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Abstract. The DNA sequences are huge in size and the databases are growing at an exponential rate.
For example, the human genome in raw format ranges from 2 to 30 Tera-bytes. The main reason for
this is the invention of new species and increasing number of DNA profiles. The growth of the DNA
affects the storage as well as bandwidth when these sequences need to be transferred. Applications
such as DNA profiling, Real time DNA crime investigation require access to the DNA sequences in
real time. The inherent property of DNA is that it contains many repeats which makes it highly
compressible. However, the applications mentioned not only require good compression ratio but also
needs faster compression. Multicores and GPUs can be used to perform the compression quickly. In
this paper, we propose a new algorithm with a focus on the throughput along with the compression
ratio. The algorithm scales well on GPUs and achieves a speedup of 11 on multi-cores and upto 23
on GPUs when run on M2070 Tesla card and upto 57 on K20 Kepler GPUs. We also extended this
algorithm such that it adapts to the input sequence depending on the number of consecutive repeats
and accordingly chooses the right algorithm which leads to a better compression.
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1. Introduction

In molecular biology, the genome consists of all the hereditary information for running and
maintaining an organism. This biological information contained in genome is encoded in
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the form of DNA. DNA chain is made of four bases: Adenine (A), Guanine (G), Thymine (T),
and Cytosine (C). When the cells divide to grow, every new cell needs a copy of the DNA to
function properly. So, DNA replicates itself before the cell divides. Due to this, the genomic
data increases constantly which leads to doubling of the DNA sequences. DNA also has many
repeats. This property can be used to compress the data.

General purpose compression algorithms such as gzip, bzip2 do not work well for the
DNA sequences since it consists of only 4 bases namely A, T, G and C [1]. As a result, these
algorithms expanded the DNA sequence instead of compressing it [2]. Other algorithms such
as Biocompress-2 [3], GenCompress [4], DNACompress [5], DNABIT [6] and GENBIT [7] have
been used in the recent years to compress the DNA sequences.

An important piece of information contained in DNA sequence is tandem repeats. But all
the algorithms take quadratic or more amount of time for searching those tandem repeats in a
huge DNA sequence [8]. Applications such as DNA profiling, Real time DNA crime investigation
require access to the DNA sequences in real time. So, the compression must be very quick. The
challenging problem is to achieve high throughput along with a better compression ratio. In
recent days, the evolution in processor architecture starting from dual-core to many cores helps
in achieving this challenge. Multi-cores and GPUs hold promise for faster processing. Therefore
any algorithm should be adaptable to such architecture in order to achieve good throughput. In
this paper, we address these issues by obtaining a better compression ratio at a high throughput
by using graphical processing units (GPUs) and multi-cores.

The rest of the paper is organized as follows: In Section 2, we briefly discuss the related
work. In Section 3, we discuss the details of our proposed algorithm. The adaptive version of the
algorithm is presented in Section 4. Section 5 gives the implementation details of our algorithm.
Section 6 describes the experimental setup. Section 7 discusses the results. Conclusion and
future work are dealt in Section 8.

2. Related Work

Grumbach and Tahi [3] proposed two lossless compression algorithms for DNA sequences,
namely BioCompress and BioCompress-2, making use of the Ziv and Lempel data compression
method [9]. BioCompress is based on the substitution of factors with shorter references to earlier
occurrences of identical factors or complementary factors (palindromes). It encodes a text on the
four letter alphabet A, C, G, T into a binary sequence. They proposed two methods. In the first
one [9], the occurrences of the factor to encode are searched in a window. The second one [10] is
based on a dictionary containing the already encoded factors.

BioCompress-2 finds both the exact and reverse repeats in the target sequence. It encodes
them by repeat length and the position of a previous repeat occurrence. If there is no significant
repetition then the arithmetic coding of order-2 is used to reduce the number of bits used. The
only difference between BioCompress and BioCompress-2 is the use of arithmetic coding.

