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A Class of q-ary 2-IPP Codes

Sudhir Batra and Parvinder Singh

Abstract Sufficient conditions in terms of distance for the existence of binary

2-frameproof codes are obtained. A new class of q-ary 2-IPP codes has been

explicitly constructed using latin square designs.

1. Introduction

Successive failure of copy prevention systems has caused copy detection systems

to become the most promising option to protect the intellectual property of

multimedia content. In copy detection, the merchant embeds an imperceptible

mark into the content before selling it. This mark, known as fingerprint (or

codeword), allows buyer identification. In fact, a fingerprint is a string over an

alphabet and a fingerprinting code is a collection of fingerprints. The fingerprint is

imbedded into digital objects such that it is not easy for a buyer to tamper with.

However, if one has multiple copies of the same object with different fingerprints,

he may compare the copies and detect where the marks are different and one might

be able to change the mark on the detected positions. In this way, pirates may not

only redistribute the copies illegally by changing fingerprints but can also frame

innocent users. To prevent this Boneh and Shaw [2] introduced c-frameproof codes

and c-secure codes. These codes are also available in the literature in more general

form, i.e. in the form of separating codes [4]. Stinson and Wei [14] obtained the

necessary and sufficient condition in terms of distance for the existence of binary

2-frameproof codes. In this paper, we also give two sufficient conditions for the

existence of binary 2-frameproof codes. However these conditions are obtained by

others in one form or the other but the form presented in this paper seems to be

somewhat related to the optimal size of the codes so obtained.
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Hollmann, Vanlint, Linnartz and Tolhuizen [6] introduced identifiable parent

property (IPP) codes. A code over q-alphabets has the w-identifiable parent

property if no coalition of size atmost w can produce an q-tuple that cannot be

traced back to atleast one member of the coalition. In this way, these codes are

strong form of codes as compared to frameproof codes. These codes have been

extensively studied in recent years. Using the relationships between IPP codes and

combinatorial strutures several explicit classes of IPP codes have been derived

[1, 3, 6, 11, 12, 13, 15]. In this paper, we use latin square designs to derive a

new class of 2-IPP codes.

2. Frameproof Codes

2.1. Here we recall some definitions and results of [2] to be used in further

discusion. These are summarized in (i)-(vii).

(i) Let Q be an alphabet of size q, representing the q different states of marks.

The letters in Q will be denoted by the integers from 1 to q.

(ii) A set T = {w(1), w(2), . . . , w(n)} ⊆ Ql will be called an (l, n)-code. The

codeword w(i) is assigned to user u(i), for 1≤ i ≤ n.

(iii) Let set T = {w(1), w(2), . . . , w(n)} be an (l, n)-code and C be coalition of users.

For i ∈ {1,2, . . . , l} we say that position i undetectable for C if the words

assigned to users in C match in their ith position.

(iv) Let set T = {w(1), w(2), . . . , w(n)} be an (l, n)-code and C be coalition of users.

Let R be the set of undetectable positions for C . The feasible set, F(C), is

defined as: F(C) = {w ∈ (Q ∪ (?))l s.t. w|R = wu|R} for some user u in C .

In otherwords, the feasible set contains all words which match the coalition’s

undetectable position ‘?’ (say).

(v) Marking Assumption. It states that any coalition of c-users is only capable of

creating an object whose fingerprint lies in the feasible set of coalition.

(vi) A code T is c-frameproof if every set W ⊂ T of size atmost c, satisfies

F(W)∩ T =W .

(vii) The distance d(w(1), w(2)) between two codewords w(1) = (x1, x2, . . . , x l ) and

w(2) = (y1, y2, . . . , yl) of a code of length l is the number of positions i in

which x i 6= yi for 1≤ i ≤ l.

2.2. Boneh and Shaw [2] obtained a sufficient condition for combining a c-

frameproof (l, p) code of size p and length l with a (L, N , d)p error-correcting code

of length L, size N and minimum distance d over an alphabet of size p to obtain

a c-frameproof code of length l L and size N . The idea of combining is to have a

c-frameproof code of size larger than the size p of the (l, p) code by increasing the

length from l to l L. This condition is given as follows.
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Let T be a c-frameproof (l, p) code and C be a (L, N , d)p error correcting code.

Let T ′ be the composition of T and C. Then T ′ is a c-frameproof code, provided

d > L(1− 1

c
).

