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Abstract. Given a graph G = (V ,E), a set M ⊂V is called Complementary Eccentric Uniform (CEU),
if the M-eccentricity labeling eM(u) = max{d(u,v) : v ∈ M} is identical for all u ∈ V − M. The least
cardinality of a CEU set is called the CEU number of the graph G. In this paper we initiate a study
on CEU labelled graphs and obtain bounds for certain graphs.
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1. Introduction
For all terminology and notation in graph theory, we refer the reader to F. Harary [5]. Unless
mentioned otherwise, all graphs considered in this paper are finite, simple and connected.

The eccentricity distribution over all nodes in a graph is an important property which has
been studied in [8]. In [7], Linda Lesniak studied various properties of eccentricity sequences.
The distance labeling of graphs has been widely studied in [4]. In network analysis there are
situations in which a set of nodes are in equal distance from some other nodes or we want to
keep some nodes at a particular distance from a set of nodes. Motivated from this we initiate a
study on uniform eccentricity labeling in graphs.

2. Definitions and Results
Given a graph G = (V ,E), the distance between two vertices d(u,v) is the length of the shortest
u−v path in G. The eccentricity e(v) of a vertex v is max

u∈V
d(u,v). The radius radG is min

v∈V
e(v)
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and the diameter diamG is max
v∈V

e(v). A vertex v ∈ V (G) is called an eccentric point of the

vertex u ∈V (G) if d(u,v)= e(u). If radG = diamG, then the graph G is called self-centered. If
e(u)= diamG, then u is called a peripheral vertex of G.

Definition 2.1. Let G = (V ,E) be a (p, q) graph and M be any nonempty proper subset of V (G).
Then, the M-eccentricity of u is the number eM(u)=max{d(u,v) : v ∈ M}. If eM(u) is identical
for all u ∈ V −M, then we say M is a Complementary Eccentric Uniform(CEU) set and G is
called Complementary Eccentric Uniform Labeled graph. If the common value eM(u)= k, then
we say G is Complementary Eccentric k-uniform graph or k-CEU graph .

The following is an immediate observation.

Observation 2.2. For any connected graph G = (V ,E) and M ⊂ V , 1 ≤ eM(u) ≤ diam(G), for
every u ∈V −M.

Problem 1. For a graph G = (V ,E), find or characterize M ⊂V , such that eM(v)= e(v) for every
v ∈V −M?

Let G = (V ,E) be a connected graph with at least 2 vertices. Then for any v ∈ V , the set
M =V − {v} is a CEU set. Hence every connected graph has a CEU set. In a (p, q) graph G, a
CEU set with cardinality p−1 is called trivial CEU set. Hence we are interested in finding the
non-trivial CEU sets.

Definition 2.3. The least cardinality of the CEU set in G is called the CEU number of G and is
denoted by η(G).

Example 2.4. The following is an example of a graph with CEU labeling. Here M = {u,v} is the
minimum CEU set.

Figure 1. CEU labelled graph

Theorem 2.5. For a (p, q) graph G = (V ,E), η(G)= 1 if and only if there exists v ∈V such that
dG(v)= p−1.

Proof. Suppose there exists a vertex v ∈V such that dG(v)= p−1. Take M = {v}. Then for all
u 6= v, eM(u)= d(u,v)= 1, so that M is a CEU set. Hence η(G)= 1.

Conversely suppose that η(G)= 1. Then there exists v ∈V such that M = {v} is a CEU set.
Since η(G)= 1, eM(u)= 1 for all u 6= v. i.e, d(u,v)= 1, for all u 6= v. Hence dG(v)= p−1.

Remark 2.6. In a graph G = (V ,E) of order n, a vertex v ∈V with deg(v)= n−1 is called a full
degree vertex. Hence the above theorem can be restated as follows.
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Theorem 2.7. For any graph G, η(G)= 1 if and only if G has atleast one full degree vertex.

Corollary 2.8. Complete graph Kn is 1-CEU.

