Journal of Informatics and Mathematical Sciences Volume 4 (2012), Number 1, pp. 23–27 © RGN Publications

$Y\overline{Y}$ Domination in Bipartite Graphs

Y.B. Venkatakrishnan and V. Swaminathan

Abstract. Let *G* be a bipartite graph. A subset *S* of *X* is called a \overline{YY} dominating set if *S* is a *Y*-dominating set and X - S is not a *Y*-dominating set. A subset *S* of *X* is called a minimal \overline{YY} dominating set if any proper subset of *S* is not a \overline{YY} dominating set. The minimum cardinality of a minimal \overline{YY} dominating set is called the \overline{YY} domination number of *G* and is denoted by $\gamma_{\overline{YY}}(G)$. In this paper some results on \overline{YY} domination number are obtained.

1. Introduction

Let G be a graph. Let D be a dominating set of a graph G. If $\langle V - D \rangle$ is connected, D is called a non-split dominating set and if $\langle V - D \rangle$ is disconnected, then D is a split dominating set. These concepts were introduced by [1, 2] Kulli and Janakiram. In a similar fashion the concept of complementary nil domination number of a graph was introduced by [6] Tamizh Chelvam et al. We introduce the concept of $Y\overline{Y}$ -dominating set in bipartite graph. Let G = (X, Y, E) be a bipartite graph. The bipartite theory of graphs were introduced in [4, 5] and the parameters called X-domination number and Y-domination number were introduced. Two vertices u, v in X are X-adjacent if they are adjacent to a common vertex in Y. A subset D of X is an X-dominating set if every vertex in X - D is X-adjacent to at least one vertex in D. A X-dominating set [4] S is a minimal X-dominating set if no proper subset of S is X-dominating set. The minimum cardinality of a minimal Xdominating set is called the *X*-domination number of *G* and is denoted by $\gamma_X(G)$. A subset $S \subseteq X$ which dominates all vertices in Y is called a Y-dominating set [4] of *G*. The *Y*-domination number denoted by $\gamma_Y(G)$ is the minimum cardinality of a Y-dominating set of G. A subset S of X is hyper independent [4] if there does not exist a vertex $y \in Y$ such that $N(y) \subseteq S$. The maximum cardinality of a hyper independent set of G is denoted by $\beta_h(G)$. The complement of G [3] denoted by $\overline{G} = (X, Y, E'')$ is defined as follows: (i) No two vertices in X are adjacent. (ii) No

²⁰¹⁰ Mathematics Subject Classification. 05C69.

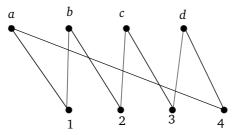
Key words and phrases. $Y\overline{Y}$ -dominating set; Y-dominating set; X-dominating set.

two vertices in *Y* are adjacent. (iii) $x \in X$ and $y \in Y$ are adjacent in \overline{G} if and only if $x \in X$ and $y \in Y$ are not adjacent in *G*.

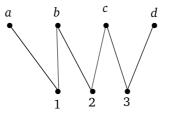
2. $Y\overline{Y}$ Dominating Set

Definition 1. A subset *S* of *X* is called a $Y\overline{Y}$ dominating set if *S* is a *Y*-dominating set and X - S is not a *Y*-dominating set. A subset *S* of *X* is called a minimal $Y\overline{Y}$ dominating set if any proper subset of *S* is not a $Y\overline{Y}$ dominating set. The minimum cardinality of a minimal $Y\overline{Y}$ dominating set is called the $Y\overline{Y}$ domination number of *G* and is denoted by $\gamma_{Y\overline{Y}}(G)$.

Example 1. In the graph G, $S = \{b, d\}$ is a Y-dominating set but not a $Y\overline{Y}$ -dominating set.



Example 2. In the graph, $S = \{b, c\}$ is a $Y\overline{Y}$ -dominating set.



Observation 1. $\gamma_Y(G) \leq \gamma_{Y\overline{Y}}(G)$.

