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Graphic Requirements for Multiple Attractive Cycles
in Boolean Dynamical Systems

Jian-Lang Dong

Abstract. E. Remy, P. Ruet and D. Thieffry have proved a Boolean version of
Thomas’ conjecture: if a map F from {0, 1}n to itself has several fixed points, then
there exists a positive circuit in the corresponding interaction graph. In this paper,
we prove that the presence of a positive circuit in a local interaction graph is also
a necessary condition for the presence of several attractive cycles in the Boolean
synchronous dynamics.

1. Introduction

This paper is related to the problem of providing new sufficient conditions in
order that there may exist a positive circuit (i.e. a circuit contains an even number
of negative edges) in the corresponding interaction graph.

Let us begin with the celebrated Thomas’ conjecture in genetic regulatory
systems. At the beginning of the 1980s, the biologist René Thomas proposed, in
the course of his work on the analysis of gene networks, a conjecture in which the
presence of at least one positive circuit in the corresponding interaction graph (i.e. the
sign of a circuit being defined as the product of the signs of its edges) is a necessary (but
not sufficient) condition for the presence of multiple stable stationary states (i.e. the
existence of several stable fixed points in the dynamics) [1, 2, 5, 11, 12]. This is the
so-called Thomas’ conjecture. This conjecture has already been proved in several
different types of formal mathematical models of gene networks (see [3, 5, 9, 10]):
the differential, differential with decay, piecewise-linear and multivalued discrete
models. Recently, Remy et al. proved that Thomas’ conjecture is also true for
Boolean models [2], by using a recent proof by M.-H. Shih and J.-L. Dong of the
Boolean version of the Jacobian conjecture [8].
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A possible generalization of Thomas’ conjecture in the Boolean framework was
raised by Remy et al. [2] in gene networks.

Conjecture 1.1. Positive circuits are necessary for the coexistence of alternative
attractors.

Motivated by the Conjecture 1.1, let us formulate five conjectures relating
circuits to the qualitative behavior of a Boolean dynamical system as follows:

Conjecture 1.2. If F : {0, 1}n→ {0, 1}n has one fixed point and one attractive cycle,
then there is an x ∈ {0, 1}n such that the interaction graph G(F ′(x)) has a positive
circuit.

Conjecture 1.3. If F : {0, 1}n→ {0, 1}n has at least two attractive cycles, then there
is an x ∈ {0, 1}n such that the interaction graph G(F ′(x)) has a positive circuit.

Conjecture 1.4. If F : {0, 1}n → {0, 1}n has two disjoint non-attractive cycles, then
there is an x ∈ {0, 1}n such that the interaction graph G(F ′(x)) has a positive circuit.

Conjecture 1.5. If F : {0, 1}n → {0, 1}n has one attractive cycle and one non-
attractive cycle, then there is an x ∈ {0, 1}n such that the interaction graph G(F ′(x))
has a positive circuit.

Conjecture 1.6. If F : {0, 1}n → {0, 1}n has one fixed point and one non-attractive
cycle, then there is an x ∈ {0, 1}n such that the interaction graph G(F ′(x)) has a
positive circuit.

Our aim is to study the five conjectures above (i.e. Conjectures 1.2, 1.3, 1.4, 1.5
and 1.6). These notions concerning the fixed points, the attractive cycles, the non-
attractive cycles and the attractors in a Boolean dynamical system will be explained
in Section 3.1.

The content of this paper is organized as follows. In the next section let us recall
some elementary definitions about Boolean Jacobian matrices and interaction
graphs, and explain the notion concerning the stability of the interaction graphs
under projection, needed to prove the two theorems (i.e. Theorems 3.2 and 3.3)
of this paper. Following the above conjecture proposed by Remy and coworkers,
we establish new sufficient conditions for the presence of a positive circuit in the
corresponding interaction graph. Furthermore, in Section 3 we state and prove
the two new results, which are the generalizations of Thomas’ conjecture in the
Boolean case. Consequently Conjectures 1.2 and 1.3 are true for all n ≥ 2. In
Section 4 we show that for each n ≥ 2 there is a Boolean map, which provides
a counterexample to the Conjecture 1.4. And further, we also show that there
are examples which give a negative answer to the Conjectures 1.5 and 1.6 for all
n ≥ 3. These counterexamples hold in any dimension n ≥ 3. Finally, in Section 5
our results and some remarks are illustrated with several examples.
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2. Preliminaries

In the following, we state some definitions, notations and results needed to
formulate and prove our results. The material can be found in [1, 2, 4, 8], and
also in the books by Robert [6, 7].

The order “≤” on {0, 1} is given by 0≤ 0≤ 1≤ 1. Let {0, 1} be with operations
+, · defined as follows:

0+ 0= 0 · 1= 1 · 0= 0 · 0= 0, 1+ 0= 0+ 1= 1+ 1= 1 · 1= 1,

1= 0, and 0= 1.

For each positive integer n, let {0, 1}n denote the collection of all ordered n-tuples
x = (x1, . . . , xn) with components x i ∈ {0, 1} for i = 1, . . . , n. The notation t ,
which stands for the transpose of a vector, is used in this paper. We also write
x = (x1, . . . , xn)t interchangeably. For x ∈ {0, 1}n and {i1, . . . , ik} ⊆ {1, . . . , n}, let
us define x̃ i1,...,ik = y by

y j =

¨
x j if the cardinality of {l ∈ {1, . . . , k} | il = j} is even (or zero),

x̄ j otherwise.

The notation ( x̃ i1,...,ik) j denotes the j-th component of x̃ i1,...,ik . When k = 1,
x̃ i1 = (x1, . . . , x̄ i1 , . . . , xn) and ( x̃ i1) j stands for the j-th component of x̃ i1 , that
is, ( x̃ i1) j = x̄ j if j = i1, ( x̃ i1) j = x j if j 6= i1.

We are interested in the evolution of the biological network involving n
interacting genes, which are denoted by the integers 1, . . . , n. The possible
expression levels of each gene i ∈ {1, . . . , n} are assumed to be either 1 (when
the gene i is active) or 0 (when the gene i is inactive). A state of the network is
an element x = (x1, . . . , xn) ∈ {0, 1}n, where x i is the expression level of gene i.
Let F : {0, 1}n → {0, 1}n, and F(x) = ( f1(x), . . . , fn(x)). For each x ∈ {0, 1}n and
i ∈ {1, . . . , n}, fi(x) denotes the value to which x i tends when the network is in
state x . In general, we say that the pair ({0, 1}n, F) is a Boolean network and that it
is viewed as a model for the dynamics of a network of n genes. Thus the Boolean
synchronous dynamics of this network is described by the map F , in the sense that
all the variables x i are simultaneously updated to fi(x) in one step.