Corollary 2.9. For m,n ≥ 2, η(Km,n)= 2.

Proof. Let V (Km,n)= X ∪Y . Take M = {x, y} where x ∈ X and y ∈Y . Then for every u ∈V −M,
eM(u)= d(u, y)= 2, if u ∈Y and eM(u)= d(u, x)= 2, if u ∈ X . Hence M is a CEU set. Since there
are no full degree vertex in Km,n, by Theorem 2.7, η(Km,n)= 2.

Definition 2.10. [3] A tree containing exactly two vertices that are not end vertices is called a
bistar.

Corollary 2.11. For a bistar Bm,n,m,n ≥ 1, η(Bm,n)= 2.

Proof. Let M be the central vertices in Bm,n. Then for all u ∈ V (Bm,n)−M, eM(u) = 2. Since
Bm,n has no full degree vertex, by Theorem 2.7, η(Bm,n)= 2.

Remark 2.12. In a non-selfcentered graph G = (V ,E), the relation ∼ on V given by u ∼ v if and
only if e(u)= e(v) is an equivalence relation. Let the equivalence classes corresponding to the
eccentricities e1, e2, . . . , ek be denoted by [e1], [e2], . . . , [ek].

Proposition 1. In a non-selfcentered graph G = (V ,E) with eccentricities e1, e2, . . . , ek, the sets
Mi =V − [e i] for i = 1,2, . . . ,k are CEU sets in G.

Proof. Assume that e1 < e2 < ·· · < ek. We consider two cases.
Case 1. When i = k.
Since ek is the diameter of G, [ek] is the peripheral vertices of G. Therefore for all u ∈V −Mk,
eMk (u)=max{d(u,v) : v ∈ Mk}= ek −1. Hence Mk is a CEU set in G.
Case 2. When i 6= k.
In this case, for all u ∈V −Mi, eMi (u)= e(u)= e i . Hence in either case Mi is a CEU set.

Remark 2.13. The converse of the above proposition need not be true. That is, if M ⊂ V is a
CEU set in G, then its complement V −M need not be an equivalence class in G.

For example consider the graph shown in figure 2. Here M = {v4,v5} is a CEU set in G, but
its complement {v1,v2,v3,v6} is not an equivalence class since e(v1)= 2 and e(v3)= 3.

Figure 2
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Problem 2. Characterize graphs whose CEU sets are precisely the complement of equivalence
classes under ∼?

Proposition 2. For path P2n, the nontrivial CEU sets are precisely the complement of the
equivalence classes under ∼.

Proof. Each equivalence class in P2n has exactly two elements and their complement is clearly
a CEU set. Therefore if E ⊂ V is an equivalence class in P2n, then M = V −E is a CEU set
whose cardinality is n−2. To prove that they are the only CEU sets in P2n, we consider two
cases. Let M ⊂V .
Case 1. Let the cardinality of M be less than n−2.
Then V − M has atleast three vertices. Let v1,v2,v3 ∈ V − M. Since there is a unique path
between any two vertices in P2n, atleast one of the eM(vi), i = 1,2,3 is different from the others.
Hence M is not a CEU set.
Case 2. Let the cardinality of M be n−2 and M 6=V −E for any equivalence class E.
Then in V −M there are exactly two vertices u and v, they are either adjacent or non-adjacent.
If they are adjacent then they cannot be the central vertices since the central vertices form
an equivalence class. Also eM(u) = e(u) and eM(v) = e(v) and either eM(u) = eM(v)− 1 or
eM(v)= eM(u)−1. Hence M is not a CEU set. If they are nonadjacent then both cannot be the
peripheral vertices. Let u be a peripheral vertex. Then eM(u)= diam(P2n) and eM(v)< diam(P2n)
so that M is not a CEU set. If u,v ∈ V − M are non-adjacent non-peripheral vertices then
eM(u)= e(u) 6= e(v)= eM(v) so that M is not a CEU set. Hence the result.

