p
2

2
k
2




x1(0) 0 0 · · · 0 x1(0) 0 0 · · · 0 · · · x1(0) 0 0 · · · 0

x2(0) 0 0 · · · 0 x2(0) 0 0 · · · 0 · · · x2(0) 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

xn(0) 0 0 · · · 0 xn(0) 0 0 · · · 0 · · · xn(0) 0 0 · · · 0




n×r

,

∫ t

0

u(s−τx)ds =

∫ t

0

U Tψ(s−τx)ds = U T Pψ(t −τx) = U T PTτx
ψ(t). (3.1.4)

Where U T is an m× r coefficient matrix that its ith row uT
i is the coefficient vector

of uT
i (t).

For i = 1, . . . , m.
∫ t

0

u(s)ds =

∫ t

0

U Tψ(s)ds

= U T

∫ t

0

ψ(s)ds

= U T Pψ(t), (3.1.5)
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∫ t

0

x(s−τx)ds =

∫ τx

0

x(s−τx)ds+

∫ t

τx

x(s−τx)ds

=

∫ τx

0

g(s−τx)ds+

∫ t−τx

0

x(s)ds

= GT Pψ(t) + X T Pψ(t −τx)

= GT Pψ(t) + X T PTτx
ψ(t) . (3.1.6)

Where GT is an n × r coefficient matrix which its ith row U T
i is the coefficient

vector of ui(t).

For i = 1, . . . , n.
Substituting equations (3.1.2)-(3.1.6) into (3.1.1) gives:

⇒ X Tψ(t)− X T
0ψ(t) = AX T Pψ(t) + BX T PTτx

ψ(t) + BGT (t)

+ CU T Pψ(t) + EU T PTτx
ψ(t) . (3.1.7)

Or equivalently

X T − X T
0 = AX T P + BX T PTτx

+ BF T P + CU T P + EU T PTτx
. (3.1.8)

Applying the operation of kronecker product to Eq.(3.1.8) gives:

[Ir×r ∗ In×n]bX − [PT
r×n ∗ An×n]bX − [(Pr×r Tτxr×r

)T ∗ Bn×n]bX
= [Ir×r ∗ In×n]bX0 +[(Pr×r)

T ∗ Bn×n]bG +[PT
r×r ∗ Cn×m]bU

+ [(Pr×r Tτxr×r
)T ∗ En×n]bU . (3.1.9)

Where bX , bU , bG, bX0 are the same as bB in section 2.1.
Eq. (3.1.9) can be written in a compact form:

R(nr)×(nr) × bX(nr)×1 = M(nr)×1 . (3.1.10)

Where

M = [(Ir×r ∗ In)bX0 + (P
T ∗ B)bG + (PT ∗ C)bU + ((PTτx

)T ∗ E)bU]
and R can be calculated as:

R= [(Ir×r ∗ In×n)− (PT ∗ A)− ((PTτX
)T ∗ B)] .

Then

bX(nr)×1 = R−1
(nr)×(nr)M(nr)×1 .

Two examples are given next which show that the results are very accurate.

Example 1. Consider the time delay system modeled by:

ẋ = x(t − 1) + u(t),

x = 1 for t ≤ 0 .



58 S.H. Nasehi, M. Samavat, and M.A. Vali

Where u(t) is given by:

u(t) =

¨
−2.1+ 1.05t, 0< t < 1,

−1.05, 1≤ t < 2

and the exact solution is:

x(t) =

¨
1− 1.1t + 0.525t2, 0< t < 1,

−0.25+ 1.575t − 1.075t2 + 0.175t3, 1≤ t < 2.

In Table 3.1.1, a comparison is made between the approximated and exact values
of x(t) and some of other algorithms.

Table 3.1.1. Results for approximated values of x(t), using the
Chebyshev wavelets for K = M = 4, K = M = 6 and [8], [9], [16]
and the exact values

Exact Approximation Approximation Approximation Approximation Approximation
Time solution of x(t) for of x(t) for of x(t) in of x(t) in of x(t) in

of x(t) K = 4, M = 4 K = 6, M = 6 ref [8] ref. [9] ref. [16]

0.2 0.80100 0.80102 0.80100 0.80204 0.80078 0.80084

0.4 0.64400 0.64400 0.64399 0.64315 0.64440 0.64444

0.6 0.52900 0.52900 0.52899 0.52700 0.52865 0.52856

0.8 0.45600 0.45538 0.45600 0.45942 0.45597 0.45605

1 0.42500 0.42507 0.42499 0.42473 0.42495 0.42489

1.2 0.39440 0.39443 0.39440 0.29134 0.39449 0.39436

1.4 0.32820 0.32821 0.32819 0.33050 0.32846 0.32848

1.6 0.23480 0.23481 0.23479 0.23510 0.23450 0.23432

1.8 0.12260 0.12263 0.12260 0.12120 0.12263 0.12265

In Table 3.1.2, a comparison is made between the approximated of x(t), using
the norm of error, for the proposed method and the methods of [8], [9], [16].

