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Multiple Objective Fractional Subset Programming Based
on Generalized (ρ,η, A)-Invex Functions

Ram U. Verma

Abstract. Motivated by the recent investigations [7, 8, 10–12], a general
framework for a class of (ρ,η, A)-invex n-set functions is introduced, and then
some results on the optimality conditions for multiple objective fractional subset
programming on the generalized (ρ,η, A)-invexity are explored. The obtained
results are general in nature and seem to be application-oriented to other results
on fractional subset programming in literature.

1. Introduction

Motivated by the investigations [1–8,10–12], some results on primal problems
based on a generalized invex n-set functions are established. More importantly,
generalized convexity of n-set functions is introduced, that can be applied to
explore results on parametric semi-parametric sufficient efficiency conditions
for multiobjective fractional subset programming problems. Recently, Mishra et
al. [7] published some results on optimality conditions for multiple objective
fractional subset programming with invex and related non-convex functions based
on a class of generalized convex n-set functions introduced by Zalmai [11] to
the context of parametric and semi-parametric sufficient efficiency conditions
for a multiobjective fractional subset programming problem. We present using
the generalized (ρ,η, A)-invexity of non-differentiable functions, the following
multiple objective fractional subset programming problem to the context of
generalized (ρ,η, A)-invex functions:

(P) Minimize
�

F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)

Gp(S)

�

subject to H j(S)≤ 0 for j ∈ {1, . . . , m}, S ∈ Λn,
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where Λn is the n-fold product of σ-algebra Λ of subsets of a given set X and, Fi , Gi ,
i ∈ {1, . . . , p} and H j(S) ≤ 0 for j ∈ {1, . . . , m} are real-valued functions defined
on Λn, and Gi(S) > 0 for each i ∈ {1, . . . , p} and for all S ∈ Λn. Mishra et al.
[7] investigated several parametric and semi-parametric sufficient conditions for
the multiobjective fractional subset programming problems based on generalized
invexity assumptions. Moreover, these results are also applicable to other classes
of problems with multiple, fractional, and conventional objective functions.

Among other results, the obtained results generalize the recent results on
generalized invexity (including [7, 10]) to the case of the generalized (ρ,η, A)-
invexity relating to the case of semi-parametric sufficient efficiency conditions for
the multiobjective fractional subset programming problem. The obtained results
not only generalize the existing results but also unify other results on the fractional
programming. For more details, we refer the reader [1–14].

2. Generalized (ρ,η, A)-Invexities

In this section, we develop some concepts and notations for the problem on
hand. Let (X ,Λ,µ) be a finite atomless measure space with L1(X ,Λ,µ) separable,
and let d denote the pseudometric on Λ defined by

d(R, S) =
� n∑

i=1

µ2(Ri∆Si)
�1/2

for R= (R1, . . . , Rn), S = (S1, . . . , Sn) ∈ Λn,

where∆ denotes the symmetric difference. Thus, (Λn, d) is a pseudo-metric space.
Suppose that η : Λn × Λn → Ln

∞ be a vector-valued function. Here the following
basic definitions are upgraded based on Caiping and Xinmin [2].

Definition 2.1. A function F : Λ→ R is said to be differentiable at S∗ if there is a
DF(S∗) ∈ L1(X ,Λ,µ), the derivative of F at S∗, such that for each S ∈ Λ

F(S) = F(S∗) + 〈DF(S∗),η(S, S∗)〉+ VF (S, S∗),

where VF (S, S∗) is o(d(S, S∗)), i.e, lim
d(S,S∗)→0

VF (S,S∗)
d(S,S∗)

= 0.

Definition 2.2. A function G : Λ → R is said to have partial derivatives at S∗ =
(S∗1, . . . , S∗n) ∈ Λn with respect to ith argument if the function

F(Si) = G(S∗1, . . . , Si−1, Si , Si+1, . . . , S∗n)

has the derivative DF(S∗i ) for i ∈ {1, . . . , n}, and in this case, the ith derivative of
G at S∗ is defined by DiG(S∗) = DF(S∗i ), i ∈ {1, . . . , n}.