Remark 2.14. For the path P2n+1, there are n equivalence classes of which one is a singleton
set consisting of the central vertex and all other classes contains exactly two vertices. Hence
the nontrivial CEU sets are precisely the complement of the equivalence classes under ∼ of
cardinality 2.

Hence we have the following result.

Corollary 2.15. For path Pn, n > 2, η(Pn)= n−2.

Theorem 2.16. For cycle Cn, η(Cn)=
{

n
3 , if n ≡ 0 (mod 3)
bn

2 c, if n 6≡ 0 (mod 3)

Proof. Case 1. If n ≡ 0 (mod 3)
Let n = 3k, for some k ∈ N. Let Cn = v1,v2, . . . ,v3k,v3k+1 = v1. Consider M =
{vi,vi+3, . . . ,vi+3(k−1)}, for any i = 1,2, . . . ,3k. Then for any v j ∈ V (Cn)− M, either v j−1 ∈ M
or v j+1 ∈ M. Hence eM(v j) = max{1,2,4,5, . . . , n−4

2 , n−2
2 } = n−2

2 , if n is even and eM(v j) =
max{1,2,4,5, . . . , n−1

2 }= n−1
2 , if n is odd. Hence M is a CEU set and η(Cn)≤ n

3 .
To prove the equality, first assume n is odd. Let M1 = {u1,u2, . . . ,u j} ⊂ V (Cn) such that j < k
where each ui is some vt, for t = 1,2, . . . ,3k. Since n is odd, to each vertex in Cn there are exactly
two eccentric vertices. Let M1e = {u11,u12,u21,u22 . . . ,u j1,u j2} be the set of eccentric points of
vertices in M1. Note that they may not be distinct and some of them may be vertices in M1. But
cardinality of M1e is atmost 2 j. Since j < k, there are vertices which does not belong to M1∪M1e .
Choose such a vertex u which is not in M1 ∪M1e and which is adjacent to a vertex v ∈ M1e.
Then clearly eM1(v)= diamCn and eM1(u)= eM1(v)−1. Since u,v ∈V (Cn)−M1, it follows that
M1 is not a CEU set. Hence in this case η(Cn)= n

3 .
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Now assume n is even. Then to each vertex in Cn there is a unique eccentric point. Let
M1e = {u11,u21, . . . ,u j1} be the set of eccentric points of vertices in M1. Note that they must be
distinct but some of them may elements in M1. Now cardinality of M1e is atmost j so that there
are vertices which does not belong to M1 ∪M1e . Let u be a vertex which is not in M1 ∪M1e and
which is adjacent to a vertex v ∈ M1e. But then eM1(v) = diamCn and eM1(u) = eM1(v)−1 and
hence M1 is not a CEU set. Hence, in this case also η(Cn)= n

3 .

Case 2. If n 6≡ 0 (mod 3)
Subcase 1. If n is even.
Let n = 2k, for some k ∈N and let Cn = v1,v2, . . . ,v2k,v2k+1 = v1. Let M = {vi,vi+1, . . . ,vi+k−1}, for
any i = 1,2, . . . ,2k. Then for any v ∈V (Cn)−M, eM(v)= diam(Cn) so that M is a CEU set. Hence
η(Cn)≤ k = n

2 .
To prove the equality, let M1 = {u1,u2, . . . ,u j} ⊂ V (Cn) be such that j < n

2 . Let M1e =
{u11,u21, . . . ,u j1} be the set of eccentric points of vertices in M1. Now M1e has at most j elements.
Since j < n

2 , there are vertices in Cn which does not belong to M1∪M1e . Let u be a vertex which
is not in M1∪M1e and which is adjacent to a vertex v ∈ M1e . Then clearly eM1(u)= diamCn and
eM1(v)= eM1(u)−1. Hence M1 is not a CEU set and η(Cn)= n

2 .