2.1. Boolean Jacobian Matrices and Interaction Graphs

Given a map F : {0, 1}n → {0, 1}n, we call Boolean Jacobian matrix of F
evaluated at state x ∈ {0, 1}n, and we denote by F ′(x) = ( fi j(x)), the n× n matrix
over {0, 1} with (i, j)-entry defined by

fi j(x) =

¨
1 if fi(x) 6= fi( x̃ j),
0 otherwise.

For each x ∈ {0, 1}n, we define the (local) connectivity graph of the Boolean
Jacobian matrix F ′(x), denoted by Γ(F ′(x)), to be the directed graph with vertex
set {1, . . . , n} such that there is an edge from j to i when fi j(x) = 1. Thus, the
adjacency matrix of Γ(F ′(x)) is the transpose of F ′(x).
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A directed graph with a sign, +1 or −1, attached to each edge, is called a signed
directed graph. A circuit of length k (1 ≤ k ≤ n) in a signed directed graph with
vertex set {1, . . . , n} is a sequence (i1, . . . , ik) of k distinct vertices such that there
is an edge from i j to i j+1, 1 ≤ j ≤ k− 1, and from ik to i1. When k = 1, a circuit
of length 1 (i.e. an edge of the form (i, i)) is called a loop. The sign of a circuit
is the product of the signs of its edges. In other words, a circuit C is negative if
the number of negative edges of C is odd, and positive otherwise. If G is a signed
directed graph with vertex set {1, . . . , n} and I ⊆ {1, . . . , n}, the restriction of G to
I is defined as the signed directed graph obtained from G by removing any vertex
not in I and any edge whose source or target is not in I [1].

Definition 2.1. Let F : {0, 1}n → {0, 1}n and x ∈ {0, 1}n. We define the (local)
interaction graph evaluated at state x ∈ {0, 1}n, denoted by G(F ′(x)), to be the
signed directed graph with {1, . . . , n} as set of vertices and such that there is an
edge from j to i if

fi j(x) = 1,

with positive sign when

x j = fi(x),

and negative sign otherwise.

In this Boolean context, Thomas’ conjecture can be reformulated as follow:

Theorem 2.2. If F : {0, 1}n → {0, 1}n has at least two fixed points, then there is an
x ∈ {0, 1}n such that G(F ′(x)) has a positive circuit.

The above result has been proved in [2].

2.2. Stability Under Projection

In order to prove the following two theorems we shall employ the notion
concerning the stability of the interaction graph under projection.

Let us begin to explain that the local interaction graphs defined in Section 2.1
are stable under projection in the following sense (see [1] in more detail).

Let I = {i1, . . . , im} ⊆ {1, . . . , n} with i1 < i2 < · · · < im. We define the map πI :
{0, 1}n → {0, 1}m by πI(x) = z, where x = (x1, . . . , x i1 , . . . , x i j

, . . . , x im , . . . , xn) ∈
{0, 1}n, z = (z1, . . . , z j , . . . , zm) ∈ {0, 1}m and z j = x i j

for all j = 1, . . . , m,
(i.e. πI is the projection map on {0, 1}m), and the map s : {0, 1}m → {0, 1}n
defined as s(πI(x)) = y ∈ x[{1, . . . , n} \ I | I] ⊆ {0, 1}n, where y =
(y1, . . . , yi1 , . . . , yi j

, . . . , yim , . . . , yn) ∈ {0, 1}n, yi j
= x i j

for all j = 1, . . . , m and
yt = (s(πI(x)))t for t /∈ {i1, . . . , im}, is said to be a section of πI . Here we use
the notation x[{1, . . . , n} \ I | I] = {y ∈ {0, 1}n | y j = x j for all j ∈ I} to denote a
(n−m)-subcube generated by x ∈ {0, 1}n : see [2, 8] for a thorough survey. Clearly,
the composite function of πI and s, πI ◦ s from {0, 1}m to itself is the identity map.
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Given such a subset I of m genes, there are a lot of ways to define possible
dynamics on I : if F : {0, 1}n→ {0, 1}n, let

FI ,s = πI ◦ F ◦ s : {0, 1}m→ {0, 1}m.

We are particularly interested in the very specific section map s, which is said
to be regular if πk ◦ s : {0, 1}m → {0, 1} is constant for each k /∈ I . In this
article, we mainly focus on this kind of regular sections. As an illustration,
if i ∈ {1, . . . , n}, let us consider I = {k1, . . . , kn−1} ⊆ {1, . . . , n} with k1 =
1 < · · · < ki−1 = i − 1 < ki = i + 1 < · · · < kn−1 = n and ξ ∈
{0, 1}n be given. Then the projection map πI : {0, 1}n → {0, 1}n−1 is such
that πI(x) = z, where x = (xk1

, . . . , xki−1
, x i , xki

, . . . , xkn−1
) ∈ {0, 1}n, z =

(z1, . . . , z j , . . . , zn−1) ∈ {0, 1}n−1 and z j = xk j
for all j = 1, . . . , n − 1, (i.e.

πI(x1, . . . , x i−1, x i , x i+1, . . . , xn) = (x1, . . . , x i−1, x i+1, . . . , xn)), and we define the
specific regular section s : {0, 1}n−1→ {0, 1}n by

s(πI(x)) = (x1, . . . , x i−1,ξi , x i+1, . . . , xn)(2.1)

lying in ξ[{1, . . . , i−1, i+1, . . . , n} | i]. Let us recall that the notation ξ[{1, . . . , i−1,
i + 1, . . . , n} | i] = {y ∈ {0, 1}n | yi = ξi} denotes a (n− 1)-subcube generated by
ξ ∈ {0, 1}n. Thus FI ,s : {0, 1}n−1→ {0, 1}n−1 is such that

FI ,s(πI(x)) = (πI ◦ F ◦ s)(πI(x))

= πI(F(s(πI(x))))

= πI(F(x1, . . . , x i−1,ξi , x i+1, . . . , xn))

= ( f1(s(πI(x))), . . . , fi−1(s(πI(x))), fi+1(s(πI(x))), . . . , fn(s(πI(x)))).

That is,

FI ,s(πI(x)) =




f1(x1, . . . , x i−1,ξi , x i+1, . . . , xn)
...

fi−1(x1, . . . , x i−1,ξi , x i+1, . . . , xn)
fi+1(x1, . . . , x i−1,ξi , x i+1, . . . , xn)

...
fn(x1, . . . , x i−1,ξi , x i+1, . . . , xn)




t

∈ {0, 1}n−1, (x∈{0, 1}n).(2.2)

The following result has been proved in [1] and plays a crucial role in the proof
of our first theorem.

Lemma 2.3. Let F : {0, 1}n → {0, 1}n, I = {i1, . . . , im} ⊆ {1, . . . , n} with i1 < i2 <
· · ·< im and z ∈ {0, 1}m. If s is a regular section of πI , then G(F ′I ,s(z)) coincides with
the restriction of G(F ′(s(z))) to I.

