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Numerical Solution of Hunter-Saxton Equation by
Using Iterative Methods

Sh. S. Behzadi

Abstract. In this paper, a Hunter-Saxton equation is solved by using the
Adomian’s decomposition method (ADM), modified Adomian’s decomposition
method (MADM), variational iteration method (VIM), modified variational
iteration method (MVIM) and homotopy analysis method (HAM). The
approximation solution of this equation is calculated in the form of series which
its components are computed by applying a recursive relation. The existence
and uniqueness of the solution and the convergence of the proposed methods
are proved. A numerical example is studied to demonstrate the accuracy of the
presented methods.

1. Introduction

The Hunter-Saxton equation

ut x x =−2uxux x − uux x x , t > 0. (1)

models the propagation of weakly nonlinear orientation waves in a massive
nematic liquid crystal director field, x being the space variable in a reference frame
moving with the unperturbed wave speed and t being a slow time variable [1]. In
recent years, some works have been done in order to find the numerical solution
of this equation. For example [2-7]. In this work, we develop the ADM, MADM,
VIM, MVIM and HAM to solve the Eq. (1) with the initial conditions as follows:

u(x , 0) = f (x),

ut x(a, t) = g(t), (2)

ut(a, t) = g1(t).

The paper is organized as follows. In section 2, the mentioned iterative
methods are introduced for solving Eq. (1). Also, the existence and uniqueness
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of the solution and convergence of the proposed method are proved in section 3.
A example is presented in section 4 to illustrate the accuracy of these methods.

To obtain the approximate solution of Eq. (1), by integrating three times from
Eq. (1) with respect to x , t and using the initial conditions we obtain,

u(x , t) = F(x , t)− 2

∫ t

0

∫ x

a

(x − t) F1(u(x , t)) d t d x

−
∫ t

0

∫ x

a

(x − t)F2(u(x , t)) d t d x , (3)

where,

Di(u(x , t)) =
∂ iu(x , t)
∂ x i , i = 1, 2, 3,

F(x , t) = f (x) + (x − a)

∫ t

0

(g1(t) + g(t)) d t,

F1(u(x , t)) = D(u(x , t))D2(u(x , t)),

F2(u(x , t)) = u(x , t)D3(u(x , t)).

In Eq. (3), we assume F(x , t) is bounded for all t in J = [0, T] and x in [a, b]
(T, a, b ∈ R).

The terms F1(u(x , t)), F2(u(x , t)) are Lipschitz continuous with |Fi(u) −
Fi(u∗)| ≤ Li |u− u∗| (i = 1, 2), and

|x − t| ≤ M .

α= T (b− a)M(2L1 + L2),

β = 1− T (1−α).

2. The iterative methods

2.1. Description of the MADM and ADM

The Adomian decomposition method is applied to the following general
nonlinear equation

Lu+ Ru+ Nu= g1(x , t), (4)

where u(x , t) is the unknown function, L is the highest order derivative operator
which is assumed to be easily invertible, R is a linear differential operator of order
less than L, Nu represents the nonlinear terms, and g is the source term. Applying
the inverse operator L−1 to both sides of Eq. (4), and using the given conditions
we obtain

u(x , t) = f1(x)− L−1(Ru)− L−1(Nu), (5)
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where the function f1(x) represents the terms arising from integrating the source
term g1(x , t). The nonlinear operator Nu= G1(u) is decomposed as

G1(u) =
∞∑

n=0

An, (6)

where An, n≥ 0 are the Adomian polynomials determined formally as follows :

An =
1

n!

�
dn

dλn

�
N
� ∞∑

i=0

λiui

���

λ=0
. (7)

Adomian polynomials were introduced in [8-10] as

A0 = G1(u0),

A1 = u1G′1(u0),

A2 = u2G′1(u0) +
1

2!
u2

1G′′1 (u0), (8)

A3 = u3G′1(u0) + u1u2G′′1 (u0) +
1

3!
u3

1G′′′1 (u0), . . . .