Subcase 2. If n is odd.
Let n = 2k + 1, for some k ∈ N and let Cn = v1,v2, . . . ,v2k+1,v2k+2 = v1. Let M =
{vi,vi+1, . . . ,vi+k−1}, for any i = 1,2, . . . ,2k+1. Since n is odd each vertex in Cn has precisely two
eccentric points. Since the vertices in M are k adjacent vertices in Cn their eccentric points are
the remaining k+1 vertices in Cn. Hence for all v ∈V (Cn)−M, eM(v)= diamCn. Hence M is a
CEU set and η(Cn)≤ k = n−1

2 .
As in the above case we can show that any subset of V (Cn) with less than k elements is not a
CEU set. Hence η(Cn)= n−1

2 . Thus combining these two cases we get η(Cn)= bn
2 c.

Theorem 2.17. In a tree T with a full degree vertex v, the CEU sets are precisely subsets of V (T)
which contains v.

Proof. Tree with a full degree vertex is isomorphic to K1,n. Let v be the central vertex
and v1,v2, . . . ,vn be the leaves of K1,n. Then for any M ⊂ V (T) which contains v, eM(vi) =
max{d(v,vi),d(v j,vi) : v j ∈ M}= 2 for any vi ∈V −M. Hence every subset of V which contains v
is a CEU set. Now if M ⊂V does not contain v, then eM(v)= 1 6= 2= eM(vi) for any vi ∈V −M.
Hence the result.

Lemma 2.18 ( [7]). Let T be a tree and P : u0,u1, . . . ,ul a longest path in T . If u ∈ V (T), then
e(u)=max{d(u,u0),d(u,ul)}.

Corollary 2.19. Let T be a tree and M ⊂ V (T). Then for any u ∈ V (T) − M, eM(u) =
max{d(u,u0),d(u,ul)} where PM = u0,u1, . . . ,ul be the longest path in T which starts and ends
in M.

Proof. Proof follows from the proof of Lemma 2.18.

Corollary 2.20. If M is the set of all peripheral vertices of T, then eM(u) = e(u) for every
u ∈V −M.
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Proof. Since M is the set of all peripheral vertices, each element of M is the end points of some
longest path in T . Hence the result follows from Lemma 2.18.

Theorem 2.21. For a tree T on n vertices with eccentricities e1, e2, . . . , ek , η(T)= n−|[e i]|, where
|[e i]| ≥ |[e j]| for every j 6= i.

Proof. For a tree T on n vertices with eccentricities e1, e2, . . . , ek, by Proposition 1, V (T)− [e i]
is a CEU set for i = 1,2, . . . ,k. If |[e i]| ≥ |[e j]|, then n−|[e i]| ≤ n−|[e j]| so that η(T) ≤ n−|[e i]|.
Let |[e i]| = mi, for i = 1,2, . . . ,k so that by assumption mi ≥ m j, for every j 6= i. Without loss of
generality assume that e1 < e2 < ·· · < ek. Let M = {u1,u2, . . . ,ul}⊂V (T) be such that l < n−mi .
Then in V −M there are n− l vertices. Since l < n−mi, n− l > mi . Thus V −M has at least
mi +1 elements. Now the centre of T is either a vertex v or K2 which corresponds to the class
[e1]. Since n− l > mi, there exist at least two vertices us and ut for l +1 ≤ s, t ≤ n such that
us ∈ [ep] and ut ∈ [eq] for some 1≤ p 6= q ≤ k. But then eM(us)=max{d(us,v0),d(us,vh)} where
v0,v1, . . . ,vh is the longest path in T which starts and ends in M. Then either eM(ut)< eM(us)
or eM(ut)> eM(us). Thus M is not a CEU set and hence η(T)= n−mi .

3. Conclusion
As pointed out already, the concept under study has important applications in the field of
network analysis. In a network there are situations to keep a set of nodes at a particular
distance from another set of nodes. So Complementary eccentric uniform sets allow set of points
in a graph to be in a particular distance from another set of points. In this paper we have
identified the CEU sets in many graphs and CEU number of certain well known graphs.
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