Gencompress [4] is a one-pass algorithm that searches for the approximate matches.
This algorithm uses order-2 arithmetic encoding [2]. Gencompress detects the approximate
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complemented palindrome (A replaced by T and C replaced by G) in DNA sequences. For input
w, assume that a part of it, say v, has already been compressed, and the remaining part is u;
i.e., w = vu. GenCompress finds an “optimal prefix” of u such that it approximately matches
some substring in v so that this prefix of u can be encoded economically. After outputting the
code of this prefix, remove the prefix from u, and append it to the suffix of v. Continue the
process until u = ε where ε is an empty string.

There are many ways to approximate a string from others. GenCompress adopts a constraint
to limit the search. If the number of edit operations located in any substring of length k in the
prefix s of u for an edit operation sequence λ(s, t) is not larger than a threshold value b, then
it is considered that λ(s, t) satisfies the condition C = (k,b) for compression. In GenCompress,
search is done only for approximate matches that satisfy condition C. In this way, the search
space is limited. The average compression ratio is 1.7428 bits/bytes. Gencompress [4] achieves
higher compression ratios compared to Biocompress or Biocompress-2.

DNACompress [5] uses Lempel-Ziv compression scheme as BioCompress and BioCompress-2.
It finds all the approximate repeats including complemented palindromes and encodes
approximate repeat regions and non-repeat regions. It mainly concentrates on approximate
repeats. But searching all the approximate repeats that are optimal for compression is time-
consuming. So this algorithm uses a software tool named PatternHunter [11] which is used for
fast and sensitive homology search. PatternHunter is a search engine which provides all the
approximate repeats with highest score including complemented palindromes.

DNACompress mainly consists of 4 phases: Firstly, Run the PatternHunter and output all
the approximate repeats into a list A in the order of descending scores. Next, Extract a repeat r
with highest score from list A and add r into another repeat list B. Then Process each repeat in
A so that there’s no overlap with the extracted repeat r. If the highest score of repeats in A is
still higher than a pre-defined threshold then goto step 2. Else exit.

In order to recover an approximate repeat correctly the following information must be
encoded. One bit to show which kind of repeat it is, forward repeat or complemented palindrome.
A triple (l, i, j). It is used to copy a previous substring of length l starting at i to the current
position j; The total number of edit operations contained in this approximate repeat.

It also requires all the triples (e, o,b) where e indicates which kind of edit operation it is, o
means its location offset in the repeat and b a base character that will be used by a substitute
or insert edit operation. They are used to edit the copied substring. Instead of encoding each
edit operation separately, a consecutive region of the same edit operation (or say a block edit
operation) can alternatively employ a more efficient encoding method.

DNACompress checks each repeat to see whether it saves bits to encode. If not, it will be
discarded. At the end, all the remaining regions other than repeats are concatenated together
and then sent as input to a two-order arithmetic coder. The average compression ratio is 1.7254
bits/bytes.

GENBIT Compress algorithm [7] uses a little different method in which each input sequence
is divided into fragments of 4 characters each. Hence each fragment can be encoded in 8 bits
as each character is represented using 2 bits. If the consecutive fragments are same, then
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the specific 9th bit is set to 1. If the consecutive fragments are different, then the specific
9th bit is set to 0 for that 8 bit unique representation. This algorithm does not use dynamic
programming approach. It takes an input DNA sequence of length n and divides it into n/4
number of fragments. The remaining characters or bases (fragment length less than 4) are
assigned unique 2 bits (A = “00”, g = “01”, c = “10”, t = “11”). This algorithm explains about
different cases such as DNA sequence with same fragments, DNA sequence with different
fragments etc. The decoding process is just opposite to the encoding process where first the
given binary code is divided into fragments of 9 characters each. In each fragment, if the 9th bit
equals 1, then the corresponding combination is taken two times. Otherwise, it is just considered
once. This algorithm just searches and encodes exact repeats instead of searching and encoding
approximate repeats. This also works better for upto sequences of 8 lakh characters. The average
compression ratio for this algorithm is 1.727 bits/bytes with the best and worst cases being
1.125 bits/bytes and 2.238 bits/bytes respectively.