3. Positive Circuits

We now establish a characterization for a circuit to be positive in the
corresponding interaction graph.
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Lemma 3.1. Let F : {0, 1}n → {0, 1}n and x ∈ {0, 1}n. Assume that C =
(i1, i2, . . . , il) is a circuit (1 ≤ l ≤ n) of the local interaction graph G(F ′(x)). Then
C is positive if, and only if, the cardinality of the set { j ∈ {i1, . . . , il} | f j(x) 6= x j} is
even (or zero).

Proof. Define the map σ : {0, 1} → {0, 1} by σ(0) = 1, σ(1) = 0.
We use the notation I to denote the identity map. Let m ∈ {1, . . . , l}. Define the

map σm : {0, 1} → {0, 1} by

σm =

¨
σ if the edge (im, im+1) from im in C is negative,

I if the edge (im, im+1) is positive.

Define the map δm : {0, 1} → {0, 1} by

δm =

¨
σ if x im 6= fim(x),
I if x im = fim(x).

Since

δ2(x i2) = fi2(x) = σ1(x i1)⇒ x i2 = δ2(σ1(x i1)) = (δ2 ◦σ1)(x i1),

δ3(x i3) = fi3(x) = σ2(x i2)⇒ x i3 = δ3(σ2(x i2)) = (δ3 ◦σ2)(x i2),

...

δl−1(x il−1
) = fil−1

(x) = σl−2(x il−2
)⇒ x il−1

= δl−1(σl−2(x il−2
)) = (δl−1 ◦σl−2)(x il−2

),

δl(x il ) = fil (x) = σl−1(x il−1
)⇒ x il = δl(σl−1(x il−1

)) = (δl ◦σl−1)(x il−1
),

δ1(x i1) = fi1(x) = σl(x il )⇒ x i1 = δ1(σl(x il )) = (δ1 ◦σl)(x il ),

we have

x i1 = (δ1 ◦σl)(x il )

= (δ1 ◦σl)((δl ◦σl−1)(x il−1
))

= (δ1 ◦σl ◦δl ◦σl−1)(x il−1
)

= · · ·
= (δ1 ◦σl ◦δl ◦σl−1 ◦δl−1 ◦σl−2 ◦ · · · ◦δ2 ◦σ1)(x i1)

= σp+q(x i1),

where p is the cardinality of the set { j ∈ {i1, . . . , il} | f j(x) 6= x j} and, q is the
number of negative edges in C .

This implies that p+ q is even. Therefore, q is even (or zero) if and only if p is
even (or zero).

Hence, we prove that C is positive if and only if p is even (or zero), and we
complete the proof of Lemma 3.1. ¤
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3.1. Attractive Cycles and Fixed Points

Let F always be a map of {0, 1}n into itself. First of all let us recall that a fixed
point of F is a state x such that F(x) = x . We define a synchronous cycle of length
r ≥ 2 for F to be a sequence (x1, . . . , x r) of r distinct states in {0, 1}n such that
F(x i) = x i+1 for 1 ≤ i ≤ r − 1 and F(x r) = x1. Such a cycle is said to be an
attractive cycle C = (x1, . . . , x r) with strategy ϕ : {1, . . . , r} → {1, . . . , n} if, for all

i = 1, . . . , r, F(x i) = ex i
ϕ(i)

. If a synchronous cycle is not attractive, then it is said
to be non-attractive. Observe that if C = (x1, . . . , x r) is an attractive cycle of F with
strategy ϕ : {1, . . . , r} → {1, . . . , n}, then for any i = 1, . . . , n, the cardinality of
{p ∈ {1, . . . , r} | ϕ(p) = i} is even (or zero). As a consequence, r is then even.

We now make the definition of the attractor precise. A trap domain of the
Boolean synchronous dynamics for F is a nonempty subset A of {0, 1}n such that,
for all x ∈ A, F(x) ∈ A. In other words, a trap domain is a set of states that we
cannot leave in the Boolean synchronous dynamics. A trap domain A is said to be
an attractor, or a smallest trap domain, if there is no trap domain strictly included
in A. We notice that if ξ ∈ {0, 1}n is a fixed point of F and if C = (x1, . . . , x r) is a
synchronous cycle, then {ξ} and {x1, . . . , x r} are attractors. Remark also that an
attractor is not necessarily an attractive cycle. As an illustration, we consider the
map F : {0, 1}3→ {0, 1}3 defined by

F(x) =




x̄1 x̄2 x3 + x1 x̄2 + x1 x2 x3
x̄1 x̄2 x3 + x̄1 x2 x̄3 + x1 x2 x3

x̄1 x2 + x1 x̄3


 , (x ∈ {0, 1}3).

Let us compute the map F at each state x ∈ {0, 1}3. Then, F is given by the table:

x (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

F(x) (0,0,0) (1,1,0) (0,1,1) (0,0,1) (1,0,1) (1,0,0) (0,0,1) (1,1,0)

The Boolean synchronous dynamics for F contains 27 trap domains. It is easy
to see that the fixed point is (0, 0, 0), the attractive cycle is ((1, 0, 0), (1, 0, 1)) with
strategy ϕ : {1, 2} → {1, 2, 3} defined by ϕ(1) = ϕ(2) = 3, and the non-attractive
cycle is ((0, 0, 1), (1, 1, 0)). Here, {(0, 0, 1), (1, 1, 0)}∪{(1, 0, 0), (1, 0, 1)}, {(0, 0, 1),
(1, 1, 0)} ∪ {(0, 0, 0)}, {(0, 0, 0), (1, 0, 0), (1, 0, 1)}, and {(0, 0, 1), (1, 1, 0)} ∪
{(0, 1, 1)} are other examples of trap domains.

Our first result of this paper follows.

Theorem 3.2. If F : {0, 1}n → {0, 1}n has an attractive cycle C = (x1, . . . , x r) with
strategy ϕ : {1, . . . , r} → {1, . . . , n} and one fixed point, then there is an x ∈ {0, 1}n
such that G(F ′(x)) has a positive circuit.

Proof. We prove the theorem by mathematical induction on the dimension n of
the n-cube {0, 1}n. The induction begins with n = 2; for in this case r = 2, and
so we let C = (x1, x2) be an attractive cycle of F with strategy ϕ : {1, 2} → {1, 2},
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and let x1 = ξ ∈ {0, 1}2. We thus obtain F(ξ) = ξ̃ϕ(1) and F(ξ̃ϕ(1)) = ξ. Without
loss of generality, we suppose that ϕ(1) = 1. Since there exists one fixed point of
F in {0, 1}2 by the hypothesis, it follows that either F(ξ̃2) = ξ̃2 or F(ξ̃1,2) = ξ̃1,2. If
F(ξ̃2) = ξ̃2, then f2(ξ̃2) = (ξ̃2)2 and f2(ξ) = (ξ̃1)2 together imply that f22(ξ) = 1,
and so the local connectivity graph Γ(F ′(ξ)) has a loop at a vertex 2. Moreover, it
follows from the definition of the local interaction graph that the loop at a vertex
2 is also contained in G(F ′(ξ)). As the cardinality of { j ∈ {2} | f j(ξ) 6= ξ j} is zero,
Lemma 3.1 shows that it is positive and consequently, G(F ′(ξ)) has a positive
loop at a vertex 2 in this case. If, on the other hand, F(ξ̃1,2) = ξ̃1,2, we see that
similar arguments establish the existence of a positive loop at a vertex 2 in the
local interaction graph G(F ′(ξ̃1)). Hence the case of n= 2 is valid.