Definition 2.3. A function G : Λn → R is called differentiable at S∗ if all the
derivatives DiG(S∗), i ∈ {1, . . . , n} exist and

G(S) = G(S∗) +
n∑

i=1

〈DGi(S
∗),η(Si , S∗i )〉+WG(S, S∗),

where WG(S, S∗) is o(d(S, S∗)) for all S ∈ Λn.
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Next, we develop the notion of the generalized (ρ,η)-invexity based on Caiping
and Xinmin [2]. Let S, S∗ ∈ Λn, let the function F : Λn→ R with components Fi for
i ∈ {1, . . . , n}, be differentiable at S∗.

Definition 2.4. Let A : Λn → R be a function on Λn. A differentiable function
F : Λ→ R is said to be (ρ,η, A)-pseudo-invex at S∗ if there exists a vector-valued
function η : Λn ×Λn→ Ln

∞ such that for each S∗ ∈ Λn, and ρ > 0,

〈Σp
i=1F ′i (S

∗),η(S, S∗)〉+ρ‖A(S)− A(S∗)‖2 ≥ 0 ⇒ Σp
i=1Fi(S)≥ Σp

i=1Fi(S
∗).

Definition 2.5. Let A : Λn → R be a function on Λn. A differentiable function
F : Λ→ R is said to be (ρ,η, A)-strictly-pseudo-invex at S∗ if there exists a vector-
valued function η : Λn ×Λn→ Ln

∞ such that for each S∗ ∈ Λn, and ρ > 0,

〈Σp
i=1F ′i (S

∗),η(S, S∗)〉+ρ‖A(S)− A(S∗)‖2 ≥ 0 ⇒ Σp
i=1Fi(S)> Σ

p
i=1Fi(S

∗).

Definition 2.6. Let A : Λn → R be a function on Λn. A differentiable function
F : Λ → R is said to be (ρ,η, A)-prestrictly-pseudo-invex at S∗ if there exists a
vector-valued function η : Λn ×Λn→ Ln

∞ such that for each S∗ ∈ Λn, and ρ > 0,

〈Σp
i=1F ′i (S

∗),η(S, S∗)〉+ρ‖A(S)− A(S∗)‖2 > 0 ⇒ Σp
i=1Fi(S)≥ Σp

i=1Fi(S
∗).

Definition 2.7. Let A : Λn → R be a function on Λn. A differentiable function
F : Λ → R is said to be (ρ,η, A)-quasi-invex at S∗ if there exists a vector-valued
function η : Λn ×Λn→ Ln

∞ such that for each S∗ ∈ Λn, and ρ > 0,

Σp
i=1Fi(S)≤ Σp

i=1Fi(S
∗)⇒ 〈Σp

i=1F ′i (S
∗),η(S, S∗)〉+ρ‖A(S)− A(S∗)‖2 ≤ 0.

Definition 2.8. Let A : Λn → R be a function on Λn. A differentiable function
F : Λ → R is said to be (ρ,η, A)-strictly-quasi-invex at S∗ if there exists a vector-
valued function η : Λn ×Λn→ Ln

∞ such that for each S∗ ∈ Λn, and ρ > 0,

Σp
i=1Fi(S)≤ Σp

i=1Fi(S
∗)⇒ 〈Σp

i=1F ′i (S
∗),η(S, S∗)〉+ρ‖A(S)− A(S∗)‖2 < 0.

Definition 2.9. Let A : Λn → R be a function on Λn. A differentiable function
F : Λ→ R is said to be (ρ,η, A)-prestrictly-quasi-invex at S∗ if there exists a vector-
valued function η : Λn ×Λn→ Ln

∞ such that for each S∗ ∈ Λn, and ρ > 0,

Σp
i=1Fi(S)< Σ

p
i=1Fi(S

∗)⇒ 〈Σp
i=1F ′i (S

∗),η(S, S∗)〉+ρ‖A(S)− A(S∗)‖2 ≤ 0.

Definition 2.10. A differentiable function F : Λ → R is said to be pseudo-invex
at S∗ if there exists a vector-valued function η : Λn ×Λn → Ln

∞ such that for each
S∗ ∈ Λn,

〈Σp
i=1F ′i (S

∗),η(S, S∗)〉 ≥ 0 ⇒ Σp
i=1Fi(S)≥ Σp

i=1Fi(S
∗).