2.1.1. Adomian decomposition method.
The standard decomposition technique represents the solution of u(x , t) in (4)

as the following series,

u(x , t) =
∞∑

i=0

ui(x , t), (9)

where, the components u0, u1, . . . are usually determined recursively by

u0 = F(x , t)

u1 =−2

∫ t

0

∫ x

a

(x − t)A0(x , t) d t ds−
∫ t

0

∫ x

a

(x − t)B0(x , t) d t d x ,

...

un+1 =−2

∫ t

0

∫ x

a

(x − t)An(x , t) d t ds−
∫ t

0

∫ x

a

(x − t)Bn(x , t) d t d x , n≥ 0.

(10)

Substituting (8) into (10) leads to the determination of the components of u.
Having determined the components u0, u1, . . . the solution u in a series form
defined by (9) follows immediately.

2.1.2. The modified Adomian decomposition method.
The modified decomposition method was introduced by Wazwaz [11]. The

modified forms was established based on the assumption that the function F(x , t)
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can be divided into two parts, namely F1(x , t) and F2(x , t). Under this assumption
we set

F(x , t) = F1(x , t) + F2(x , t). (11)

Accordingly, a slight variation was proposed only on the components u0 and u1.
The suggestion was that only the part F1 be assigned to the zeroth component u0,
whereas the remaining part F2 be combined with the other terms given in (11) to
define u1. Consequently, the modified recursive relation

u0 =−F1(x , t),

u1 =−F2(x , t)− L−1(Ru0)− L−1(A0),

...

un+1 =−L−1(Run)− L−1(An), n≥ 1, (12)

was developed.
To obtain the approximation solution of Eq. (1), according to the MADM, we

can write the iterative formula (12) as follows:

u0 = F1(x , t),

u1 = F2(x , t)− 2

∫ t

0

∫ x

a

(x − t)A0(x , t) d t d x −
∫ t

0

∫ x

a

(x − t)B0(x , t) d t d x ,

...

un+1 =−2

∫ t

0

∫ x

a

(x − t)An(x , t) d t d x −
∫ t

0

∫ x

a

(x − t)Bn(x , t) d t d x . (13)

The operators F1(u), F2(u) are usually represented by the infinite series of the
Adomian polynomials as follows:

F1(u) =
∞∑

i=0

Ai ,

F2(u) =
∞∑

i=0

Bi .

where Ai and Bi are the Adomian polynomials.
Also, we can use the following formula for the Adomian polynomials [12]:

An = F1(sn)−
n−1∑

i=0

Ai ,

Bn = F2(sn)−
n−1∑

i=0

Bi . (14)

Where the partial sum is sn =
n∑

i=0
ui(x , t).
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2.2. Description of the VIM and MVIM

In the VIM [13-17, 28], we consider the following nonlinear differential
equation:

L(u(x , t)) + N(u(x , t)) = g1(x , t), (15)

where L is a linear operator,N is a nonlinear operator and g1(x , t) is a known
analytical function. In this case, a correction functional can be constructed as
follows:

un+1(x , t) = un(x , t) +

∫ t

0

λ(x ,τ){L(un(x ,τ))+N(un(x ,τ))−g1(x ,τ)}dτ, n≥ 0,

(16)

where λ is a general Lagrange multiplier which can be identified optimally via
variational theory. Here the function un(x ,τ) is a restricted variations which
means δun = 0. Therefore, we first determine the Lagrange multiplier λ that
will be identified optimally via integration by parts. The successive approximation
un(x , t), n ≥ 0 of the solution u(x , t) will be readily obtained upon using the
obtained Lagrange multiplier and by using any selective function u0. The zeroth
approximation u0 may be selected any function that just satisfies at least the initial
and boundary conditions. With λ determined, then several approximation un(x , t),
n ≥ 0 follow immediately. Consequently, the exact solution may be obtained by
using

u(x , t) = lim
n→∞

un(x , t). (17)

The VIM has been shown to solve effectively, easily and accurately a large class
of nonlinear problems with approximations converge rapidly to accurate solutions.