The literature shows that the existing algorithms concentrate mainly on compression ratio
whereas the proposed algorithm and its parallel implementation not only achieves decent
compression ratio but also has a better compress throughput.

Figure 1. Histogram showing the no. of occurrences of each consecutive repeat

3. Proposed Algorithm

3.1 GenCodex Compression Algorithm

The proposed method is efficient in compressing both repetitive and non-repetitive DNA
sequences. The input sequence is divided into fragments of 4 characters each.

In the first phase, each character is represented using two bits namely, A = 00, C = 01,
G = 10, T = 11. So each fragment is stored using 8 bits i.e., using just one byte. At the end of
this phase, we get the compressed sequence where 4 characters of the original sequence are
encoded into a single byte.

In the next phase, the fragments are represented using either one or two bytes. If
a fragment is not appearing consecutively, then a single byte is allocated using its 8-bit
unique representation. If a fragment is repeating two or more times, then the simple 8-bit
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representation is put in the first byte and the number of repetitions are represented in the
second byte. For every eight bytes of the compressed data, we use an extra byte referred as code
byte in which we set the corresponding bit to 1 if there is a repetition. So if a bit is 0 in the code
byte, only 1 byte is considered in the compressed sequence and if a bit is set to 1 in the code byte,
the next 2 bytes are considered together as part of single coding in the compressed sequence.

The proposed algorithm is named as GenCodex where x signifies the number of repetitions of
a fragment occurring consecutively in a sequence. In this paper, we discuss about 256 repetitions
occurring consecutively. The same can be extended if the repetitions occur 128, 64, 32, 16 times
etc.

Figure 2. Histogram showing the no. of occurences of each consecutive repeat

Best Case: Consider an input sequence consisting of 4080 characters where each fragment is
repeating 255 times consecutively. Since each fragment in the compressed sequence requires 2
bytes, we need a total of 8 bytes i.e., 64 bits for the compressed data and one byte (8 bits) for
the code byte used for this compressed data. So a total of 72 bits are required to represent the
compressed data.

tb = Number of bits.

sB = Total number of bytes.

Cr = Compression Ratio.

Cr = tb/sB = 72/4080= 0.017 bits/bytes.

Average Case: The repetitions of each fragment range from 0 to 255. A detailed analysis on DNA
sequences which will be discussed in the next section reveals that a fragment repeating for 3 or
4 times consecutively is more common than a fragment repeating for 255 times. In fact, this
analysis done by us shows that maximum of 14 consecutive fragment repeats occur in a DNA
sequence. The number of times each consecutive repeat is occurring can be seen in Figure 2.

So, for the average case analysis, probabilities are assigned suitably for each pattern. We
assigned high probability for 2, 3, 4 consecutive repeats and less probability for more number of
repeats such as 255. The compression ratio is 1.42 bits/bytes.

Worst Case: Consider an input sequence of length 32 bytes where no fragment is repeating.
A total of 72 bits are needed for representing the compressed data.

Cr = tb/sB = 72/32= 2.25 bits/bytes.
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The compression ratios with different algorithms for the best, average and worst cases are
shown in the Table 1.

Table 1. Compression Ratios for Different Algorithms (in Bits/Bytes)

Algorithm GENBIT DNABIT GenCodex

Best Case 1.125 1.04 0.017

Average Case 1.727 1.53 1.420

Worst Case 2.238 1.58 2.250

Though GenCodex supports 256 consecutive fragment repeats which is really huge, a detailed
analysis showed that the number of consecutive fragment repeats in various DNA sequences is
very less compared to 256. Initially, we set the maximum consecutive repeats to 100 and checked
for different data-sets. We checked whether these sequences satisfy this condition. Later, we
varied the size of this consecutive repeats. In this process it is revealed that the maximum
consecutive fragment (4 characters) repeats occur not more than 14 times. The number of
occurences of each consecutive fragment repeats can be seen in Figure 2. Due to this, some
extra bytes are used which is not necessary.