Remark 1. If *Y* contains a vertex of degree one then any *Y*-dominating set is a $Y\overline{Y}$ -dominating set.

Hence, we consider bipartite graph G = (X, Y, E) in which (i) every vertex in Y is of degree at least two. (ii) every vertex in X is not a full degree vertex. Vertex $x \in X$ is called a full degree vertex if x is adjacent to every vertex of Y.

Theorem 1. A Y-dominating set S of a bipartite graph G is a $Y\overline{Y}$ -dominating set of G if and only if S is not hyper independent set.

Proof. A Y-dominating set S is such that S is not hyper independent set. There exists a $y \in Y$ such that $N(y) \subseteq S$. The vertex y is not adjacent to any vertex in X - S. Therefore, X - S is not a Y-dominating set. Hence, S is a $Y\overline{Y}$ -dominating set of G.

Conversely, let *S* be a $Y\overline{Y}$ -dominating set. That is, *S* is a *Y*-dominating set and X - S is not a *Y*-dominating set. There exists $y \in Y$ not adjacent to any vertex in

X - S. Equivalently, there exists $y \in Y$ such that $N(y) \subseteq S$. Therefore, S is not a hyper independent set.

Theorem 2. A subset *S* of *X* is a $Y\overline{Y}$ -dominating set if and only if (i) X - S is hyper independent set (ii) *S* is not hyper independent set.

Proof. Let $S \subseteq X$ be a $Y\overline{Y}$ -dominating set. Then S is a Y-dominating set. By Theorem 1, S is not hyper independent set. Every $y \in Y$ is adjacent to at least one vertex of S. That is $N(y) \nsubseteq X - S$, $\forall y \in Y$. Therefore, X - S is a hyper independent set.

Conversely, a subset *S* of *X* satisfies conditions (i) and (ii). Since X - S is hyper independent set, for every $y \in Y$, $N(y) \notin X - S$. Therefore, every vertex $y \in Y$ is adjacent to a vertex of *S*. Hence, *S* is a *Y*-dominating set. By condition (ii) and by theorem 1, *S* is a $Y\overline{Y}$ -dominating set of *G*.

Proposition 1. Let G be a graph, every $\gamma_{V\overline{V}}$ -set intersects with every γ_{V} -set of G.

Proof. Let *D* be a $\gamma_{Y\overline{Y}}$ -set and D_1 be a γ_Y -set of *G*. Suppose that $D \cap D_1 = \phi$, then $D_1 \subseteq X - D$, X - D contains a *Y*-dominating set D_1 . Therefore, X - D itself is a *Y*-dominating set, which is a contradiction.

Theorem 3. Let D be a $Y\overline{Y}$ - dominating set of a graph G. Then D is minimal if and only if for each $u \in D$ one of the following conditions is satisfied:

- (i) *u* has a private neighbour.
- (ii) $X (D \{u\})$ is a Y-dominating set of G.

Proof. Suppose *D* is a minimal $Y\overline{Y}$ -dominating set of *G*. Then $D - \{u\}$ is not a $Y\overline{Y}$ -dominating set. That is $D - \{u\}$ is not a *Y*-dominating set or $X - (D - \{u\})$ is a *Y*-dominating set. If $(X - (D - \{u\}))$ is a *Y*-dominating set of *G*, we get (ii). If $D - \{u\}$ is not a *Y*-dominating set, there exists $y \in Y$ not adjacent to any vertex in $D - \{u\}$ but adjacent to *u*. Hence, *u* has a private neighbour, condition (i) holds.

Conversely, assume conditions (i) and (ii) hold. Let *D* be a $Y\overline{Y}$ -dominating set of *G*. By condition (i) $u \in S$ has a private neighbour. Then $D - \{u\}$ is not a *Y*-dominating set. Therefore, *D* is a minimal $Y\overline{Y}$ -dominating set. For some $u \in D$, $X - (D - \{u\})$ is a *Y*-dominating set of *G*, then $D - \{u\}$ is not a $Y\overline{Y}$ -dominating set of *G*. Hence, *D* is a minimal $Y\overline{Y}$ -dominating set of *G*.