Definition 2.11. A differentiable function F : Λ→ R is said to be strictly-pseudo-
invex at S∗ if there exists a vector-valued function η : Λn ×Λn→ Ln

∞ such that for
each S∗ ∈ Λn,

〈Σp
i=1F ′i (S

∗),η(S, S∗)〉 ≥ 0 ⇒ Σp
i=1Fi(S)> Σ

p
i=1Fi(S

∗)



82 Ram U. Verma

Definition 2.12. A differentiable function F : Λ → R is said to be prestrictly-
pseudo-invex at S∗ if there exists a vector-valued function η : Λn ×Λn → Ln

∞ such
that for each S∗ ∈ Λn,

〈Σp
i=1F ′i (S

∗),η(S, S∗)〉> 0 ⇒ Σp
i=1Fi(S)≥ Σp

i=1Fi(S
∗).

Definition 2.13. A differentiable function F : Λ → R is said to be quasi-invex at
S∗ if there exists a vector-valued function η : Λn × Λn → Ln

∞ such that for each
S∗ ∈ Λn,

Σp
i=1Fi(S)≤ Σp

i=1Fi(S
∗)⇒ 〈Σp

i=1F ′i (S
∗),η(S, S∗)〉 ≤ 0.

Definition 2.14. A differentiable function F : Λ → R is said to be strictly-quasi-
invex at S∗ if there exists a vector-valued function η : Λn ×Λn→ Ln

∞ such that for
each S∗ ∈ Λn,

Σp
i=1Fi(S)≤ Σp

i=1Fi(S
∗)⇒ 〈Σp

i=1F ′i (S
∗),η(S, S∗)〉< 0.

Definition 2.15. A differentiable function F : Λ→ R is said to be prestrictly-quasi-
invex at S∗ if there exists a vector-valued function η : Λn ×Λn→ Ln

∞ such that for
each S∗ ∈ Λn, and ρ > 0,

Σp
i=1Fi(S)< Σ

p
i=1Fi(S

∗)⇒ 〈Σp
i=1F ′i (S

∗),η(S, S∗)〉 ≤ 0.

Note that S∗ ∈ Ξ is an efficient solution to (P) if there exists no S ∈ Ξ such that
�

F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)

Gp(S)

�
≤
�

F1(S∗)
G1(S∗)

,
F2(S∗)
G2(S∗)

, . . . ,
Fp(S∗)

Gp(S∗)

�
.

To this context, based on Mishra et al. [7], we consider the following auxiliary
problem:

(Pλ) Minimize
S∈Ξ

(F1(S)−λ1G1(S), . . . , Fp(S)−λpGp(S)),

where λi for i ∈ {1, . . . , p} are parameters.

For the sake of completeness, we include the following results of Mishra et
al. [7].

Theorem 2.1. Suppose that Fi , Gi , i ∈ {1, . . . , p} and H j , j ∈ {1, . . . , m} are differen-
tiable at S∗ ∈ Λ, and that for each i ∈ {1, . . . , p} there exists an S† ∈ Λn such that

H j(S
∗) +Σn

k=1〈DkH j(S
∗),η(S†

k, S∗k)〉< 0 for j ∈ {1, . . . , m},
and for each ` ∈ {1, . . . , p}\{i},

Σn
k=1〈Dk Fl(S

∗)−λ∗l DkGl(S
∗),η(S†

k, S∗k)〉< 0.

If S∗ is an efficient solution of the subset programming problem (P) and λ∗i =
Fi(S∗)
Gi(S∗)

for i ∈ {1, . . . , p}, then there exists an u∗ ∈ U = {u ∈ Rp : u > 0,Σp
i=1ui = 1} and

v∗ ∈ Rm
+ such that

Σn
k=1〈Σ

p
i=1u∗i [Dk Fi(S

∗)−λ∗i D− kGi(S
∗)] +Σm

j=1v∗j DkH j(S
∗),η(Sk, S∗k)〉 ≥ 0
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v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}.

Theorem 2.2. Suppose that Fi , Gi , i ∈ {1, . . . , p} and H j , j ∈ {1, . . . , m} are differen-
tiable at S∗ ∈ Λ, and that for each i ∈ {1, . . . , p} there exists an S† ∈ Λn such that

H j(S
∗) +Σn

k=1〈DkH j(S
∗),η(S†

k, S∗k)〉< 0 for j ∈ {1, . . . , m},
and for each l ∈ {1, . . . , p}\{i},

Σn
k=1〈DkGl(S

∗)− Fl(S
∗)DkGl(S

∗),η(S†
k, S∗k)〉< 0.