To obtain the approximation solution of Eq. (1), according to the VIM, we can
write iteration formula (16) as follows:

un+1(x , t) = un(x , t) + L−1
t (λ[un(x , t)− F(x , t)

+ 2

∫ t

0

∫ x

a

(x − t)F1(un(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t)F2(un(x , t)) d t d x]), n≥ 0. (18)

Where,

L−1
t (·) =

∫ t

0

(·) dτ .
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To find the optimal λ, we proceed as

δun+1(x , t) = δun(x , t) +δL−1
t

�
λ

�
un(x , t) + F(x , t)

+ 2k

∫ t

0

D(un(x , t)) d t + a

∫ t

0

F1(un(x , t)) d t

− 2

∫ t

0

F2(un(x , t)) d t −
∫ t

0

F3(un(x , t)) d t
��

. (19)

From Eq. (19), the stationary conditions can be obtained as follows:

λ′ = 0 and 1+λ′ = 0.

Therefore, the Lagrange multipliers can be identified as λ = −1 and by
substituting in (18), the following iteration formula is obtained.

u0(x , t) = F(x , t),

un+1(x , t) = un(x , t)− L−1
t

×
�

un(x , t)− F(x , t) + 2

∫ t

0

∫ x

a

(x − t)F1(un(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t)F2(un(x , t)) d t d x
�

, n≥ 0. (20)

To obtain the approximation solution of Eq. (1), based on the MVIM [18,19],
we can write the following iteration formula:

u0(x , t) = F(x , t),

un+1(x , t) = un(x , t)− L−1
t

�
− 2

∫ t

0

∫ x

a

(x − t)F1(un(x , t)− un−1(x , t)) d t d x

−
∫ t

0

∫ x

a

(x − t)F2(un(x , t)− un−1(x , t)) d t d x
�

, n≥ 0. (21)

Relations (20) and (21) will enable us to determine the components un(x , t)
recursively for n≥ 0.

2.3. Description of the HAM

Consider

N[u] = 0,

where N is a nonlinear operator, u(x , t) is unknown function and x is an
independent variable. let u0(x , t) denote an initial guess of the exact solution
u(x , t), h 6= 0 an auxiliary parameter, H1(x , t) 6= 0 an auxiliary function, and L an
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auxiliary linear operator with the property L[s(x , t)] = 0 when s(x , t) = 0. Then
using q ∈ [0, 1] as an embedding parameter, we construct a homotopy as follows:

(1− q)L[φ(x , t; q)− u0(x , t)]− qhH1(x , t)N[φ(x , t; q)]

= Ĥ[φ(x , t; q); u0(x , t), H1(x , t), h, q]. (22)

It should be emphasized that we have great freedom to choose the initial guess
u0(x , t), the auxiliary linear operator L, the non-zero auxiliary parameter h, and
the auxiliary function H1(x , t).

Enforcing the homotopy (22) to be zero, i.e.,

Ĥ1[φ(x , t; q); u0(x , t), H1(x , t), h, q] = 0, (23)

we have the so-called zero-order deformation equation

(1− q)L[φ(x , t; q)− u0(x , t)] = qhH1(x , t)N[φ(x , t; q)]. (24)

When q = 0, the zero-order deformation Eq. (24) becomes

φ(x; 0) = u0(x , t), (25)

and when q = 1, since h 6= 0 and H1(x , t) 6= 0, the zero-order deformation Eq. (24)
is equivalent to

φ(x , t; 1) = u(x , t). (26)

Thus, according to (25) and (26), as the embedding parameter q increases from
0 to 1, φ(x , t; q) varies continuously from the initial approximation u0(x , t) to the
exact solution u(x , t). Such a kind of continuous variation is called deformation in
homotopy [20-22, 24-27].

Due to Taylor’s theorem, φ(x , t; q) can be expanded in a power series of q as
follows

φ(x , t; q) = u0(x , t) +
∞∑

m=1

um(x , t)qm, (27)

where

um(x , t) =
1

m!

∂ mφ(x , t; q)
∂ qm

����
q=0

.