Now we suppose that the theorem is true for some integer n− 1 ≥ 2. We will
prove that the theorem is true for n.

To see that, we assume that the attractive cycle and the fixed point of the map F
from {0, 1}n to itself are C = (x1, . . . , x r) with strategy ϕ : {1, . . . , r} → {1, . . . , n}
and η, respectively. We wish to show that there exists a positive circuit in the
corresponding interaction graph. Since F has an attractive cycle C = (x1, . . . , x r)
with strategy ϕ, we let x1 = ξ ∈ {0, 1}n and consequently,

F(ξ) = ξ̃ϕ(1),

F(ξ̃ϕ(1)) = ξ̃ϕ(1),ϕ(2),

F(ξ̃ϕ(1),ϕ(2)) = ξ̃ϕ(1),ϕ(2),ϕ(3),

...(3.1)

F(ξ̃ϕ(1),...,ϕ(r−2)) = ξ̃ϕ(1),...,ϕ(r−2),ϕ(r−1),

F(ξ̃ϕ(1),...,ϕ(r−2),ϕ(r−1)) = ξ̃ϕ(1),...,ϕ(r−2),ϕ(r−1),ϕ(r) = ξ.

If the Boolean Jacobian matrix F ′(η) has no zero columns, as argued in
[6, 7], this implies that the local connectivity graph Γ(F ′(η)) contains a circuit
(i1, i2, . . . , il) with {i1, i2, . . . , il} ⊆ {1, . . . , n}. By definition of the local interaction
graph, the circuit (i1, i2, . . . , il) is also contained in G(F ′(η)). Since F(η) = η, it
follows that the cardinality of { j ∈ {i1, . . . , il} | f j(η) 6= η j} is zero. Now, with
the use of Lemma 3.1, we have that this circuit (i1, i2, . . . , il) is positive in the
corresponding interaction graph G(F ′(η)). Hence we can conclude that G(F ′(η))
has a positive circuit in this case.

On the other hand, if F ′(η) has at least one zero column, then there exists an
i ∈ {1, . . . , n} such that f j(η̃i) = f j(η) for all j = 1, . . . , n. Let I = {1, . . . , i − 1, i +
1, . . . , n} and we choose this regular section s from {0, 1}n−1 to {0, 1}n defined as in
(2.1); that is, s(πI(x)) = (x1, . . . , x i−1,ξi , x i+1, . . . , xn) for all x ∈ {0, 1}n. In order
to use the induction hypothesis, we consider the map FI ,s from {0, 1}n−1 to itself
defined as in (2.2). Since {ϕ(1), . . . ,ϕ(r)} ⊆ {1, . . . , n}, we split the arguments
into the following two cases.
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Case I. i ∈ {ϕ(1), . . . ,ϕ(r)}.
We let k = min{p ∈ {1, . . . , r} | ϕ(p) = i}. Here, we use the notation min{p ∈
{1, . . . , r} | ϕ(p) = i} to denote the minimum element in the set {p ∈ {1, . . . , r} |
ϕ(p) = i}. Therefore, 1 ≤ k ≤ r − 1. (The reason of k 6= r is explained
as follows: for if not, we could have ϕ(r) = i and for all p = 1, . . . , r − 1,
ϕ(p) 6= i, and so this contradicts the fact that for any α = 1, . . . , n, the cardinality
of {p ∈ {1, . . . , r} | ϕ(p) = α} is even (or zero).)

If ξi = η̄i , it follows from F(ξ̃ϕ(1),...,ϕ(k−1)) = ξ̃ϕ(1),...,ϕ(k−1),ϕ(k) in (3.1) and
F(η̃i) = η that there exist two states ξ̃ϕ(1),...,ϕ(k−1) and η̃i in the (n− 1)-subcube
ξ[{1, . . . , i− 1, i+ 1, . . . , n} | i] such that

f j(ξ̃
ϕ(1),...,ϕ(k−1)) = (ξ̃ϕ(1),...,ϕ(k−1)) j(3.2)

and

f j(η̃
i) = (η̃i) j(3.3)

for all j = 1, . . . , i − 1, i + 1, . . . , n. We notice that (ξ̃ϕ(1),...,ϕ(k−1),ϕ(k)) j =
(ξ̃ϕ(1),...,ϕ(k−1)) j for all j = 1, . . . , i−1, i+1, . . . , n, since ϕ(k) /∈ {ϕ(1), . . . ,ϕ(k−1)},
ϕ(k) = i and j 6= i. Moreover, η j = (η̃i) j for all j = 1, . . . , i− 1, i+ 1, . . . , n.

According to (2.2), (3.2) and (3.3), we thus obtain FI ,s(πI(ξ̃ϕ(1),...,ϕ(k−1))) =
πI(ξ̃ϕ(1),...,ϕ(k−1)) and FI ,s(πI(η̃i)) = πI(η̃i).

Consequently FI ,s : {0, 1}n−1 → {0, 1}n−1 has two fixed points πI(ξ̃ϕ(1),...,ϕ(k−1))
and πI(η̃i) in {0, 1}n−1, and it follows from Theorem 2.2 that there exists an
z ∈ {0, 1}n−1 such that the local interaction graph G(F ′I ,s(z)) contains a positive
circuit ( j1, j2, . . . , jm) with { j1, j2, . . . , jm} ⊆ {1, . . . , i − 1, i + 1, . . . , n}. For the same
reason we deduce that if ξi = ηi then πI(ξ̃ϕ(1),...,ϕ(k−1)) and πI(η) are the two fixed
points of FI ,s in {0, 1}n−1. Thus, by Theorem 2.2, there exists an w ∈ {0, 1}n−1 such
that the local interaction graph G(F ′I ,s(w)) contains a positive circuit (h1, h2, . . . , ht)
with {h1, h2, . . . , ht} ⊆ {1, . . . , i− 1, i+ 1, . . . , n}.

By using Lemma 2.3, we show that if ξi = η̄i then the positive circuit
( j1, j2, . . . , jm) is also contained in the local interaction graph G(F ′(s(z))) with
vertex set {1, . . . , n}; on the other hand, if ξi = ηi then the positive circuit
(h1, h2, . . . , ht) is also contained in the local interaction graph G(F ′(s(w))) with
vertex set {1, . . . , n}.

