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Abstract. We consider the partial digest problem, which aims to find the set X = {x0, x1, . . . , xn}
such that ∆X = {|x j–xi|, 0 ≤ i < j ≤ n} is equal to the input of the problem which is a multiset
D = {d1,d2, . . . ,dm}. In bioinformatics, the lengths of DNA fragments represents the multiset D, while
the set of restriction site locations represents the set X = {x0, x1, . . . , xn}. In this paper, we study
experimentally the effect of increasing and decreasing the number of levels on the breadth-breadth
algorithm which is the best practical algorithm for the partial digest problem. The experimental study
shows that the running time of breadth-breadth method is not the minimum time. Also, we obtained
the number of levels that is used in the breadth-breadth algorithm to reduce the running time.
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1. Introduction
Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic instructions used in the
functioning of all known living organisms and many viruses. Most DNA molecules are double-
stranded helices. The relation between these strands is strong. An essential characteristic of a
DNA molecule is its linear structure, which can be viewed as a sequence of four nucleotide bases:
adenine (A), cytosine (C), guanine (G) and thymine (T). Three procedures are used to determine
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the linear structure of DNA. These procedures are mapping, assembling, and sequencing.
In the mapping, there are many methods of map construction. One of these methods is based
on exposing specific chemicals (called restriction enzymes) on DNA. These enzymes cut DNA
molecules at particular patterns of nucleotides called restriction sites [3,8,14,16,17].

In 1970, Hamilton has discovered the first the restriction enzyme during studying how the
bacterium Haemophilus influenza takes up DNA from the virus. The restriction enzyme used in
the process is named HindII. This restriction enzyme recognizes and cuts DNA at two sequences
GTGCAC and GTTAAC [10].

In practice, several variants of cutting approaches are used. The most common approaches
are the partial digest (PD) and the double digest (DD). In the partial digest, the DNA is cut
by one enzyme but with different reaction times, while in double digest we use two restriction
enzymes to cut the DNA [10]. But the problem in these approaches is the information about the
location of the restriction sites lost during the cutting process. So, the main goal of our problem
is how to reconstruct the location of restriction sites?

In this paper, we addressed the PD problem. The mathematical definition of PD problem is
as follows: Given a multiset D = {d1,d2, . . . ,dm}, find the set X represents the set of restriction
sites locations, i.e. X = {x1, x2, . . . , xn}, such that ∆X = {|x j − x+ i|, 0 ≤ i < j ≤ n} = D, where the
set D represents the multiset of lengths of DNA fragments.

Two directions have been proposed to find the solution of PD problem. The goal of the first
direction is to find an exact solution for PD problem. The main challenge of this direction is the
running time for each algorithm exponential time. The goal of the second direction is to find
an approximate/heuristic solution for PD/DD problems. The main challenge of this direction is
the output of all proposed algorithms is not always true. In this paper, we will select the first
direction.

Different algorithms are proposed to find the exact solution of PD problem [1,2,4–7,9,11–
13,15,18]. Some of these algorithms are impractical algorithms, while the other algorithms are
practical such as [1, 9, 18]. The first practical algorithm was designed by Skiena, Smith and
Lemke [18] and ran in n2 logn in the average case. In the worst case (Zhang instances [19]),
the algorithm was run in order of 2n−1 time. Also, Fomin [9] introduced the second practical
algorithm for PD. In the case of Zhang instances, Skiena, Smith and Lemke algorithm is
faster than Formin’s algorithm, while in some other case Formin’s algorithm is faster than the
Skiena, Smith and Lemke algorithm. The third practical algorithm was presented by Abbas
and Bahig [1]. The algorithm was compared with the first practical algorithm and the results
show that the proposed algorithm is more efficient than Skiena, Smith, and Lemke algorithm.