Let the initial guess u0(x , t), the auxiliary linear parameter L, the nonzero
auxiliary parameter h and the auxiliary function H1(x , t) be properly chosen so
that the power series (27) of φ(x , t; q) converges at q = 1, then, we have under
these assumptions the solution series

u(x , t) = φ(x , t; 1) = u0(x , t) +
∞∑

m=1

um(x , t). (28)
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From Eq. (27), we can write Eq. (24) as follows

(1− q)L[φ(x , t, q)− u0(x , t)] = (1− q)L
� ∞∑

m=1

um(x , t) qm
�

= q h H1(x , t)N[φ(x , t, q)]

⇒ L
� ∞∑

m=1

um(x , t) qm
�
− q L

� ∞∑

m=1

um(x , t)qm
�
= q h H1(x , t)N[φ(x , t, q)]

(29)

By differentiating (29) m times with respect to q, we obtain
�

L
� ∞∑

m=1

um(x , t) qm
�
− q L

� ∞∑

m=1

um(x , t)qm
��(m)

= {q h H1(x , t)N[φ(x , t, q)]}(m)

= m! L[um(x , t)− um−1(x , t)]

= h H1(x , t) m
∂ m−1N[φ(x , t; q)]

∂ qm−1

����
q=0

.

Therefore,

L[um(x , t)−χmum−1(x , t)] = hH1(x , t)ℜm(um−1(x , t)), (30)

where,

ℜm(um−1(x , t)) =
1

(m− 1)!
∂ m−1N[φ(x , t; q)]

∂ qm−1

����
q=0

, (31)

and

χm =

¨
0, m≤ 1

1, m> 1

Note that the high-order deformation Eq. (30) is governing the linear operator
L, and the term ℜm(um−1(x , t)) can be expressed simply by (31) for any nonlinear
operator N .

To obtain the approximation solution of Eq. (1), according to HAM, let

N[u(x , t)] = u(x , t)− F(x , t) + 2

∫ t

0

∫ x

a

(x − t)F1(u(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t)F2(u(x , t)) d t d x ,

so,

ℜm(um−1(x , t)) = um−1(x , t)− F(x , t) + 2

∫ t

0

∫ x

a

(x − t)F1(u(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t)F2(u(x , t)) d t d x , (32)



Numerical Solution of Hunter-Saxton Equation by Using Iterative Methods 135

Substituting (32) into (30)

L[um(x , t)−χmum−1(x , t)]

= hH1(x , t)[um−1(x , t) + 2

∫ t

0

∫ x

a

(x − t)F1(u(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t)F2(u(x , t)) d t d x + (1−χm)F(x , t)]. (33)

We take an initial guess u0(x , t) = F(x , t), an auxiliary linear operator Lu = u,
a nonzero auxiliary parameter h=−1, and auxiliary function H1(x , t) = 1. This is
substituted into (33) to give the recurrence relation

u0(x , t) = F(x , t),

un+1(x , t) =−2

∫ t

0

∫ x

a

(x − t)F1(un(x , t)) d t d x

−
∫ t

0

∫ x

a

(x − t)F2(un(x , t)) d t d x , n≥ 1. (34)

If |un(x , t)|< 1, then the series solution (34) convergence uniformly.

3. Existence and convergency of iterative methods

Theorem 3.1. Let 0< α < 1, then equation (1), has a unique solution.

Proof. Let u and u∗ be two different solutions of (3) then

|u− u∗|= | − 2

∫ t

0

∫ x

a

(x − t)[F1(u(x , t))− F1(u
∗(x , t))] d t d x

−
∫ t

0

∫ x

a

(x − t)[F2(u(x , t))− F2(u
∗(x , t))] d t d x |

≤
∫ t

0

∫ x

a

|x − t| |2F1(u(x , t))− F1(u
∗(x , t))| d t d x

+

∫ t

0

∫ x

a

|x − t| |F2(u(x , t))− F2(u
∗(x , t))| d t d x

≤ T M(b− a)(2L1 + L2) |u− u∗|
= α|u− u∗|.