Since GenCodex mainly concentrates on the number of consecutive repeats, it depends on the
inherent biological property of the DNA sequence. This lead us to develop a new dynamic and
adaptive DNA sequence compression algorithm which chooses a suitable algorithm, dynamically
according to the biological properties of the input DNA sequence.

4. Adaptive DNA sequence Compression Algorithm

The compression techniques used on DNA sequences differs from the algorithms used on the
general data since the position and formation of a DNA sequence varies and it is dependent
on the biological properties of that particular genome. In a DNA sequence, there is a property
where A is a complementary pair of T and C is a complementary pair of G. This means that A
can be replaced with T but not with C or G and vice versa.

Figure 3. Adaptive compression algorithm for DNA sequences
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The proposed GenCodex algorithm is efficient in compressing both repetitive and non-
repetitive DNA sequences. One of the main reasons to propose a refined algorithm which is
adaptive to the DNA sequences is that the existing algorithms are not adapting themselves
to take advantage in using the inherent properties of the DNA. Some of the cases include
number of consecutive repeats being very less or ignoring some of the basic properties like
Complementary base pairs (Eg: A-T,G-C: ATGC TACG) and palindromes (Ex:ATTA ATTA),
which may lead to compression.

The cases explained above are not considered in GenCodex as it concentrates only on the
consecutive repeats. So GenCodex performance can be improved by considering the other cases
as well. This lead us to develop a new adaptive DNA sequence compression algorithm which
augments two more adaptive features to the proposed algorithm namely GenCodex.

It consists of two phases: In the first phase, the small subsequences or samples are taken
randomly from the input DNA sequence to find the number of consecutive repeats occurring
in the sequence. The sample subsequences are considered instead of the total input sequence
because the input sequence may be huge in size. This may take considerable amount of time just
finding the number of repeats which will reduce the time gained by compressing the sequences.

In the second phase, the selected samples are given to all the 3 modules namely GenCodex,
Complementary and Genbit. The Adaptive compression algorithm can be seen in the Figure 3.

Adaptive DNA sequence compression algorithm can be explained in the following steps:

4.1 Assess Expert System

An expert system is a computer system that emulates the decision-making ability of a human
expert [12]. Expert systems are designed to solve complex problems by reasoning about
knowledge, like an expert, and not by following the procedure of a developer as is the case in
conventional programming [13]. Expert systems is a form of AI software [14], [15], [16].

An expert system has a unique structure. It is divided into two parts, one fixed, independent
of the expert system: the inference engine, and one variable: the knowledge base. To run an
expert system, the engine reasons about the knowledge base like a human. Later, a third part
i.e, a dialog interface was added to communicate with users [17]. This ability to conduct a
conversation with users is called conversational.

Assess is a tiny expert system designed for the adaptive DNA sequence compression
algorithm which takes a decision on which module to choose for compression based on the
best results obtained for the given samples from the input sequence.

• Assess expert system is built using rule-based production language called CLIPS.

• The main working mechanism of this expert system is to take a call on optimal and best
compression algorithm for a given data set.

• Once the adaptive module receives the results from compression methods i.e., compression
ratios of 3 different algorithms. These results will be transferred to the Assess Expert
system.
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• These results will form knowledge base for the Assess expert system. The rule base and
fact base are loaded with the optimal compression ratios to choose a particular algorithm
for final compression.

• The priority level of a rule attribute can be assigned for some rules which focuses on the
relevance of inheritance of biological properties of dataset.

5. Implementation

Serial Implementation:

• In the first phase, each character is read from the file and is allocated two bits. By using
the bit-wise shift operations, four characters are encoded into a single byte instead of four
bytes.

• In the second phase, the fragments are allocated either a single byte or two bytes according
to the number of repetitions in the input sequence.

• But, there is a special case wherein we always set the 8th bit in a code byte to 0.

• As described earlier, there is one code byte for every 8 bytes of compressed data. Setting
the 8th bit in the code byte to 1 implies that there is a repetition in the 8th and 9th bytes
of the sequence and we need to allocate two bytes (occupying 8th and 9th bytes) in the
compressed sequence, but this 9th byte corresponds to second code byte which is already
allocated.

