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Abstract. Among topological descriptors connectivity indices are very important and they
have a prominent role in chemistry. Two useful of them are the geometric-arithmetic (GA) and

atom-bond connectivity (ABC) indices and are defined as GA(G) = ∑
uv∈E(G)

2
p

dudv
du+dv

and ABC(G) =∑
e=uv∈E(G)

√
du+dv−2

dudv
, in which du and dv are the degrees of the vertices u and v, respectively. In this

paper we compute these connectivity topological indices for a special chemical molecular graph
“Cas(C)-CaR(C)[m,n, p] Nanotubes Junction” are given. The Cas(C)-CaR(C)[m,n, p] Nanotubes
Junction is a new nano-structure that was defined by M.V. Diudea, on based the new graph operations
(Leapfrog Le and Capra Ca) on the cycle graph Cn.
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1. Introduction
A graph is a collection of points and lines connecting a subset of them. The points and lines
of a graph also called vertices and edges of the graph, respectively. In chemical graphs, the
vertices and edges of a graph also correspond to the atoms and bonds of the molecular graph,
respectively. If e is an edge/bond of G, connecting the vertices/atoms u and v, then we write
e = uv and say “u and v are adjacent” [16–27]. The graph G is said to be connected, if for every
vertices u and v in V (G) there exists a path connecting u and v.

Chemical graph theory is an important branch of graph theory, such that there exits many
topological indices in it. The topological indices of the graph G are a number relation to the
structure of the graph G and are invariant on the automorphism of the graph. The simplest
topological indices are the number of vertices, the number of edges and degree of a vertex v
of the graph G and we denoted by n, m and dv, respectively. The degree of a vertex v is the
number of vertices joining to v and the distance d(u,v) in a graph is the number of edges in a
shortest path connecting them.

One of the oldest topological indices is the Wiener index W(G), introduced by the chemist
Harold Wiener [27] in 1947. It is defined as the sum of topological distances d(u,v) between any
two atoms in the molecular graph

W(G)= 1
2

∑
u∈V (G)

∑
v∈V (G)

d(u,v) .

Let G be a (molecular) graph with vertex and edge sets being denoted by V (G) and E(G),
respectively. B. Furtula et al. introduced Atom-Bond Connectivity index (ABC) and Geometric-
Arithmetic index (GA) [16,25]. These indices are based on degrees of vertices and defined as
follow, respectively.

ABC(G)= ∑
e=uv∈E(G)

√
du +dv −2

dudv
,

GA(G)= ∑
e=uv∈E(G)

2
√

dudv

du +dv
,

where du and dv are the degrees of the vertices u and v, respectively. In all parts of this paper,
our notation is standard and mainly taken from standard books of chemical graph theory [6–27].

2. Main Results
In this paper, we investigate the above presented topological Connectivity indices in a family of
special chemical molecular graphs “Cas(C)-CaR(C)[m,n, p] Nanotubes Junction” (see Figure 1).

The Cas(C)-CaR(C)[m,n, p] Nanotubes Junction is a new nano-structure that was defined
by M.V. Diudea [1], on based the new graph operations on the cycle graph Cn, namely: Leapfrog
Le and Capra Ca. Some examples of graph operations (Leapfrog Le and Capra Ca) are shown in
Figure 2 and Figure 3 and readers can see the references [2–15].
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Figure 1. [1–5] A-dimensional lattice of Cas(C)-CaR(C)[m,n, p] Nanotubes Junction ∀ m,n, p ∈N.

 
 

  
Figure 2. [1–5] An example of “Leapfrog Le(C6)” graph operation.

Now, consider Cas(C)-CaR(C)[m,n, p] Nanotubes Junction ∀ m,n, p ∈ N, such that the
3-Dimensional lattice of Cas(C)-CaR(C)[m,n, p] Nanotubes Junction are shown in Figure 1. In
this paper we name the first member Cas(C)[1,1,1] or Cas(C) as the based unit (see Figure 4),
since all member of Cas(C)[m,n, p] Nanotubes are combine this unit.