From which we get (1−α)|u−u∗| ≤ 0. Since 0< α < 1, then |u−u∗|= 0. Implies
u= u∗ and completes the proof. ¤

Theorem 3.2. The series solution u(x , t) =
∞∑

i=0
ui(x , t) of problem (1) using MADM

convergence when 0< α < 1, |u1(x , t)|<∞.



136 Sh. S. Behzadi

Proof. Define the sequence of partial sums sn, let sn and sm be arbitrary partial
sums with n ≥ m. We are going to prove that sn is a Cauchy sequence in this
Banach space:

‖sn − sm‖=max
∀x ,t
|sn − sm|

=max
∀x ,t

����
n∑

i=m+1

ui(x , t)

����

=max
∀x ,t

����
n∑

i=m+1

�
− 2

∫ t

0

∫ x

a

(x − t)Ai−1d t d x −
∫ t

0

∫ x

a

(x − t)Bi−1d t d x
�����

=max
∀x ,t

����− 2

∫ t

0

∫ x

a

(x − t)
� n−1∑

i=m

Ai

�
d t d x −

∫ t

0

∫ x

a

� n−1∑

i=m

Bi

�
d t d x

����.

From [12], we have
n−1∑

i=m

Ai = F1(sn−1)− F1(sm−1),

n−1∑

i=m

Bi = F2(sn−1)− F2(sm−1).

So,

‖sn − sm‖=max
∀x ,t

����− 2

∫ t

0

∫ x

a

(x − t)[F1(sn−1)− F1(sm−1)] d t d x

−
∫ t

0

∫ x

a

(x − t)[F2(sn−1)− F2(sm−1)] d t d x

����

≤ 2

∫ t

0

∫ x

a

(x − t)|F1(sn−1)− F1(sm−1)| d t d x

+

∫ t

0

∫ x

a

(x − t)|F2(sn−1)− F2(sm−1)| d t d x

≤ α‖sn − sm‖.
Let n= m+ 1, then

‖sn − sm‖ ≤ α‖sm − sm−1‖ ≤ α2‖sm−1 − sm−2‖ ≤ . . .≤ αm‖s1 − s0‖.
We have,

‖sn − sm‖ ≤ ‖sm+1 − sm‖+ ‖sm+2 − sm+1‖+ . . .+ ‖sn − sn−1‖
≤ [αm +αm+1 + . . .+αn−1]‖s1 − s0‖
≤ αm[1+α+α2 + . . .+αn−m−1]‖s1 − s0‖

≤ αm
�

1−αn−m

1−α

�
‖u1(x , t)‖.
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Since 0< α < 1, we have (1−αn−m)< 1, then

‖sn − sm‖ ≤
αm

1−α max
∀t
|u1(x , t)|. (35)

But |u1(x , t)| < ∞, so, as m → ∞, then ‖sn − sm‖ → 0. We conclude that
sn is a Cauchy sequence, therefore the series is convergence and the proof is
complete. ¤

Theorem 3.3. The series solution u(x , t) =
∞∑

i=0
ui(x , t) of problem (1) using VIM

converges when 0< α < 1, 0< β < 1.

Proof.

un+1(x , t) = un(x , t)− L−1
t

��
un(x , t)− F(x , t)+2

∫ t

0

∫ x

a

(x − t)F1(un(x , t))d t d x

+

∫ t

0

∫ x

a

(x − t)F2(un(x , t)) d t d x
��

(36)

u(x , t) = u(x , t)− L−1
t

��
u(x , t)− F(x , t) + 2

∫ t

0

∫ x

a

(x − t)F1(u(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t)F2(u(x , t)) d t d x
��

. (37)

By subtracting relation (36) from (37),

un+1(x , t)− u(x , t) = un(x , t)− u(x , t)− L−1
t

�
un(x , t)− u(x , t)