Since ξi = η̄i or ξi = ηi , we can conclude that there exists an x = s(z) or
x = s(w) in {0, 1}n such that G(F ′(x)) has a positive circuit.

Case II. i /∈ {ϕ(1), . . . ,ϕ(r)}.
If ξi = η̄i , it follows from (3.1) and F(η̃i) = η that there exist r + 1 states
ξ, ξ̃ϕ(1), ξ̃ϕ(1),ϕ(2), . . . , ξ̃ϕ(1),...,ϕ(r−1) and η̃i in the (n−1)-subcube ξ[{1, . . . , i−1, i+
1, . . . , n} | i] such that
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f j(ξ) = (ξ̃
ϕ(1)) j ,

f j(ξ̃
ϕ(1)) = (ξ̃ϕ(1),ϕ(2)) j ,

f j(ξ̃
ϕ(1),ϕ(2)) = (ξ̃ϕ(1),ϕ(2),ϕ(3)) j ,

...(3.4)

f j(ξ̃
ϕ(1),...,ϕ(r−1)) = (ξ̃ϕ(1),...,ϕ(r−1),ϕ(r)) j ,

and

f j(η̃
i) = (η̃i) j(3.5)

for all j = 1, . . . , i− 1, i+ 1, . . . , n.
By the hypothesis, we have that the strategy of this attractive cycle C =

(x1, . . . , x r) is the map ϕ : {1, . . . , r} → {1, . . . , n}. Now we define a new map
ϕ′ : {1, . . . , r} → {1, . . . , n− 1} by setting

ϕ′(p) =

¨
ϕ(p) if ϕ(p)≤ i− 1,

ϕ(p)− 1 if ϕ(p)≥ i+ 1.

Thus, for any β = 1, . . . , n−1, the cardinality of {p ∈ {1, . . . , r} | ϕ′(p) = β} is also
even (or zero).

According to (2.2), (3.4), (3.5) and the new map ϕ′, we thus obtain

FI ,s(πI(ξ)) = π̃I(ξ)
ϕ′(1)

, FI ,s(π̃I(ξ)
ϕ′(1)
) = π̃I(ξ)

ϕ′(1),ϕ′(2)
, FI ,s(π̃I(ξ)

ϕ′(1),ϕ′(2)
) =

π̃I(ξ)
ϕ′(1),ϕ′(2),ϕ′(3)

, . . ., FI ,s(π̃I(ξ)
ϕ′(1),...,ϕ′(r−1)

) = π̃I(ξ)
ϕ′(1),...,ϕ′(r−1),ϕ′(r)

= πI(ξ),
and FI ,s(πI(η̃i)) = πI(η̃i).

Consequently FI ,s : {0, 1}n−1→ {0, 1}n−1 has an attractive cycle C ′ = (a1, . . . , ar)
where a1 = πI(ξ) ∈ {0, 1}n−1 with strategy ϕ′ : {1, . . . , r} → {1, . . . , n − 1} and
one fixed point πI(η̃i) in {0, 1}n−1, so we may apply the induction hypothesis to
FI ,s and obtain that there exists an v ∈ {0, 1}n−1 such that the local interaction
graph G(F ′I ,s(v)) contains a positive circuit. For the same reason we deduce
that if ξi = ηi then the attractive cycle and the fixed point of FI ,s in {0, 1}n−1

are C ′ = (πI(ξ), π̃I(ξ)
ϕ′(1)

, . . . , π̃I(ξ)
ϕ′(1),...,ϕ′(r−1)

) with strategy ϕ′ : {1, . . . , r} →
{1, . . . , n − 1} and πI(η), respectively. Also, by the induction hypothesis, there
exists an u ∈ {0, 1}n−1 such that the local interaction graph G(F ′I ,s(u)) contains a
positive circuit.

By using Lemma 2.3, the desired result follows as above.
Hence, in either case, the result is established.
This completes the inductive proof of Theorem 3.2, and thus proves the

theorem. ¤

Therefore Conjecture 1.2 is now a theorem. Our next result extends
Theorem 3.2 to the presence of two disjoint attractive cycles and thus shows
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that the existence of a positive circuit in the corresponding interaction graph is
also required for the existence of multiple attractive cycles in Boolean dynamical
systems.

3.2. The Principal Theorem

The aim of this paper is to prove the following theorem giving a new sufficient
condition for the presence of a positive circuit in the corresponding interaction
graph. From Theorems 1 and 2 we get the main result, which is a generalization
of Thomas’ conjecture for Boolean dynamical systems.

Theorem 3.3. If F : {0, 1}n→ {0, 1}n has at least two attractive cycles, then there is
an x ∈ {0, 1}n such that G(F ′(x)) has a positive circuit.

Proof. By the hypothesis, we can assume that C1 = (x1, . . . , x r1) and C2 =
(y1, . . . , y r2) are the two disjoint attractive cycles of the map F from {0, 1}n into
itself with strategies ϕ : {1, . . . , r1} → {1, . . . , n} and ψ : {1, . . . , r2} → {1, . . . , n},
respectively. For simplicity of notation, we let x1 = ξ and y1 = η. It follows that

F(ξ) = ξ̃ϕ(1),

F(ξ̃ϕ(1)) = ξ̃ϕ(1),ϕ(2),

F(ξ̃ϕ(1),ϕ(2)) = ξ̃ϕ(1),ϕ(2),ϕ(3),

...(3.6)

F(ξ̃ϕ(1),...,ϕ(r1−2)) = ξ̃ϕ(1),...,ϕ(r1−2),ϕ(r1−1),

F(ξ̃ϕ(1),...,ϕ(r1−2),ϕ(r1−1)) = ξ̃ϕ(1),...,ϕ(r1−2),ϕ(r1−1),ϕ(r1) = ξ,

and

F(η) = η̃ψ(1),

F(η̃ψ(1)) = η̃ψ(1),ψ(2),

F(η̃ψ(1),ψ(2)) = η̃ψ(1),ψ(2),ψ(3),

...(3.7)

F(η̃ψ(1),...,ψ(r2−2)) = η̃ψ(1),...,ψ(r2−2),ψ(r2−1),

F(η̃ψ(1),...,ψ(r2−2),ψ(r2−1)) = η̃ψ(1),...,ψ(r2−2),ψ(r2−1),ψ(r2) = η.

Since {ϕ(1), . . . ,ϕ(r1)} ⊆ {1, . . . , n} and {ψ(1), . . . ,ψ(r2)} ⊆ {1, . . . , n}, we split
the proof into two cases.

Case I. The intersection of these two sets {ϕ(1), . . . ,ϕ(r1)} and {ψ(1), . . . ,ψ(r2)}
is not empty.