• In this case, the 8th bit in the code byte is set to zero and the 8th byte in the compressed
sequence represents just the 8-bit representation of the fragment.

• The same process repeats from the 9th byte onwards.

Since the input sequences are huge in size and the chunks of fragments are independent of each
other, there is a scope for parallelization.

Parallel implementation:

The proposed algorithm has been implemented on multi-cores as well as on GPUs.

5.1 Multi-Core

The algorithm is implemented using OpenMP on multi-core. The input sequence is distributed
among the cores available and each core finds the repeated fragments and compresses the data
allocating the bytes accordingly.

The algorithm is run on Lonestar where each node has 12 core M2070 card. The input
sequence is divided among these 12 cores equally. Each core maintains private variables so
that the cores does not have any race condition such as two cores updating the same variable
simultaneously. All the cores parallely compress their own share of data so that the time taken
for total sequence is much less compared to the sequential algorithm. At the end, the compressed
sequence is stored in a buffer. This buffer is a private variable where each thread waits for the
other to write into it. Finally, this is written into an output file.
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5.2 GPUs

The algorithm is implemented on GPUs using CUDA. The steps involved are as follows:

1. The resultant output array from the phase 1 is copied into the global memory of GPU
from the CPU host memory.

2. The kernel is launched with the number of threads and the blocks varying according to
the size of the given input sequence. For a small input sequence, we use threads starting
from 50 and as the size increases the number of threads launched increases upto 5000.

3. Each thread finds the repetitions and stores the result in a buffer in the global memory.

4. After all the threads finish their job, this buffer is copied from global memory to host
memory.

5. From this, the compressed data is finally written to an output file which is done
sequentially.

We have run the parallel version with varying number of threads and blocks to achieve the
best performance for given input sequence. It is found that the work is more if the number of
threads launched is around 50 to 1000 and the threads launched are more for the given input
sequence if they are more than 5000. The performance remains same as we increase the number
of threads beyond this limit. The optimal result which we achieved was by having 500 blocks
with 10 threads each. So we mainly concentrate on these sizes alone and discuss our results. In
results section, we briefly discuss about other sizes.

The Parallel implementation of the algorithm is done on NVIDIA Tesla M2070 GPU.
To further enhance the speedup of the parallel algorithm, we have also used the recently
released NVIDIA Kepler K20 GPU. Kepler K20 comes with enhanced performance improvement
in both single and double precision operations. This also showed a good improvement.

Figure 4. Compression throughput in Gb/Sec for different data sets (On Lonestar M2070 card)
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The throughput is calculated here in terms of the time taken to compress the whole data.
The compression throughput achieved when the algorithm is run on Lonestar with M2070
Tesla card for different data sets can be observed in the Figure 4. The maximum throughput
achieved is 14 GBPs. The data sets have been chosen with varying sizes. The throughput shown
reflects only the computation time. It does not include the time taken for transfering the data
between the host and the device. The compression throughput τ is the rate at which the data is
compressed.

τ= size of the input data/time taken (in sec.)

The throughput increases as the size of the input data increases. This is due to the fact that
the number of threads launched is directly proportional to the data size. As the number of the
threads increases, the greater is the utilization of the GPU. GPU power is extracted fully with
more than thousands of threads running in parallel. When the data size is small, a few threads
are created to compress the data which results in sub-optimal throughputs.

Similarly, the throughput achieved when the same data sets where run on Stampede with
k20 GPUs can be seen in the Figure 5. The maximum throughput achieved here too is 14 GBps.