+ 2

∫ t

0

∫ x

a

(x − t)[F1(un(x , t))− F1(u(x , t))]d t d x

+

∫ t

0

∫ x

a

(x − t)[F2(un(x , t)) d t − F2(u(x , t))] d t d x
�

,

if we set, en+1(x , t) = un+1(x , t)−un(x , t), en(x , t) = un(x , t)−u(x , t), |en(x , t∗)|=
maxt |en(x , t)| then since en is a decreasing function with respect to t from the
mean value theorem we can write,

en+1(x , t) = en(x , t) + L−1
t

×
�

en(x , t) + 2

∫ t

0

∫ x

a

(x − t)[F1(un(x , t))− F1(u(x , t))] d t d x

+

∫ t

0

∫ x

a

(x − t)[F2(un(x , t))− F2(u(x , t))] d t d x
�

≤ en(x , t) + L−1
t [en(x , t) + L−1

t |en(x , t)|T M(b− a)(2L1 + L2)]

≤ en(x , t)− Ten(x ,η) + T M(b− a)(2L1 + L2)L
−1
t L−1

t |en(x , t)|
≤ (1− T (1−α)|en(x , t∗)|,
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where 0≤ η≤ t. Hence, en+1(x , t)≤ β |en(x , t∗)|.
Therefore,

‖en+1‖=max
∀t∈J
|en+1| ≤ βmax

∀t∈J
|en| ≤ β‖en‖.

Since 0 < β < 1, then ‖en‖ → 0. So, the series converges and the proof is
complete. ¤

Theorem 3.4. If the series solution (34) of problem (1) using HAM convergent then
it converges to the exact solution of the problem (1).

Proof. We assume:

u(x , t) =
∞∑

m=0

um(x , t),

bF1(u(x , t)) =
∞∑

m=0

F1(um(x , t)),

bF2(u(x , t)) =
∞∑

m=0

F2(um(x , t)).

where,

lim
m→∞

um(x , t) = 0.

We can write,
n∑

m=1

[um(x , t)−χmum−1(x , t)] = u1 + (u2 − u1) + . . .+ (un − un−1)

= un(x , t). (38)

Hence, from (38),

lim
n→∞

un(x , t) = 0. (39)

So, using (39) and the definition of the linear operator L, we have
∞∑

m=1

L[um(x , t)−χmum−1(x , t)] = L
� ∞∑

m=1

[um(x , t)−χmum−1(x , t)]
�
= 0.

therefore from (30), we can obtain that,
∞∑

m=1

L[um(x , t)−χmum−1(x , t)] = hH1(x , t)
∞∑

m=1

ℜm−1(um−1(x , t)) = 0.

Since h 6= 0 and H1(x , t) 6= 0, we have
∞∑

m=1

ℜm−1(um−1(x , t)) = 0. (40)
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By substituting ℜm−1(um−1(x , t)) into the relation (40) and simplifying it, we
have
∞∑

m=1

ℜm−1(um−1(x , t)) =
∞∑

m=1

�
um−1(x , t) + 2

∫ t

0

∫ x

a

(x − t)F1(um−1(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t)F2(um−1(x , t)) d t d x + (1−χm)F(x , t)
�

= u(x , t)− F(x , t) + 2

∫ t

0

∫ x

a

(x − t) bF1(u(x , t)) d t d x

+

∫ t

0

∫ x

a

(x − t) bF2(u(x , t)) d t d x . (41)

From (40) and (41), we have

u(x , t) = F(x , t)− 2

∫ t

0

∫ x

a

(x − t) bF1(u(x , t)) d t d x

−
∫ t

0

∫ x

a

(x − t) bF2(u(x , t)) d t d x ,

therefore, u(x , t) must be the exact solution. ¤

4. Numerical example

In this section, we compute a numerical example which is solved by the ADM,
MADM, VIM, MVIM and HAM. The program has been provided with Mathematica
6 according to the following algorithm. In this algorithm ε is a given positive value.

Algorithm

Step 1. Set n← 0.
Step 2. Calculate the recursive relation (10) for ADM, (13) for MADM and (34)

for HAM.
Step 3. If |un+1 − un|< ε then go to Step 4,

else n← n+ 1 and go to Step 2.

Step 4. Print u(x , t) =
n∑

i=0
ui(x , t) as the approximate of the exact solution.