If S∗ is an efficient solution of the subset programming problem (P), then there exists
an u∗ ∈ U = {u ∈ Rp : u> 0,Σp

i=1ui = 1} and v∗ ∈ Rm
+ such that

Σn
k=1〈Σ

p
i=1u∗i [Gi(S

∗)Dk Fi(S
∗)− Fi(S

∗)D− kGi(S
∗)] +Σm

j=1v∗DkH j(S
∗),η(Sk, S∗k)〉 ≥ 0

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}.

3. Parametric Optimality Conditions

This section deals with some parametric sufficient optimality conditions for
problem (P) under the generalized frameworks for generalized invexity, including
the (ρ,η, A)-quasi-invexity and (ρ,η, A)-pseudo-invexity, where A : Λn → R is
a function on Λn. We start with real-valued functions Ai(· ;λ, u) and B j(·, v)
defined by

Ai(· ;λ, u) = ui[Fi(S)−λiGi(S)] for i = 1, . . . , p, and for fixed λ, u and v

and

B j(·, v) = v jH j(S), j = 1, . . . , m.

Theorem 3.1. Let S∗ ∈ Ξ, let Fi , Gi , i ∈ {1, . . . , p}, and H j , j ∈ {1, . . . , m}, be
differentiable at S∗ ∈ Λ, and let there exist u∗ ∈ U and v∗ ∈ Rm

+ such that

〈Σp
i=1u∗i [F

′
i (S
∗)−λ∗i G′i(S

∗)] +Σm
j=1v∗j H ′j(S

∗),η(S, S∗)〉(3.1)

+ρ‖A(S)− A(S∗)‖2 ≥ 0∀ S ∈ Λn,

Fi(S
∗)−λ∗i Gi(S

∗) = 0 for i ∈ {1, . . . , p},(3.2)

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}.(3.3)

Let A : Λn → R be a function on Λn. Suppose, in addition, that any one of the
following assumptions holds:

(i) Ai(· ;λ∗, u∗) (∀ i = 1, . . . , p) are (ρ,η, A)-pseudo-invex at S∗ and B j(· ;λ∗, u∗)
(∀ j ∈ {1, . . . , m} are (ρ,η, A)-quasi-invex at S∗.

(ii) Ai(· ;λ∗, u∗) (∀ i ∈ {1, . . . , p} are (ρ,η, A)-prestrictly-pseudo-invex at S∗ and
B j(· ;λ∗, u∗) (∀ j ∈ {1, . . . , m} are (ρ,η, A)-prestrictly-quasi-invex at S∗.

(iii) Ai(· ;λ∗, u∗) (∀ i ∈ {1, . . . , p} are (ρ,η, A)-prestrictly-quasi-invex at S∗ and
B j(· ;λ∗, u∗) (∀ j ∈ {1, . . . , m} are (ρ,η, A)-prestrictly-pseudo-invex at S∗.

Then S∗ is an efficient solution to (P).
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Proof. If (i) holds, and if S is an arbitrary solution to (P), then it follows from
(3.1) that

〈Σp
i=1u∗i [F

′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗〉+ρ‖A(S)− A(S∗)‖2(3.4)

+ 〈Σm
j=1v∗j H ′j(S

∗),η(S, S∗)〉 ≥ 0∀ S ∈ Λn.

Since v∗ ≥ 0, S ∈ Ξ and (3.3) holds, we have

Σm
j=1v∗j H ′j(S)≤ Σm

j=1v∗j H ′j(S
∗),

and in light of the (ρ,η, A)-quasi-invexity of B j(·, v∗) at S∗, we arrive at

〈Σm
j=1v∗j H ′j(S

∗),η(S, S∗)〉+ρ‖A(S)− A(S∗)‖2 ≤ 0.

Consequently, we have

〈Σm
j=1v∗j H ′j(S

∗),η(S, S∗)〉 ≤ 0.(3.5)

It follows from (3.4) and (3.5) that

〈Σp
i=1u∗i [F

′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗〉+ρ‖A(S)− A(S∗)‖2 ≥ 0.(3.6)

Next, applying the (ρ,η, A)-pseudo-invexity at S∗ to (3.6), we have

Σp
i=1u∗i [Fi(S)−λ∗i Gi(S)]≥ Σp

i=1u∗i [Fi(S
∗)−λ∗i Gi(S

∗)],

and applying (3.2), it reduces to

Σp
i=1u∗i [Fi(S)−λ∗i Gi(S)]≥ 0.(3.7)

Since u∗i > 0 for each i ∈ {1, . . . , p}, we have from (3.7) that

(F1(S)−λ∗1G1(S), . . . , Fp(S)−λ∗1Gp(S)) 6≤ (0, . . . , 0).