In this paper, we speed up the running time of the third practical algorithm. For this
objective, we organized the paper as an introduction and four sections. In Section 2, we mention
the best known practical algorithm for PD. In Section 3, we introduce the method that is speed
up the running time of the best known practical algorithm. In Section 4, we present the final
version of the modified algorithm. Finally, the conclusion of our work is in Section 5.
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2. Best Known Exact Algorithm
Abbas and Bahig [1] introduced two exact sequential algorithms for PD problem. The first
algorithm, BBb, is based on traverse the solution tree by using the breadth-first strategy from
level 1 to n. The running time for the BBb algorithm is less than Skiena, Smith and Lemke
algorithm. The main disadvantage of the BBb algorithm is the memory required to find the
exact solution. The second algorithm, BBb2, is proposed to reduce the storage of the BBb
algorithm without increasing the running time. The algorithm is based on two main stages.
In the first stage, the algorithm traverses the solution tree αM levels by using the breadth search
strategy. We can construct the elements of each level by using the procedure GenerateNextLevel.
The procedure takes the values of X and D at the level i as two lists, LD and LX , and generates
the new values of X and D for the next level, i+1. A subroutine called Find_αM determines the
value of αM . Determining the value of αM is based mainly on reducing the memory consumed.
The second stage is traversing each element in the αM level by using the breadth strategy.
In both stages, the algorithm deletes all repeated elements at each level. The principle steps of
the BBb2 algorithm are as follows.

Algorithm BBb2
Input: A multiset of integers, D and |D| = N.
Output: The solution set S.
Begin
1. S = LD = LX =;
2. width=Maximum(D)
3. D = D− {width}
4. X = {0,width}
5. LD = D∪LD

6. LX = X ∪LX

7. Find_αM(N,αM)
8. for i = 0 to αM −1 do
9. GenerateNextLevel(LD ,LX ,S)
10. end for
11. for each eD ∈ LD do
12. eLD = eLD ∪ eD

13. eLX = eLX ∪ eX

14. while eLD 6= ; do
15. GenerateNextLevel(eLD , eLX ,S)
16. end while
17. end for
End
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3. Speeding up BBb2 Algorithm
In this section, we study the effect of increasing or decreasing the number of levels in the
running time for the BBb2 algorithm. In more details, what is the best value of the number of
levels that leads to minimize the running time of the BBb2 algorithm?

To achieve this goal we have two subsections. The first subsection is related to the proposed
method, while the second subsection is relevant to the experimental study of the proposed
method.

3.1 The Proposed Method
We answer the question that is introduced at the beginning of the section by using the following
steps. In the first step, we fixed the value of n, say n = 30, and then apply the BBb2 algorithm
in the case of the number of level α= 1. The running time for this step is denoted by t1. In the
second step, we increase the number of the level by 1, α= 2, and apply the BBb2 algorithm.
The running time for this step is t2. We repeat the previous steps until the value of α= n−1.
If α= n, the BBb2 algorithm is equivalent to BBb algorithm. After that, we find the minimum
value of ti ’s, 1≤ i ≤ n−1, say tmin. Finally, we compare between the value of αM (calculated by
the procedure Find_αM ) and min (calculated experimentally).

To summarize the previous steps, we first modify the BBb2 algorithm to be M-BBb2.
The main difference between the two algorithms is the value of α. Also, the BestTime algorithm
is used to determine the number of levels that leads to minimum time.

Algorithm M-BBb2
Input: A multiset of integers, D, |D| = N and the number of level α.
Output: The solution set S.
Begin
1. S = LD = LX =;
2. width=Maximum(D)
3. D = D− {width}
4. X = {0,width}
5. LD = D∪LD
6. LX = X ∪LX
7. for i = 0 to α−1 do
8. GenerateNextLevel(LD ,LX ,S)
9. end for
10. for each eD ∈ LD do
11. eLD = eLD ∪ eD
12. eLX = eLX ∪ eX
13. while eLD 6= ; do
14. GenerateNextLevel(eLD , eLX ,S)
15. end while
16. end for
End
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Algorithm BestTime
Input: A multiset of integers, D, and N = |D|.
Output: Best level, bL, and calculated level αM .
Begin
1. n = 1+p1+8N

2
2. for α= 1 to n−1 do
3. D′ = D
4. M-BBb2(D′,α,S)
5. Assign the time of execution for M-BB2 to tα
6. end for
7. Find_αM(N,αM)
8. tmin = t1

9. for i = 2 to n−1 do
10. if ti < tmin then
11. bL = i
12. tmin = ti

13. end if
14. end for
15. return bL and αM

End.