Algorithm 2

Step 1. Set n← 0.
Step 2. Calculate the recursive relations (20) for VIM and (21) for MVIM.
Step 3. If |un+1 − un|< ε then go to Step 4,

else n← n+ 1 and go to Step 2.
Step 4. Print un(x , t) as the approximate of the exact solution.
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Lemma 4.1. The computational complexity of the ADM is O(n3), MADM is O(n3),
VIM is O(13n), MVIM is O(10n) and HAM is O(8n).

Proof. The number of computations including division, production, sum and
subtraction.

ADM:

In Step 2,
An, Bn : 2n2 + 10n+ 8.
u0 : 4.
u1 : 24.

...
un+1 : 24.

In Step 4, the total number of the computations is equal to
n+1∑
i=0

ui(x , t) = O(n3).

MADM:

In Step 2,
An, Bn : 2n2 + 10n+ 8.
u0 : 4.
u1 : 25.
u2 : 24.

...
un+1 : 24.

In Step 4, the total number of the computations is equal to u0 + u1 +
n+1∑
i=2

ui(x , t) =

O(n3).

VIM:

In Step 2,
u0 : 4.
u1 : 13.

...
un+1 : 13.

In Step 4, the total number of the computations is equal to
n+1∑
i=0

ui(x , t) = O(13n).

MVIM:

In Step 2,
u0 : 4.
u1 : 10.
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...
un+1 : 10.

In Step 4, the total number of the computations is equal to
n+1∑
i=0

ui(x , t) = O(10n).

HAM:

In Step 2,
u0 : 4.
u1 : 8.

...
un+1 : 8.

In Step 4, the total number of the computations is equal to
n+1∑
i=0

ui(x , t) = O(8n). ¤

By comparing the results of computational complexity, we see that the number
of computations in HAM is less than the number of computations in ADM, MADM,
VIM and MVIM.

Example 4.2. Consider the hunter-Saxeton equation as follows:

ut + 2ux − ux x t + uux = 2uxux x + uux x x .

With the exact solution is u(x , t) = ex−3t and ε= 10−3.

Figure 1. The comparison between the results of the methods in the
example for t = 0.35
(The comparison between the results of the methods in the Example 4.1, Red =
Error ADM(n = 22)4, Blue = Error MADM(n = 19), Black = Error VIM(n = 15),
Yellow = Error MVIM(n= 12), Green = Error HAM(n= 9))

Figure 1, shows that, approximate solution of the Hunter-Saxton equation is
convergence with 7 iterations by using the HAM. By comparing the results of
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Figure 1, we can observe that the HAM is more rapid convergence than the ADM,
MADM, VIM and MVIM.

5. Conclusion

The HAM has been shown to solve effectively, easily and accurately a large
class of nonlinear problems with the approximations which convergent are rapidly
to exact solutions. In this work, the HAM has been successfully employed to
obtain the approximate analytical solution of the Hunter-Saxton equation. For
this purpose, we showed that the HAM is more rapid convergence than the ADM,
MADM, VIM and MVIM. Also, the number of computations in HAM is less than the
number of computations in ADM, MADM, VIM and MVIM.

References

[1] J.K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math. 51 (1991),
1498–1521.

[2] A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation, SIAM
J. Math. Anal. 37 (2005), 996–1026.

[3] Z.Y. Yin, On the structure of solutions to the periodic Hunter-Saxton equation, SIAM
J. Math. Anal. 36 (2004), 272–283.

[4] J. Lenells, Poisson structure of a modified Hunter-Saxton equation, J. Phys. A: Math.
Theor. 41 (2008), 1–9.

[5] R. Beals, D. Sattinger and J. Szmigielski, Inverse scattering solutions of the Hunter-
Saxton equation, Applicable Analysis 78 (2001), 255–269.

[6] A. V. Penskoi, Lagrangian time-discretization of the Hunter-Saxton equation, Physics
Letters A 304 (2002), 157–167.

[7] J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere,
Journal of Geometry and Physics 57 (2007), 2049–2064.