Figure 5. Compression throughput in Gb/Sec for different data sets (On Stampede K20 GPU)

6. Experimental Setup

The serial code was run on Intel(R) Pentium(R) Dual core 2.20 GHz processor with 4GB RAM
on Ubuntu 10.04 LTS. The parallel code was run on Lonestar supercomputer (TACC) which
has over 22,000 cores with QDR InfiniBand networking (40Mb/s, sub-10us latency). Each core
runs at 3.3 GHz (Intel Xeon, 12 MB L3 cache) and has 24 GB, 1333 MHz RAM per 12-core node.
NVIDIA Tesla M2070 card with 448 cores and 6 GB global/device memory was used for GPU
runs.
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The parallel code was also run on Stampede supercomputer (TACC) which has over 1,00,000
cores with QDR InfiniBand networking (56Gb/s). Each core runs at 2.7 GHz (Intel Xeon, 20
MB L3 cache) and has 24 GB, 2701 MHz RAM per 16-core node. It has around 6400 compute
nodes configured with two Xeon E5-2680 processors and one Intel Xeon Phi SE10P Coprocessor
(on a PCIe card). These compute nodes are configured with 32GB of “host” memory with an
additional 8GB of memory on the Xeon Phi coprocessor card. It has also 128 compute nodes for
visualization and GPGPU processing each with a single NVIDIA KEPLER K20 GPU with 8GB
of on-board GDDR5 memory. NVIDIA K20 GPU with 8 GB global/device memory was used for
running the GPU code.

7. Results

7.1 GenCodex

The serial and parallel implementations of the algorithm were evaluated on data-sets of different
sizes. We noticed that our algorithm performs better if the consecutive repetitions are more
(upto 255 repetitions). Table 2 shows the compressed size in bytes for all the algorithms using
different data-sets.

Table 2. Size of the Compressed Sequence for Different Algorithms (in Bytes)

DNA Sequence Input size (in Bytes) GenCompress DNA Compress Genbit GenCodex
HSCOMT2 1700 436 416 392 377
HUMCYC1A 2206 560 540 516 496
HSU37106 2256 573 561 546 528
HSGTRH 3938 995 967 918 889
HUMGALK1A 7086 1703 1708 1691 1629
HSU01102 4280 1035 1052 986 950
HSC1INHIB 16309 3789 3960 3575 3465
HSCST4 3489 869 842 832 807
HUMA1ATP 4786 1200 1171 1110 1065
HSTNT2 8657 2052 2049 2038 1973
HUMRBPA 8682 2143 2116 2070 2000
HUMHSKPQZ 2334 619 591 564 544
HUMRETBLAS 175019 40183 41688 39059 37770
HUMTBGA 6275 1594 1541 1486 1441
HSAT3 13347 3189 3250 2987 2892
D87675 285457 66649 68519 64537 62384

The compression ratio remains same for both the serial and parallel versions of our algorithm.
We observed that the compression ratio of our algorithm is good when there are more repetitions.
Table 3 shows the compression ratios in terms of bits/byte for different algorithms.

The parallel implementation outperformed the serial implementation in terms of the
throughput (time taken to compute the data) for all the data-sets. The parallel version on
Lonestar achieved a speedup of upto 11 on a 12-core M2070 card and upto 23 on M2070 GPUs
for the data-sets used in our experiment. The results are shown in the Figure 6.
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Table 3. Compression Ratios for Different Data-Sets(In Bits/Bytes)

DNA Sequence Input Size (KB) GenCompress DNA Compress Genbit GenCodex
HSCOMT2 1.700 2.05 1.95 1.84 1.77
HUMCYC1A 2.200 2.03 1.95 1.87 1.79
HSU37106 2.250 2.03 1.98 1.93 1.87
HSGTRH 3.930 2.02 1.96 1.86 1.80
HUMGALK1A 7.000 1.92 1.92 1.90 1.83
HSU01102 4.200 1.93 1.96 1.84 1.77
HSC1INHIB 16.309 1.85 1.94 1.75 1.69
HSCST4 3.400 2.00 1.93 1.90 1.85
HUMA1ATP 4.786 2.00 1.95 1.85 1.78
HSTNT2 8.600 1.90 1.89 1.88 1.82
HUMRBPA 8.682 1.97 1.94 1.90 1.84
HUMHKPQZ 2.300 2.12 2.02 1.93 1.86
HUMRETBLAS 175.019 1.83 1.90 1.78 1.70
HUMTBGA 6.275 2.03 1.96 1.89 1.83
HSAT3 13.340 1.91 1.94 1.79 1.73
D87675 285.457 1.86 1.92 1.81 1.74

Figure 6. Speedup on multi-cores and GPUs (On Lonestar M2070 card)

We observe that as the data size increases, GPUs perform better compared to multi-cores.
This can be observed from the Table 4. This scalability is achieved because the work-load on the
threads increases as the data-size increases on the multi-core.