3.2 Experimental Study
We run the proposed method on a machine with speed processor 2.5 GHz. The proposed algorithm
was implemented using C++ language. The data used in the proposed algorithm is based on
Zhang instances. Figure 1(a-d) represents the results of executing M-BBb2 algorithm when
n = 30,35,40 and 45. The running time of the BBb2 algorithm using αM is represented as an
unfilled circle, while the running time of the BBb2 algorithm using bL is represented as an
unfilled triangle.

From the Figure 1, we observed the following comments.

1. The running time of the BBb2 algorithm that is based on the value of αM is not the
minimal. There are many values of α that lead to time less than the time of the BBb2
algorithm using αM .

2. The value of bL is greater than the value of αM .

3. The difference between bL and αM increases with increase the value of n.

4. When we compare the running time of the BBb2 algorithm in the case of bL and αM ,
we found that the percentage of improvement for n = 30,35,40 and 45 are 7%, 15%, 15%
and 28%, respectively. This means that the percentage of improvement increases with
increase the value of n.

5. The behavior of the curves is based on the Zhang instances.
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Figure 1. Running time of the BBb2 algorithm

4. Speeding up BBb2 Algorithm
From the experimental results that shown in the previous section, we can apply the BBb2
algorithm on a small range of the number of levels. The proposed range according to the
experimental study for the BestTime algorithm is [αM −1,αM +5]. Therefore, we modified
BestTime algorithm to be M-BestTime algoithm. We start the number of levels with αM −1 to
verify that the running time of the BBb2 algorithm decreases when we increase the number of
levels.

Algorithm M-BestTime
Input: A multiset of integers, D, and N = |D|.
Output: Best level, bL, and calculated level αM .
Begin
1. n = 1+p1+8N

2
2. Find_αM(N,αM)
3. tmin =∞.
4. αmin = 0.
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5. for α=αM −1 to αM +5 do
6. D′ = D
7. M-BBb2(D′,α,S)
8. Assign the time of M-BB2 to tα
9. if tα < tmin then
10. tmin = tα.
11. bL =α.
12. else if tα = tmin and αM =α then
13. bL =αM

14. end if
15. end if
16. end for
17. return bL and αM

End.
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Figure 2. Running time of the M-BestTime algorithm
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We are used the same platform to test the modified algorithm, M-BestTime. Figure 2
represents the results of applying M-BestTime on n = 50,55,60,65 and 70. The first row of
each figure represents the value of α, while the second row represents the running time of the
algorithm at α. From the figure, we observed the following.

1. All comments in Section 3.2 are true.

2. The percentage of improvement increases with increase the value of n. For example, the
percentage of improvement in the case of n = 70 is 42.7%.

3. The running time of the M-BB2 algorithm using bL is also less than the running time of
BBb2 using αM .

4. The values of bL that minimizes the running time of BBb2 algorithm for the studied cases
are as follows.

Table 1. Comparison between α and bL

n 30 35 40 45 50 55 60 65 70

αM 15 17 20 22 25 27 30 32 35

bL 10 19 22 25 28 30 33 35 38

5. Conclusion
In this paper, we addressed one of the important problems in bioinformatics which is
partial digest problem. In this problem, given a multiset D = {d1,d2, . . . ,dm}, find the set
X = {x1, x2, . . . , xn}, such that ∆X = {|x j − xi|, 0 ≤ i < j ≤ n} = D. We determine experimentally
a new value for the number levels that can be used in the best practical algorithm, breadth-
breadth. This new value will reduce the running time of the best practical known algorithm
to solve PD. The percentage of improvements increases with increase the value of n. For data
set used in this paper, the maximum number of improvement is 42% and we expect that this
number will increase with increase n. In our study, the expected value for the number of levels
is αM +3 for 45≤ n ≤ 70.
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