[8] S. H. Behriy, H. Hashish, I.L.E-Kalla and A. Elsaid, A new algorithm for the
decomposition solution of nonlinear differential equations, 54 (2007) 459-466.

[9] M.A. Fariborzi Araghi and Sh. Sadigh Behzadi, Solving nonlinear Volterra-Fredholm
integral differential equations using the modified Adomian decomposition method,
Comput. Methods in Appl. Math. 9 (2009), 1–11.

[10] A.M. Wazwaz, Construction of solitary wave solution and rational solutions for the
KdV equation by ADM, Chaos, Solution and Fractals 12 (2001), 2283–2293.

[11] A.M.Wazwaz, A First Course in Integral Equations, WSPC, New Jersey, 1997.
[12] I.L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear

integral equations, Appl. Math. Comput. 21 (2008), 372–376.
[13] J.H. He, Variational principle for some nonlinear partial differential equations with

variable cofficients, Chaos, Solitons and Fractals 19 (2004), 847–851.
[14] J.H. He, Variational iteration method for autonomous ordinary differential system,

Appl. Math. Comput. 114 (2000), 115–123.
[15] J.H. He and Shu-Qiang Wang, Variational iteration method for solving integro-

differential equations, Physics Letters A, 367 (2007), 188–191.
[16] J.H. He, Variational iteration method some recent results and new interpretations, J.

Comp. and Appl. Math. 207 (2007), 3–17.
[17] S. Abbasbany, A new application of He’s variational iteration method for

quadratic Riccati differential equation by using Adomian’s polynomials, Journal of
Computational and Applied Mathematics 207 (2007), 59-63.



Numerical Solution of Hunter-Saxton Equation by Using Iterative Methods 143

[18] T.A. Abassy, El-Tawil and H. El. Zoheiry, Toward a modified variational iteration
method (MVIM), J. Comput. Apll. Math 207(2007), 137–147.

[19] T.A. Abassy, El-Tawil and H. El. Zoheiry, Modified variational iteration method for
Boussinesq equation, Comput. Math. Appl. 54 (2007), 955–956.

[20] S.Abbasbany, Homptopy analysis method for generalized Benjamin-Bona-Mahony
equation, Zeitschriff fur angewandte Mathematik und Physik (ZAMP), 59(2008), 51–
62.

[21] S. Abbasbany, Homptopy analysis method for the Kawahara equation, Nonlinear
Analysis: Real Wrorld Applications 11(2010), 307–312.

[22] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method,
Chapman and Hall/CRC Press, Boca Raton, 2003.

[23] S.J. Liao, Notes on the homotopy analysis method: some definitions and theorems,
Communication in Nonlinear Science and Numerical Simulation 14(2009), 983–997.

[24] Sh. S. Behzadi, The convergence of homotopy methods for nonlinear Klein-Gordon
equation, J. Appl. Math. Informatics 28(2010), 1227–1237.

[25] Sh. S. behzadi and M. A. Fariborzi Araghi, The use of iterative methods for solving
Naveir-Stokes equation, J. Appl. Math. Informatics 29(2011), 1–15.

[26] Sh.S. Behzadi and M.A. Fariborzi Araghi, Numerical solution for solving Burger’s-
Fisher equation by using Iterative Methods, Mathematical and Computational
Applications, in Press,2011.

[27] M.A. Fariborzi Araghi, Sh.S. Behzadi, Numerical solution of nonlinear Volterra-
Fredholm integro-differential equations using Homotopy analysis method, Journal of
Applied Mathematics and Computing, DOI: 10.1080/00207161003770394.

[28] M.A. Fariborzi Araghi, Sh.S. Behzadi, Solving nonlinear Volterra-Fredholm integro-
differential equations using He’s variational iteration method, International Journal of
Computer Mathematics, DOI: 10.1007/s12190-010-0417-4.

Sh. S. Behzadi, Young Researchers Club, Islamic Azad University, Central Tehran
Branch, P.O. Box 15655/46, Iran.
E-mail: Shadan_Behzadi@yahoo.com

Received April 16, 2011
Accepted June 20, 2011