Example 2. Let us consider the following time-delay system:

ẋ =−x(t)− 2x(t − 0.25) + 2u(t − 0.25),

x(t) = 0 for t ≤ 0 .

Where u(t) is:

u(t) =

¨
0, t ≤ 0,

1, 0< t < 1.

Table 3.1.3 shows the exact and approximated values of x(t).
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Table 3.1.2. A comparison is made between Two Norm of Error
approximations by using the Chebyshev wavelets for K = M = 4,
K = M = 6 and the methods given in [8], [9], [16]

Two norm error Number
Time approximations of

between all samples samples

Approximation of x(t) for K = 6, M = 6 2.23× 10−5 9

Approximation of x(t) for K = 4, M = 4 6.25× 10−4 9

Approximation of x(t) in ref. [8] 0.1032 9

Approximation of x(t) in ref. [9] 7.07× 10−4 9

Approximation of x(t) in ref. [16] 8.60× 10−4 9

Table 3.1.3. Exact and approximated values of x(t), using the
Chebyshev wavelets for K = 3, M = 4 and K = 4, M = 4 and K = 6,
M = 6

Exact Approximation Approximation Approximation
Time solution of x(t) for of x(t) for of x(t) for

ofx(t) K = 3, M = 4 K = 4, M = 4 K = 6, M = 6

0.1 0 0 0 0

0.2 0 0 0 0

0.3 0.0975411 0.0975393 0.0975412 0.0975411

0.4 0.2785840 0.2785855 0.2785839 0.2785840

0.5 0.4423984 0.4424131 0.4423994 0.4423984

0.6 0.5719084 0.5719191 0.5719076 0.5719084

0.7 0.6546513 0.65463872 0.6546518 0.6546512

0.8 0.6985156 0.69848867 0.6985173 0.6985156

0.9 0.7137236 0.71374648 0.7137220 0.7137235

Where exact solution is:

x(t) =





0, 0≤ t < 0.25,

2(1− e−(t−0.25)), 0.25≤ t < 0.5,

2(1− e−(t−0.25))− 4(1− (t + 0.5)e−(t−0.25)), 0.5≤ t < 0.75,

(1− e−(t−0.25))− 4(1− (t + 0.5)e−(t−0.25))

+8
�

1−
�

1
2

t2 + 1
4

t + 17
32

�
e−(t−0.75), 0.75≤ t < 1.

In Table 3.1.4, a comparison is made between the approximated and exact values
of x(t), using the norm of error.
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Table 3.1.4. A comparison is made between two norm of error
approximations by using the Chebyshev wavelets for K = 3, M = 4 and
K = 4, L = 4 and K = 6, L = 6

Two norm of error Number
Time approximations between of

all samples samples

Approximation of x(t) for K = 3, M = 4 8.26× 10−4 4000

Approximation of x(t) for K = 4, M = 4 7.38× 10−5 8000

Approximation of x(t) for K = 6, M = 6 3.64× 10−6 32000

3.2. Identification of time-delay systems

Again, consider the system (2.6.1). Given the state vector x(t) and the input
vector u(t), the identification problem is to estimate the unknown matrices A, B,
C and E. Therefore a total of 2(n2 + nm) elements are to be estimated.

Let us integrate (2.6.1) to obtain:
∫ t

0

ẋ(s)ds = A

∫ t

0

(s)ds+ B

∫ t

0

x(s−τx)ds+ C

∫ t

0

u(s)ds+ E

∫ t

0

u(s−τu)ds .

(3.2.1)

Using Eq. (3.1.2)-(3.1.6) and substituting in equation (3.2.1) yields:

X Tψ(t)− X T
0ψ(t) = AX T Pψ(t) + BX T PTτx

ψ(t) + BGT Pψ(t)

+ CU T Pψ(t) + EU T PTτx
ψ(t) (3.2.2)

⇒ X T − X T
0 = AX T P + BX T PTτx

+ BGT P + CU T P + P + EU T PTτx
.