The parallel version when run on Stampede supercomputer achieved a speedup of upto 57
on K20 GPUs. The parallel version was run using 500 blocks with 10 threads each. This is the
optimal number of blocks for our algorithm as the performance decreases for other sizes as we
tested it with varying number of blocks from 50 to 5000. We observed a speedup for other sizes
as well but is not significant. The experiments show that the algorithm scales well on GPUs
and works better even for the huge sequences.

The time taken for different standard data-sets when run on Stampede Supercomputer
(NVIDIA Kepler K20 GPUs) can be observed from the Table 5.
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Table 4. Timings (in Milliseconds) on Multi-Core And GPUS on LONESTAR

Size of the Data Sequential Multi-core GPU (M2070)

175019 0.276 0.028 0.059
285457 0.456 0.047 0.056

44804864 8.682 1.970 1.940
89609728 141.401 13.700 10.573

179219456 283.237 27.440 17.355
358438912 567.532 57.225 30.268
716877824 1130.988 110.880 52.633

1433755648 2272.355 219.911 102.601

Table 5. Timings (in Milliseconds) and Speedup on GPUS on STAMPEDE

Size of the Data Sequential GPU (K20) Speedup

175019 0.683 0.049 13
285457 1.127 0.037 30

44804864 173.810 3.161 54
89609728 347.236 6.058 57

179219456 694.877 12.816 54
358438912 1388.381 24.799 55
716877824 2778.765 53.006 52

1433755648 5556.102 98.560 56

We can also observe the difference in the speedup level when the parallel code was run on
Lonestar (M2070 card) and on Stampede (K20 GPUs). There is a significant amount of speedup
on K20 GPU which leads to a very high throughput compression. The results for both can be
seen in the Figure 7.

Figure 7. Speedup on Lonestar M2070 and Stampede K20
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7.2 Adaptive DNA Compression Algorithm

Adaptive DNA compression algorithm mainly focuses on accurate compression by choosing the
compression algorithm based on the biological properties of the given input sequence. Biological
properties such as consecutive short repeats (4-mars) and (8-mars), long repeats upto 256 and
complementary base pairs, algorithms developed to compress the given input sequence based on
these properties. Compression algorithm is selected based on the effect of a particular biological
property on given input sequence.

7.2.1 Sampling & Selection of Algorithm

• Table 6 presents the sampling results of the Adapative DNA compression algorithm.

• In this Table 6, GenCodex, 2-Mar Consecutive fragment Compressor, Complementary
base pairs compressor are evaluated using input DNA sequence of varying sizes.

• Sampling is done on 10% of the data from the given input sequence, this sampling process
includes compressing the 10% data with all the three algorithms.

• A particular algorithm is selected by the expert system using the compressed sequence
sizes produced by the three algorithms during the sampling process.

• In Table 6, sampling is done using entire input sequence to show the consistency of the
sampling data and overall data.

• Table 6 presents results for 100% input data, the main reason for this is that it might
happen that a particular biological property occurs more in the selected sample of either
10% or 20% and It may not occur in remaining 90% or 80% of the data. This results in
poor compression.

• DNA sequence compression algorithm is selected based on its sampling results consistency,
here consistency means that if a particular algorithm performs for all the samples then
that particular algorithm is selected for compressing entire input sequence.

• For example, In Table 6, the first row presents input DNA sequence HSU1TA which
is sampled by selecting 10% of the data and it got compressed to 265, 289, 219 bytes
by GenCodex, 2-Mar and Complementary respectively, for 10% data Complementary
compressor works better.