Thus, we conclude that

φ(S) =
�

F1(S)
G1(S)

, . . . ,
Fp(S)

Gp(S)

�
6≤ λ∗

At this stage, as we observe that λ∗ = φ(S∗) and S ∈ Ξ is arbitrary, it implies that
S∗ is an efficient solution to (P). Similar proofs hold for (ii) and (iii).

For A= I , we have [10]. ¤

Theorem 3.2 ([10, Theorem 3.1]). Let S∗ ∈ Ξ, let Fi , Gi , i ∈ {1, . . . , p}, and H j ,
j ∈ {1, . . . , m}, are differentiable at S∗ ∈ Λ, and let there exist u∗ ∈ U and v∗ ∈ Rm

+
such that

〈Σp
i=1u∗i [F

′
i (S
∗)−λ∗i G′i(S

∗)] +Σm
j=1v∗j H ′j(S

∗),η(S, S∗)〉(3.8)

+ρ‖S− S∗‖2 ≥ 0∀ S ∈ Λn,

Fi(S
∗)−λ∗i Gi(S

∗) = 0 f or i ∈ {1, . . . , p},(3.9)

v∗j H j(S
∗) = 0 f or j ∈ {1, . . . , m}.(3.10)

Suppose, in addition, that any one of the following assumptions holds:
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(i) Ai(· ;λ∗, u∗) (∀ i = 1, . . . , p) are (ρ,η)-pseudo-invex at S∗ and B j(· ;λ∗, u∗)
(∀ j ∈ {1, . . . , m} are (ρ,η)-quasi-invex at S∗.

(ii) Ai(· ;λ∗, u∗) (∀ i ∈ {1, . . . , p} are (ρ,η)-prestrictly-pseudo-invex at S∗ and
B j(· ;λ∗, u∗) (∀ j ∈ {1, . . . , m} are (ρ,η)-prestrictly-quasi-invex at S∗.

(iii) Ai(· ;λ∗, u∗) (∀ i ∈ {1, . . . , p} are (ρ,η)-prestrict-quasi-invex at S∗ and
B j(· ;λ∗, u∗) (∀ j ∈ {1, . . . , m} are (ρ,η)-prestrictly-pseudo-invex at S∗.

Then S∗ is an efficient solution to (P).

Note that for ρ = 0 in Theorem 3.1, it reduces to the result of Mishra et al. [7]
on the quasi-invexity and pseudo-invexity.

Theorem 3.3 ([7, Theorem 3.1]). Let S∗ ∈ Ξ, let Fi , Gi , i ∈ {1, . . . , p}, and H j ,
j ∈ {1, . . . , m}, are differentiable at S∗ ∈ Λ, and let there exist u∗ ∈ U and v∗ ∈ Rm

+
such that

〈Σp
i=1u∗i [F

′
i (S
∗)−λ∗i G′i(S

∗)] +Σm
j=1v∗j H ′j(S

∗),η(S, S∗)〉 ≥ 0∀ S ∈ Λn,(3.11)

Fi(S
∗)−λ∗i Gi(S

∗) = 0 f or i ∈ {1, . . . , p},(3.12)

v∗j H j(S
∗) = 0 f or j ∈ {1, . . . , m}.(3.13)

Suppose, in addition, that any one of the following assumptions holds:

(i) Ai(· ;λ∗, u∗) (∀ i = 1, . . . , p) are pseudo-invex at S∗ and B j(· ;λ∗, u∗) (∀ j ∈
{1, . . . , m} are quasi-invex at S∗.

(ii) Ai(· ;λ∗, u∗) (∀ i ∈ {1, . . . , p} are prestrictly-pseudo-invex at S∗ and B j(· ;λ∗, u∗)
(∀ j ∈ {1, . . . , m} are prestrictly-quasi-invex at S∗.

(iii) Ai(· ;λ∗, u∗) (∀ i ∈ {1, . . . , p} are prestrict-quasi-invex at S∗ and B j(· ;λ∗, u∗)
(∀ j ∈ {1, . . . , m} are prestrictly-pseudo-invex at S∗.

Then S∗ is an efficient solution to (P).
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