By Figure 4, we can see that 6×4 = 24 vertices/atoms of Cas(C) unit have degree 2 (red
colored vertices in Figure 3), and there are 2×4= 8 vertices/atoms with degree 3 in any split of
Cas(C) (yellow colored vertices in Figure 3) and Cas(C) unit has 6 splits. Finally, there are 8
common vertices between 3 joist splits of Cas(C) (obviously with degree 3 and colored by white).
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 Figure 3. [1–5]An example of “Capra Ca(C4)” graph operation.

These imply that Cas(C) unit has 24+6×8+8 = 80 (|V (Cas(C))|) vertices/atoms and the
number of edges/bonds of Cas(C) unit is equal to

|E(Cas(C))| = 2×|V2|+3×|V3|
2

= 1
2

[2×24+3×56]= 216.

 
 

Figure 4. The based unit Cas(C)-CaR(C)[1,1,1] of the Cas(C)-CaR(C)[m,n, p] Nanotubes Junction ∀
m,n ∈N.

Thus following M.V. Diudea [5] we denote the number of Cas(C) units in the first rows
and column in this Nanotube by integer number m, n and p. Therefore, in general case of
this nano-structure Cas(C)-CaR(C)[m,n, p], there are m×n× p Cas(C) units and there exist
|V (Cas(C)-CaR(C)[m,n, p])| = 80×m×n× p = 80mnp number of vertices/atoms (∀ m,n, p ∈N).

Also, from the structure of Cas(C)-CaR(C)[m,n, p] Nanotubes Junction ∀ m,n, p ∈ N, in
Figure 4, one can see that the number of edges/bonds of Cas(C)-CaR(C)[m,n, p] is equal to

|E(Cas(C)−CaR(C)[m,n, p])| = 216×m×n× p+4(m−1)(n−1)(p−1)

= 220mnp−4mn−4mp−4np+4m+4n+4p−4.

Before presenting the main results, let us introduce some definitions.
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Definition 1 ([16–18]). Let G and dv (1≤ dv ≤ n−1) be a simple connected molecular graph
and the vertex degrees of vertices/atom v in G. We divide the vertex set V (G) and edge set E(G)
of G into several partitions based on dv (∀ v ∈V (G)) for δ≤ k ≤∆, 2δ≤ i ≤ 2∆, and δ2 ≤ j ≤∆2

as follows

Vk = {v ∈V (G)|dv = k},

E i = {e = uv ∈ E(G)|du +dv = i},

E∗
j = {uv ∈ E(G)|du ×dv = j},

where δ and ∆ are the minimum and maximum, respectively, of dv for all v ∈V (G).

In any nanostructure, the degree of an arbitrary vertex/atom of a molecular graph is equal
to 1, 2 or 3. Also, the hydrogen atoms in molecular graphs (i.e., vertices of degree 1) are often
omitted. Therefore in the case G = Cas(C) unit, we have only

V3 = {v ∈V (Cas(C))|dv = 3},

V2 = {v ∈V (Cas(C))|dv = 2} .

Because ∀ v ∈V (Cas(C)dv = 2 or 3, and alternatively the edge partitions of Cas(C) are as

E5 = E∗
6 = {uv ∈ E(Cas(C))|du = 2 and dv = 3} ,

E6 = E∗
9 = {uv ∈ E(Cas(C))|du = dv = 3}.

By according to the Figure 4, its easy to see that the cardinal of these vertex and edge partitions
are equal to:

Vertex/Edge partition V3 V2 E5 = E∗
6 E6 = E∗

9

Cardinality 56 24 2×|V2| = 48 168

By these preliminaries, we have main results of this paper in following theorems.