3. Bounds for $Y\overline{Y}$ -domination number

Theorem 4. For any graph *G* with $p \ge 2$, $\gamma_{V\overline{Y}}(G) \le p - 1$.

Proof. Every vertex in *X* is not a full degree vertex. Therefore, there exists a vertex *x* ∈ *X* with degree less than |Y|. Let the vertex be *x*. Then, $X - \{x\}$ is a $Y\overline{Y}$ -dominating set of *G*. Therefore, $\gamma_{Y\overline{Y}}(G) \le |X - \{x\}| = p - 1$. □

Let $\delta_X(G)$ denote the minimum number of edges incident with vertices of *Y*.

Theorem 5. For any graph G, $\delta_X(G) \le \gamma_{Y\overline{Y}}(G) \le \gamma_Y(G) + \delta_X(G) - 1$.

Proof. Let *S* be a $\gamma_{Y\overline{Y}}$ -set of *G*. Since *X* − *S* is not a *Y*-dominating set of *G*, there exists a vertex $y \in Y$ such that $N(y) \subseteq S$. That is, $\delta_X(G) \leq |N(y)| \leq |S|$ and hence $\delta_X(G) \leq \gamma_{Y\overline{Y}}(G)$. Let *D* be a γ_Y -dominating set of *G*. Let $y \in Y$ be a vertex such that $d_X(y) = \delta_X(G)$. Then at least one vertex $x_1 \in N(y)$ is in *D*. Now $D_1 = D \cup (N(y) - \{x_1\})$ is a $Y\overline{Y}$ -dominating set. Hence, $\gamma_{Y\overline{Y}}(G) \leq |D| + |N(y)| - 1 \leq \gamma_Y(G) + \delta_X(G) - 1$.

4. Particular values of $Y\overline{Y}$ -domination number

Theorem 6. If G is a connected graph, then $\gamma_{Y\overline{Y}}(G) = p - 1$ if and only if $\delta_X(G) = p - 1$.

Proof. Suppose $\gamma_{Y\overline{Y}}(G) = p - 1$. Let us assume $\delta_X(G) \leq p - 2$. Then there exists a vertex $y \in Y$ not adjacent to two vertices x_1, x_2 . Then, $X - \{x_1, x_2\}$ is a $Y\overline{Y}$ -dominating set. Therefore, $\gamma_{Y\overline{Y}}(G) \leq p - 2$, a contradiction. Therefore, $\delta_X(G) = p - 1$.

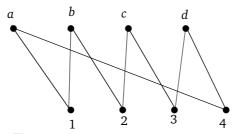
Conversely, $\delta_X(G) \le \gamma_{Y\overline{Y}}(G) \le p-1$. Therefore, $p-1 \le \gamma_{Y\overline{Y}}(G) \le p-1$. Hence, $\gamma_{Y\overline{Y}}(G) = p-1$.

Corollary 1. $\gamma_{Y\overline{Y}}(K_{m,n}-e) = m-1$ and $\gamma_{Y\overline{Y}}(\overline{mK_2}) = m-1$

Theorem 7. For any graph G, if $\gamma_Y(G) = 1$ and $\delta_X(G) = 2$ then $\gamma_{Y\overline{Y}}(G) = 2$.

Proof. $\gamma_Y(G) = 1$ and $\delta_X(G) = 2$ in theorem:5, we get $\gamma_{Y\overline{Y}}(G) = 2$.

Remark 2. Converse of the above need not be true. Consider the graph



 $S = \{b, c\}$ is a $Y\overline{Y}$ -dominating set. $\delta_X(G) = 2$ and $\gamma_Y(G) = 2$.