Let i ∈ {ϕ(1), . . . ,ϕ(r1)} ∩ {ψ(1), . . . ,ψ(r2)}. We assume that k = min{p ∈
{1, . . . , r1} | ϕ(p) = i} and l = min{q ∈ {1, . . . , r2} | ψ(q) = i}. That is, k
and l are the minimum elements in the sets {p ∈ {1, . . . , r1} | ϕ(p) = i} and
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{q ∈ {1, . . . , r2} | ψ(q) = i}, respectively. Therefore, 1 ≤ k ≤ r1 − 1 and
1 ≤ l ≤ r2 − 1. (The reason of k 6= r1 is explained as follows: for if not, we
could have ϕ(r1) = i and for all p = 1, . . . , r1−1, ϕ(p) 6= i, and so this contradicts
the fact that for any α = 1, . . . , n, the cardinality of {p ∈ {1, . . . , r1} | ϕ(p) = α} is
even (or zero). Similarly, l 6= r2.)

If ξi = η̄i , it follows from F(η̃ψ(1),...,ψ(l−1)) = η̃ψ(1),...,ψ(l−1),ψ(l) and
F(η̃ψ(1),...,ψ(r2−1)) = η in (3.7) that there exists an m1 = min{q ∈ {l + 1, . . . , r2} |
ψ(q) = i} such that

F(η̃ψ(1),...,ψ(l−1),ψ(l),...,ψ(m1−1)) = η̃ψ(1),...,ψ(l−1),ψ(l),ψ(l+1),...,ψ(m1−1),ψ(m1).(3.8)

Therefore, the two states ξ̃ϕ(1),...,ϕ(k−1) and η̃ψ(1),...,ψ(m1−1) are in the (n −
1)-subcube ξ[{1, . . . , i − 1, i + 1, . . . , n} | i] such that f j(ξ̃ϕ(1),...,ϕ(k−1)) =
(ξ̃ϕ(1),...,ϕ(k−1)) j and f j(η̃ψ(1),...,ψ(m1−1)) = (η̃ψ(1),...,ψ(m1−1)) j for all j = 1, . . . , i −
1, i+ 1, . . . , n.

Similarly, it can be shown that if ξi = ηi then the two states ξ̃ϕ(1),...,ϕ(k−1) and
η̃ψ(1),...,ψ(l−1) are in the (n− 1)-subcube ξ[{1, . . . , i − 1, i + 1, . . . , n} | i] such that
f j(ξ̃ϕ(1),...,ϕ(k−1)) = (ξ̃ϕ(1),...,ϕ(k−1)) j and f j(η̃ψ(1),...,ψ(l−1)) = (η̃ψ(1),...,ψ(l−1)) j for all
j = 1, . . . , i− 1, i+ 1, . . . , n.

Similar arguments as in the proof of Case I of Theorem 3.2 establish the result
whether ξi = η̄i or ξi = ηi .

Case II. The intersection of these two sets {ϕ(1), . . . ,ϕ(r1)} and {ψ(1), . . . ,ψ(r2)}
is the empty set.

Let i ∈ {ψ(1), . . . ,ψ(r2)}. Obviously, i /∈ {ϕ(1), . . . ,ϕ(r1)}. We assume that
l = min{q ∈ {1, . . . , r2} | ψ(q) = i}. Therefore, 1 ≤ l ≤ r2 − 1. (The reason of
l 6= r2 is explained as follows: for if not, we could have ψ(r2) = i and for all
q = 1, . . . , r2−1,ψ(q) 6= i, and so this contradicts the fact that for any α= 1, . . . , n,
the cardinality of {q ∈ {1, . . . , r2} |ψ(q) = α} is even (or zero).)

If ξi = η̄i , it follows from (3.7) that there exists an m2 =min{q ∈ {l+1, . . . , r2} |
ψ(q) = i} such that

F(η̃ψ(1),...,ψ(l−1),ψ(l),...,ψ(m2−1)) = η̃ψ(1),...,ψ(l−1),ψ(l),ψ(l+1),...,ψ(m2−1),ψ(m2).(3.9)

Thus, according to (3.6) and (3.9), the r + 1 states ξ, ξ̃ϕ(1), ξ̃ϕ(1),ϕ(2), . . .,
ξ̃ϕ(1),...,ϕ(r1−1) and η̃ψ(1),...,ψ(m2−1) are in the (n − 1)-subcube ξ[{1, . . . , i − 1,
i + 1, . . . , n} | i] such that f j(ξ) = (ξ̃ϕ(1)) j , f j(ξ̃ϕ(1)) = (ξ̃ϕ(1),ϕ(2)) j ,
f j(ξ̃ϕ(1),ϕ(2)) = (ξ̃ϕ(1),ϕ(2),ϕ(3)) j , . . ., f j(ξ̃ϕ(1),...,ϕ(r1−1)) = (ξ̃ϕ(1),...,ϕ(r1−1),ϕ(r1)) j , and
f j(η̃ψ(1),...,ψ(m2−1)) = (η̃ψ(1),...,ψ(m2−1)) j for all j = 1, . . . , i− 1, i+ 1, . . . , n.

Similarly, it can be shown that if ξi = ηi then the r + 1 states
ξ, ξ̃ϕ(1), ξ̃ϕ(1),ϕ(2), . . ., ξ̃ϕ(1),...,ϕ(r1−1) and η̃ψ(1),...,ψ(l−1) are in the (n − 1)-subcube
ξ[{1, . . . , i − 1, i + 1, . . . , n} | i] such that f j(ξ) = (ξ̃ϕ(1)) j , f j(ξ̃ϕ(1)) = (ξ̃ϕ(1),ϕ(2)) j ,
f j(ξ̃ϕ(1),ϕ(2)) = (ξ̃ϕ(1),ϕ(2),ϕ(3)) j , . . ., f j(ξ̃ϕ(1),...,ϕ(r1−1)) = (ξ̃ϕ(1),...,ϕ(r1−1),ϕ(r1)) j , and
f j(η̃ψ(1),...,ψ(l−1)) = (η̃ψ(1),...,ψ(l−1)) j for all j = 1, . . . , i− 1, i+ 1, . . . , n.
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Similar arguments, together with Theorem 3.2, give the desired result whether
ξi = η̄i or ξi = ηi .

Thus, in either case, the result follows.
Hence we complete the proof of Theorem 3.3. ¤

Therefore Conjecture 1.3 is now a theorem.

4. Counterexamples to Several Conjectures

Recently, a possible generalization of Theorem 2.2 to the coexistence of
alternative attractors was proposed by Remy and coworkers in [1, 2]. Following
Remy, Ruet and Thieffry (2007), let us bring up five different kinds of questions
which are explicitly stated in Section 1. Some (i.e. Conjectures 1.2 and 1.3) are
shown in the previous section that the answer is affirmative for any dimension
≥ 2, and the others (i.e. Conjectures 1.4, 1.5 and 1.6) relating the behavior of
a Boolean dynamical system to the topology of its interaction graph are studied
in this section. Finally, we show that there always exists a Boolean map, which
provides a counterexample to the Conjectures 1.4, 1.5, and 1.6 for all dimensions
≥ 3.