Theorem 1. Let G be the general case of the nano-structure “Cas(C)-CaR(C)[m,n, p] Nanotubes
Junction” (see Figure 1). Then,

• the atom-bond connectivity index ABC of G is equal to

ABC(Cas (C)−CaR (C) [m,n, p])= 440
3

mnp+
(
8
p

2− 40
3

)
(mp+np+mn)+ 8

3
(m+n+ p−1) ,

• the geometric-arithmetic GA of G is equal to

GA(Cas (C)−CaR (C) [m,n, p])= 220mnp+
(

32
p

6
5

−20

)
(mp+np+mn)+4(m+n+ p−1).

Proof. Consider G = Cas(C)−CaR(C)[m,n, p] nano-structure. This nano-structure consists of
heptagon and octagon nets (see Figure 1). By above mention results, one can see that the vertex
and edge sets of G are equal to (∀ m,n, p ∈N):

|V (Cas(C)−CaR(C)[m,n, p])| = 10(2m)(2n)(2P),
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|E(Cas(C)−CaR(C)[m,n, p])| = 220mnp−4mn−4mp−4np+4m+4n+4p−4.

In the general case G = Cas(C)-CaR(C)[m,n, p] Nanotubes Junction, we can see that ∀
v ∈ V (Cas(C)-CaR(C)[m,n, p])dv = 2 or 3, and we have the vertex and edge partitions with
their cardinalities as follows (∀ m,n, p ∈N).

V3 = {v ∈V (G)|dv = 3} ,

V2 = {v ∈V (G)|dv = 2} .

Vertex partition V2 V3

Cardinality 4(2mp+2np+2mn) 8(10mnp−mp−np−mn)

E5 = E∗
6 = {uv ∈ E(G)|du = 2 and dv = 3},

E6 = E∗
9 = {uv ∈ E(G)|du = dv = 3}.

Edge partition E5 = E∗
6 E6 = E∗

9

Cardinality 16(mp+np+mn) 4(55mnp−5mn−5mp−5np+m+n+ p−1)

Then, we have following computations for the geometric-arithmetic (GA) and atom-bond
connectivity (ABC) indices of Cas(C)-CaR(C)[m,n, p] Nanotubes Junction (∀ m,n, p ∈N).

ABC(G)= ∑
uv∈E(G)

√
du +dv −2

dudv

= ∑
u1v1∈E∗

9

√
du1 +dv1 −2

du1 dv1

+ ∑
u2v2∈E∗

6

√
du2 +dv2 −2

du2 dv2

= 2
3

∣∣E∗
9
∣∣+ p

2
2

∣∣E∗
6
∣∣

= 2
3

(220mnp−20mn−20mp−20np+4m+4n+4p−4)+
p

2
2

(8(2mp+2np+2mn))

= 8
3

(55mnp−5mn−5mp−5np+m+n+ p−1)+8
p

2(mp+np+mn)

= 440
3

mnp+
(
8
p

2− 40
3

)
(mp+np+mn)+ 8

3
(m+n+ p−1)

and also,

GA(G)= ∑
uv∈E(G)

2
√

dudv

du +dv

= ∑
u1v1∈E∗

9

2
√

du1 dv1

du1 +dv1

+ ∑
u2v2∈E∗

6

2
√

du2 dv2

du2 +dv2

= 2
p

9
6

∣∣E∗
9
∣∣+ 2

p
6

5

∣∣E∗
6
∣∣

= 4(55mnp−5mn−5mp−5np+m+n+ p−1)+ 2
p

6
5

(16(mp+np+mn))
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= 220mnp+
(

32
p

6
5

−20

)
(mp+np+mn)+4(m+n+ p−1).

and this completed the proof.

3. Conclusion
In this study we have calculated the geometric-arithmetic (GA) and atom-bond connectivity
(ABC) indices of a special chemical molecular graph “Cas(C)-CaR(C)[m,n, p] Nanotubes
Junction” are given. The Cas(C)-CaR(C)[m,n, p] Nanotubes Junction is a new nano-structure
that was defined by M.V. Diudea, on based the new graph operations (Leapfrog Le and Capra
Ca) on the cycle graph Cn.
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