(3.2.3)

Using the operation of kronecker product and solving for the coefficients A, B, C ,
E gives:

bx(nr)×1 − bX0(nr)×1
+ B̂GT P

= ((X T P)Tr×n ∗ In)bA(n2)×1 + ((X
T PTτX

)Tr×n ∗ In)bB(n2)×1

+ ((U T P)Tr×m ∗ In)bC(nm)×1 + ((U
T PTτX

)Tr×m ∗ In)bE(nm)×1 (3.2.4)

Where bX , bX0, B̂GT P, bA, bB, bC , bE are same as bB in section (2.1).
Eq. (3.2.4) can be written in a compact form:

R(nr)×(2n2+2mn) × N(2n2+2mn)×1 = M(nr)×1 , (3.2.5)

N(2n2+2mn)×1 =




bA
bB
bC
bE


 ,

M = bX(nr)×1 − bX0(nr)×1
.
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and the matrix R can be calculated as:

R=[((X TP)Tr×n∗ I) ((X TPTτx
)Tr×n∗ In) ((U

TP)Tr×m∗ In) ((U
TPTτx

)Tr×m∗ In)]nr×(2n2+2mn)

N can be obtained using the Eq. (3.2.5) as:

N(2n2+2mn)×1 = (R
T R)−1RT Mnr×1 . (3.2.6)

In order to show that the mentioned algorithm is very accurate, two examples are
given.

Example 3. Consider the following time-delay system:

ẋ = x(t − 1) + u(t),

x = 1 for t ≤ 0 .

Where the following data are given:

u(t) =

(
−2.1+ 1.05t, 0< t < 1,

−1.05, 1≤ t < 2,

x(t) =

(
1− 1.1t + 0.525t2, 0< t < 1,

−0.25+ 1.575t − 1.075t2 + 0.175t3, 1≤ t < 2.

Using the present algorithm, the approximated values of the parameters are given
in Table 3.2.1.

Table 3.2.1. Results for approximated values, using the Chebyshev
wavelets for K = M = 6 and the methods of [8], [23] and the exact
values

A B C D

Exact values 0.00000 1.00000 1.00000 0.00000

K = 6, M = 6 0.00000 0.99999 0.99999 0.00000

Ref. [8] 0.00000 1.03015 0.99963 0.00000

Ref. [23] 0.01000 0.98000 0.99000 0.01000

Example 4. Consider the linear time-delay system:

ẋ =−x(t)− 2x(t − 0.25) + 2u(t − 0.25),

x(t) = 0 for t ≤ 0.

Where u(t) is:

u(t) =

¨
0, t ≤ 0,

1, 0< t < 1
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and x(t) is given by:

x(t) =





0, 0≤ t < 0.25,

2(1− e−(t−0.25)), 0.25≤ t < 0.5,

2(1− e−(t−0.25))− 4(1− (t + 0.5)e−(t−0.25)), 0.5≤ t < 0.75,

(1− e−(t−0.25))− 4(1− (t + 0.5)e−(t−0.25))

+8
�

1−
�

1
2

t2 + 1
4

t + 17
32

�
e−(t−0.75), 0.75≤ t < 1.

By using the method given in section 3.2, the results are shown in Table 3.2.2.

Table 3.2.2. Exact and approximated values, using the Chebyshev
wavelets for different values of K , L and the method of [9]

K , M A B C D

6, 4 – 0.999999867 – 1.999999694 0.000000004 1.999999699

6, 6 – 0.999999867 – 1.999999700 0.000000004 1.999999699

Ref. [9] – 1.056700000 – 1.942500000 – 0.012000000 2.026900000

4. Conclusion

In general, it has been very difficult and tedious to obtain the solution of time
delay systems. In this paper, we have used integral operational matrix and delay
operational matrix to transform the system into a set of algebraic equations thus
greatly simplifying the problem. Using these algebraic equations, the analysis and
identification of linear time delay systems are obtained. As it is shown by the
given examples, the convergences of the Chebyshev wavelets (when compared
with the existing polynomial series approach) are excellent, and the number of
terms required for the approximation is not too large. Therefore, we may conclude
that the Chebyshev wavelets provide an efficient and simple tool for the analysis
and parameter identification of time-delay systems. Also it is possible to extend
this algorithm for analysis and identification of time varying and nonlinear delay
systems.
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