• In the next step to check the consistency of Complementary property in given input
sequence, 20% of the data is selected randomly from HSU1TA.

• Compression results of 20% data i.e., 434, 472, 396 bytes when compressed using
GenCodex, 2-Mars and Complementary respectively. Once again Complementary property
occurs more in the HSU1TA sequence.

• The input DNA sequence HSU1TA can be compressed using Complementary compressor,
this results in good and optimal compression.

• When we executed all the three algorithms on 100% data of HSU1TA it is found that
Complementary compressor performs better than other two. In Table 6, the first row
presents 2063, 2038, 1825 compressed sequence sizes of HSU1TA for GenCodex, 2-Mar
and Complementary compressors respectively.
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• This shows that Complementary compressor dominates the performance even on entire
data set.

• Similarly data sets in Table 6 HUMACGT & HSHTUM1 performs better when we use
GenCodex & 2-Mar respectively. Results can be observe from Table 6.

Table 6. Adaptive DNA Compression Algorithm Sampling Results (in Bytes)

DNA Size of DNA GenCodex 2-Mar Complementary

10% 20% 100% 10% 20% 100% 10% 20% 100%

HSU 1TA 13347 265 434 2063 289 472 2038 219 396 1825

HUM ACGT 285457 5455 12176 64537 6231 128 50 64982 5861 13151 65996

HSHT UM1 89712156 2081 201 4162408 20161982 1963411 4011709 20003229 2192314 4034156 25181893

Table 7. Adaptive DNA Compression Algorithm Sampling Results (Compression Ratios (Bits/Byte))

DNA Size of DNA GenCodex 2-Mar Complementary

3% 5% 100% 3% 5% 100% 3% 5% 100%

HSU 1TA 13347 1.58 1.32 1.20 1.73 1.41 1.22 1.3 1.18 1.09

HUM ACGT 28545 7 1.52 1.7 1.8 1.74 1.80 1.82 1.64 1.84 1.85

HSHT UM1 8971 2156 1.85 1.89 1.79 1.75 1.78 1.78 1.95 1.79 2.24

8. Conclusions and Future Work

A new compression algorithm is proposed to compress the DNA sequences. The main focus
was on the throughput along with the compression ratio. As the number of consecutive repeats
increases, the algorithm achieves the best compression. If the fragments are repeating only
twice or there are no repetitions then the algorithm may not perform better. This lead us to
develop an adaptive DNA compression algorithm which takes samples from the given input
sequence and chooses the correct algorithm depending on the number of consecutive repeats.

The compression ratio remains same for both the serial and parallel versions. We noticed a
very good improvement in the throughput when the algorithm was implemented on multi-cores
and GPUs. We observed a speedup of 11 on multi-cores and 23 on GPUs when run on Lonestar
which has NVIDIA M2070 card and there is a significant improvement when the parallel version
is run on Stampede which has Kepler K20 GPUs with a speedup of upto 57 being achieved.
Experiments showed us a good scalability on GPUs for the standard data-sets. The results show
that our method achieves a good compression ratio along with better throughput compared to
other existing methods.

We are modifying the proposed algorithm in such a way that it can utilize the property of
dynamic parallelism of Kepler K20 GPUs. This results in achieving high throughput as GPU
threads themselves spawn new threads without communicating with the CPU. Also, we are
working further such that different CPU cores simultaneoulsy utilize the CUDA cores on a
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single Kepler GPU which increases GPU utilization and cuts down the CPU idle times. This
really makes our algorithm robust achieving a very high throughput.

We are also extending the proposed algorithm to RNA sequences for compression. It also
helps to calculate phylogeny. Also, the GPU implementation is used to solve the multiple-
sequence alignment problem and the work is in progress in this direction. This algorithm also
helps in reducing the time in searching databases especially when the sequences are really long.
A half-byte can be used instead of a full code-byte in order to save the space consumed by the
extra code-byte when there are no repetitions.
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