Theorem 4.1. Let n≥ 2 and F : {0, 1}n→ {0, 1}n be defined by

F(x1, x2, x3, . . . , xn) = ( x̄1, x̄2, 0, . . . , 0)t , (x ∈ {0, 1}n).

Then F is a counterexample to the Conjecture 1.4. More precisely, each of the local
interaction graphs G(F ′(x)), x ∈ {0, 1}n, is the signed directed graph whose vertex
set is {1, . . . , n} and whose edge set consists of exactly two negative loops at vertices 1
and 2.

Proof. One easily verifies that the Boolean synchronous dynamics for F has
neither attractive cycles nor fixed points, but has only two non-attractive cycles
{(0, 0, 0, . . . , 0), (1, 1, 0, . . . , 0)} and {(0, 1, 0, . . . , 0), (1, 0, 0, . . . , 0)}. Moreover, by
definition of the map F , for each x in {0, 1}n, we have

F ′(x) =




1 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




.

For each x ∈ {0, 1}n, the local connectivity graph Γ(F ′(x)) thus contains only two
edges, two loops at vertices 1 and 2. Moreover, it follows from the definition of the
local interaction graph that for each x ∈ {0, 1}n, G(F ′(x)) contains only two loops
at vertices 1 and 2. As x1 6= f1(x) and x2 6= f2(x), Lemma 3.1 shows that the two
loops at their respective vertices 1 and 2 are negative.
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We conclude that for each x in {0, 1}n, the local interaction graph G(F ′(x))
is the signed directed graph with vertex set {1, . . . , n} and two negative loops at
vertices 1 and 2. ¤

Theorem 4.2. Let n≥ 3 and F : {0, 1}n→ {0, 1}n be defined by

F(x1, x2, x3, x4, . . . , xn) = ( x̄2, x3, x1, 0, . . . , 0)t , (x ∈ {0, 1}n).
Then F is a counterexample to the Conjecture 1.5. More precisely, each of the local
interaction graphs G(F ′(x)), x ∈ {0, 1}n, is the signed directed graph whose vertex set
is {1, . . . , n} and whose edge set consists of exactly one negative circuit with vertices
1, 2 and 3.

Proof. One easily verifies that the Boolean synchronous dynamics for F has no
fixed points, but has only two alternative attractors: the attractive cycle

((0, 0, 0, 0, . . . , 0), (1, 0, 0, 0, . . . , 0), (1, 0, 1, 0, . . . , 0), (1, 1, 1, 0, . . . , 0),

(0, 1, 1, 0, . . . , 0), (0, 1, 0, 0, . . . , 0))

with strategy ϕ : {1, 2, 3, 4, 5, 6} → {1, 2, 3} defined by ϕ(1) = ϕ(4) = 1,
ϕ(3) = ϕ(6) = 2, ϕ(2) = ϕ(5) = 3, and the non-attractive cycle {(0, 0, 1, 0, . . . , 0),
(1, 1, 0, 0, . . . , 0)}. Moreover, by definition of the map F , for each x in {0, 1}n, we
have

F ′(x) =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
1 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0




.

For each x ∈ {0, 1}n, the local connectivity graph Γ(F ′(x)) thus contains only three
edges, one from vertex 1 to vertex 3, another from vertex 3 to vertex 2 and the
other from vertex 2 to vertex 1. By definition of the local interaction graph, we
obtain that for each x ∈ {0, 1}n, G(F ′(x)) contains only one circuit (1, 3, 2) of
length 3. Since x2 6= f1(x), x1 = f3(x) and x3 = f2(x), it follows that the edge
from vertex 2 to vertex 1 is negative, but the others are positive. Consequently,
this circuit (1, 3, 2) is negative.

We conclude that for each x in {0, 1}n, the local interaction graph G(F ′(x)) is
the signed directed graph with vertex set {1, . . . , n} and one negative circuit with
vertices 1, 2 and 3. ¤

To close this section we also give a counterexample to the Conjecture 1.6 for all
n≥ 3.

Theorem 4.3. Let n≥ 3 and F : {0, 1}n→ {0, 1}n be defined by

F(x1, x2, x3, x4, . . . , xn) = ( x̄1 x̄2 x3 + x̄1 x2, x̄1 x̄2 x3, x1 x2 x̄3, 0, . . . , 0)t , (x ∈ {0, 1}n).
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Then F is a counterexample to the Conjecture 1.6. More precisely, none of the local
interaction graphs G(F ′(x)), x ∈ {0, 1}n, contains a positive circuit.

Proof. One easily verifies that the Boolean synchronous dynamics for F has
no attractive cycles, but has only two alternative attractors: the fixed point
(0, 0, 0, 0, . . . , 0) and the non-attractive cycle {(0, 0, 1, 0, . . . , 0), (1, 1, 0, 0, . . . , 0)}.
Moreover, by definition of the map F , for each x in {0, 1}n, we have

F ′(x) =




x̄2 x3 + x2 x̄1 x̄3 x̄1 x̄2 0 · · · 0
x̄2 x3 x̄1 x3 x̄1 x̄2 0 · · · 0
x2 x̄3 x1 x̄3 x1 x2 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0




.

A computation for the Boolean Jacobian matrix F ′(x) of F evaluated at each state
x ∈ {0, 1}n now shows that the local interaction graph associated to any state
contains no positive circuits. ¤

5. Concluding Remarks

In this section, a generalization of Theorem 2.2 to the existence of multiple
attractive cycles in Boolean dynamical systems (i.e. Theorem 3.3) and some
remarks about Theorems 3.2 and 3.3 are illustrated with several examples and
counterexamples for which we give detailed computations.

5.1. Illustrations of Theorem 3.3

As an illustration of Theorem 3.3, the next two examples exhibit two disjoint
attractive cycles in a Boolean dynamical system, therefore they must have a
positive circuit in the local interaction graph.

Example 5.1. Let F : {0, 1}3→ {0, 1}3 be defined by

F(x) =




x̄1 x̄2 + x1 x3
x1 x3 + x2 x̄3
x̄1 x2 + x̄2 x3


 , (x ∈ {0, 1}3).