5. Bipartite theory of $Y\overline{Y}$ -dominating set

Let G = (V, E) be a graph. A set $S \subseteq V$ is said to be a cnd-set of a graph G if it is dominating set and its complement V - S is not a dominating set. The minimum cardinality of a cnd-set is called the [6]complementary nil domination number of G and is denoted by $\gamma_{cnd}(G)$.

Theorem 8. For any graph G, $\gamma_{V\overline{V}}(VV^+(G)) = \gamma_{cnd}(G)$.

Proof. Let *S* be a $\gamma_{Y\overline{Y}-}$ set of $VV^+(G) = (X, Y, E)$. Then *S* is a *Y*-dominating set in $VV^+(G)$ and X - S is not a *Y*-dominating set in $VV^+(G)$. In *G*, *S* is a dominating set and X - S is not a dominating set. That is *S* is complementary nil dominating set. Hence, $\gamma_{cnd}(G) \leq |S| = \gamma_{Y\overline{Y}}(VV^+(G))$.

Conversely, let *D* be a γ_{cnd} -set of *G*. Then *D* is a dominating set of *G* and V - D is not a dominating set of *G*. In the graph $VV^+(G)$, *D* is a *Y*-dominating set and X - D is not a *Y*-dominating set. Therefore, $\gamma_{V\overline{Y}}(VV^+(G)) \leq |D| = \gamma_{cnd}(G)$.

A set $S \subseteq V$ is said to be a cntd-set of a graph G if it is total dominating set and its complement V - S is not a total dominating set. The minimum cardinality of a cntd-set is called the complementary nil total domination number of G and is denoted by $\gamma_{cntd}(G)$.

Theorem 9. For any graph G, $\gamma_{Y\overline{Y}}(VV(G)) = \gamma_{cntd}(G)$.

Proof. Let *S* be a $\gamma_{Y\overline{Y}}$ -set of VV(G) = (X, Y, E). Then *S* is a *Y*-dominating set in VV(G) and X - S is not a *Y*-dominating set in VV(G). In *G*, *S* is a total dominating set and X - S is not a total dominating set. That is *S* is complementary nil total dominating set. Hence, $\gamma_{cntd}(G) \leq |S| = \gamma_{Y\overline{Y}}(VV(G))$.

Conversely, let *D* be a γ_{cntd} -set of *G*. Then *D* is a total dominating set of *G* and V - D is not a total dominating set of *G*. In the graph VV(G), *D* is a *Y*-dominating set and X - D is not a *Y*-dominating set. Therefore, $\gamma_{Y\overline{Y}}(VV(G)) \leq |D| = \gamma_{cntd}(G)$.

References

- [1] V.R. Kulli and B. Janakiram, The split domination number of a graph, Graph theory notes of New York, XXXII (1997), 16–19.
- [2] V.R. Kulli and Janakiram, The nonsplit domination number of a graph, Indian J. Pure Appl. Math. 31(4) (2000), 441–447.
- [3] Sampathkumar and L. Pusphalatha, Generalized complements of a graph, Indian J. Pure Appl. Math. **29**(6) (1989), 635–639.
- [4] S. Hedetniemi and R. Laskar, A Bipartite theory of graphs I, Congressus Numerantium 55 (December 1986), 5–14.
- [5] S. Hedetniemi and R. Laskar, A Bipartite theory of graphs II, Congressus Numerantium **64** (November 1988), 137–146.
- [6] T. Tamizh Chelvam and S. Robinson Chellathurai, Complementary nil domination number of a graph, Tamkang Journal of Mathematics **40**(2) (2009), 165–172.

Y.B. Venkatakrishnan, Department of Mathematics, SASTRA University, Tanjore, India.

E-mail: venkatakrish2@maths.sastra.edu

V. Swaminathan, Reader (Retd.), Ramanujan Research center, Saraswathi Narayanan College, Madurai, India. E-mail: sulanesri@yahoo.com

Received April 3, 2011 Accepted September 25, 2011