Let us compute the map F at each state x ∈ {0, 1}3 and the Boolean Jacobian
matrix F ′(0, 0, 1). Then, F is given by the table:

x (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

F(x) (1,0,0) (1,0,1) (0,1,1) (0,0,1) (0,0,0) (1,1,1) (0,1,0) (1,1,0)

and

F ′(0, 0, 1) =




0 1 0
1 0 0
0 0 1


 .
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Consequently, the Boolean synchronous dynamics has exactly two attractive cy-
cles C1 = ((0, 0, 0), (1, 0, 0)) and C2 = ((0, 1, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 1, 1),
(1, 1, 0)) with strategies ϕ : {1, 2} → {1, 2, 3} and ψ : {1, 2, 3, 4, 5, 6} → {1, 2, 3}
defined by ϕ(1) = ϕ(2) = 1, and ψ(3) = ψ(6) = 1, ψ(2) = ψ(4) = 2, ψ(1) =
ψ(5) = 3, respectively. And further, the intersection of these two sets {ϕ(1),ϕ(2)}
and {ψ(1), . . . ,ψ(6)} is not empty. Hence Theorem 3.3 tells us that there needs to
exist a positive circuit in the corresponding interaction graph. We now demonstrate
it as follows.

The above computations show that the local interaction graph G(F ′(0, 0, 1))
already contains three edges, one from vertex 2 to vertex 1, another from vertex
1 to vertex 2 and the other is a loop at a vertex 3. As x = (0, 0, 1), x3 = f3(x),
x2 = f2(x) and x1 6= f1(x), Lemma 3.1 shows that the loop at a vertex 3 is positive
and the circuit (1, 2) is negative.

Therefore, the local interaction graph G(F ′(0, 0, 1)) is

Example 5.2. Let F : {0, 1}3→ {0, 1}3 be defined by

F(x) =




x̄1 x̄2 + x1 x3 + x1 x2 x̄3
x1 x3 + x2 x̄3

x̄1 x2 + x̄2 x3 + x1 x2 x̄3


 , (x ∈ {0, 1}3).

Let us compute the map F at each state x ∈ {0, 1}3 and the Boolean Jacobian
matrix F ′(0, 0, 0). Then, F is given by the table:

x (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

F(x) (1,0,0) (1,0,1) (0,1,1) (0,0,1) (0,0,0) (1,1,1) (1,1,1) (1,1,0)

and

F ′(0, 0, 0) =




1 1 0
0 1 0
0 1 1


 .

Consequently, the Boolean synchronous dynamics has only two attractive cycles
C1 = ((0, 0, 0), (1, 0, 0)) and C2 = ((1, 1, 1), (1, 1, 0)) with strategies ϕ : {1, 2} →
{1, 2, 3} and ψ :{1, 2} → {1, 2, 3} defined by ϕ(1)=ϕ(2)=1 and ψ(1)=ψ(2)=3,
respectively. And further, the intersection of these two sets {ϕ(1),ϕ(2)} and
{ψ(1),ψ(2)} is empty. We can conclude from Theorem 3.3 that there needs to exist
a positive circuit in the corresponding interaction graph. We now demonstrate it
as follows.

The above computations show that the local interaction graph G(F ′(0, 0, 0))
thus contains five edges, one from vertex 2 to vertex 1, another from vertex 2 to
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vertex 3 and the others are three loops at vertices 1, 2 and 3. As x = (0, 0, 0),
x3 = f3(x), x2 = f2(x) and x1 6= f1(x), Lemma 3.1 shows that the two loops
at vertices 2 and 3 are positive and the loop at a vertex 1 is negative. Since
x2 = f3(x) and x2 6= f1(x), it follows that the local interaction graph associated to
state (0, 0, 0) contains one positive edge from vertex 2 to vertex 3 and one negative
edge from vertex 2 to vertex 1.

Therefore, the local interaction graph G(F ′(0, 0, 0)) is

5.2. Remarks about Theorems 3.2 and 3.3

We make the following remark. The conclusion of Theorems 3.2 and 3.3 is
not a sufficient condition for the prerequisite in either theorem. So to conclude
this paper let us give two examples to illustrate these. For instance, the Boolean
synchronous dynamics given in the following Example 5.3 for n = 2 has exactly
one non-attractive cycle, whereas the local interaction graph associated to state
(0, 0, 0) contains a positive loop at a vertex 1. Likewise, the Boolean synchronous
dynamics given in the following Example 5.4 for n = 2 has no attractive cycles,
whereas the local interaction graph associated to state (0, 0, 0) is a positive circuit
of length 2.

Example 5.3. Let F : {0, 1}2→ {0, 1}2 be defined by

F(x) =
�

x̄1 x2 + x1 x̄2
x̄2

�
, (x ∈ {0, 1}2).

Let us compute the map F at each state x ∈ {0, 1}2 and the Boolean Jacobian
matrix F ′(0, 0). Then, we obtain F(0, 0) = (0, 1), F(0, 1) = (1, 0), F(1, 0) =
(1, 1), F(1, 1) = (0, 0), and so the Boolean synchronous dynamics for F has
neither fixed points nor attractive cycles, but has exactly one non-attractive cycle
{(0, 0), (0, 1), (1, 0), (1, 1)}. Moreover,

F ′(0, 0) =
�

1 1
0 1

�
.

The local connectivity graph Γ(F ′(0, 0)) thus contains three edges, one from vertex
2 to vertex 1, and the others are two loops at vertices 1 and 2. By definition of the
local interaction graph, we obtain that G(F ′(0, 0)) contains an edge from vertex
2 to vertex 1, and two loops at vertices 1 and 2. As x = (0, 0), x1 = f1(x) and
x2 6= f2(x), Lemma 3.1 shows that the loop at a vertex 1 is positive and the loop
at a vertex 2 is negative. Since x2 = f1(x), it follows that the edge from vertex 2
to vertex 1 is positive.

Therefore, the local interaction graph G(F ′(0, 0)) is



28 Jian-Lang Dong

It contains a positive loop at a vertex 1.

Example 5.4. Let F : {0, 1}2→ {0, 1}2 be defined by

F(x) =
�

x̄1 x2
x1 x̄2

�
, (x ∈ {0, 1}2).

Let us compute the map F at each state x ∈ {0, 1}2 and the Boolean Jacobian
matrix F ′(0, 0). Then, we obtain F(0, 0) = (0, 0), F(0, 1) = (1, 0), F(1, 0) = (0, 1),
F(1, 1) = (0, 0), and so the Boolean synchronous dynamics for F has no attractive
cycles, but has a unique fixed point (0, 0) and a single non-attractive cycle
{(0, 1), (1, 0)}. Moreover,

F ′(0, 0) =
�

0 1
1 0

�
.

The local connectivity graph Γ(F ′(0, 0)) thus contains two edges, one from vertex
1 to vertex 2 and the other from vertex 2 to vertex 1. By definition of the local
interaction graph, we obtain that G(F ′(0, 0)) contains exactly one circuit (1, 2) of
length 2. As x = (0, 0), x1 = f1(x) and x2 = f2(x), Lemma 3.1 shows that this
circuit (1, 2) is positive.

Therefore, the local interaction graph G(F ′(0, 0)) is

It corresponds to a positive circuit of length 2.
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