Remark 2.3. Since the size of (l, p) code and the size of alphabet set Q in (L, N , d)p

error correcting code above is same i.e., p, we can define a 1-1 correspondence

between the set Q and the (l, p) code. Then the composition of T and C is obtained

by replacing alphabets of the codewords of (L, N , d) code by their corresponding

images, i.e., codewords of the (l, p) code. In Theorem 2.6, we prove that a binary

(L, N , d) error correcting code, where d > L
�

1− 1

2

�

= L

2
is itself a 2-frameproof

code. Before stating this theorem, we state the necessary and sufficient condition

for the existence of 2-frameproof codes obtained by Staddon, Stinson and Wei

[13, 14] as follows.

Theorem 2.4. A (l, n) code T is 2-frameproof if and only if d(w(i), w( j)) <

d(w(i), w(h)) + d(w(h), w( j)) for all i 6= j 6= h 6= i, where w(i), w( j), w(h) ∈ T.

Corollary 2.5. A (l, n) code T is 2-frameproof if dmax < 2dmin, where dmax =

max{d(w(i), w( j)) : w(i), w( j) ∈ T, i 6= j} and dmin = min{d(w(i), w( j)) : w(i), w( j) ∈

T, i 6= j}.

Theorem 2.6. Let T = {(x1, x2, . . . , x l) : x i ∈ {0,1}, 1 ≤ i ≤ l}. Then

(i) T is a 2-frameproof code, provided for any w(i), w( j) ∈ T, k ≤ d(w(i), w( j)) ≤

2k− 1 for some k ≤ l

2
.

(ii) T is a 2-frameproof code, provided for any w(i), w( j) ∈ T, d(w(i), w( j)) >
l

2
.

Proof. (i) Let w(i), w( j) ∈ T and d(w(i), w( j)) = m. If a user u(i) with codeword

w(i) colludes with another user u( j) with codeword w( j), then in view of the

marking assumption 2.1(v), a collusion codeword can be formed by doing changes

in all or some of those m positions where w(i) differs from w( j). Let w(r) be a

codeword obtained after making t changes in w(i). Then d(w(i), w(r)) = t and

d(w( j), w(r)) = m− t, where t < k or k ≤ t ≤ 2k−1. If t < k, then d(w(i), w(r)) < k.

Therefore, w(r) /∈ T . If k ≤ t ≤ 2k−1, then d(w(i), w(r)) = m−t ≤ 2k−k−1 = k−1.

Therefore, again w(r) /∈ T . This proves (i).

(ii) Can be proved similarly as part (i). �

Remark 2.7. The results in (i) and (ii) of this theorem can also be proved directly

by using Corollary 2.5 as follows:

(i) Take dmin = k and dmax = 2k− 1,

(ii) Take dmin >
l

2
and dmax = l.

Remark 2.8. For binary codes, the largest number of codewords of length l whose

mutual distance is d or more is denoted by A(l, d). The values of A(l, d) for different

values of l and d are available in the literature. One such table is given by Conway

and Sloane [5, 10].
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From this table, the values of optimal size of 2-frameproof codes arisen due

to part (ii) of Theorem 2.6 for certain lengths can be obtained. But the values of

optimal size of 2-frameproof codes which are arisen due to part (i) of Theorem 2.6,

are seemingly not available in the literature. It requires further investigation to

obtain the values of optimal size of these 2-frameproof codes for various lengths.

We now give examples of 2-frameproof codes (need not be optimal) due to

part (i) of Theorem 2.6, of length 6 and 10.

Example 2.9. (i) Let l = 6 and k = 2 < 6

2
. Then a 2-frameproof code is given as

follows.
















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

















(ii) Let l = 6. Choose k = 3 = 6

2
. Then a 2-frameproof code obtained by an

exclusive computation is as follows.
























0 0 0 0 1 0

0 0 0 1 0 1

0 1 1 0 0 0

0 1 1 1 1 1

1 0 1 0 0 1

1 0 1 1 1 0

1 1 0 0 1 1

1 1 0 1 0 0

























Example 2.10. (i) Let l = 10 and k = 2 < 10

2
. Then a 2-frameproof code is given

as follows.

(a)

































1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

































Example 2.11. (i) Let l = 10 and k = 4 < 10

2
. Then two 2-frameproof codes

obtained by an exclusive computation are as follows.
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(a)









































0 0 0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1

0 0 0 1 0 1 0 0 1 1

0 0 0 1 0 1 1 1 0 0

0 1 1 0 0 0 1 0 0 1

0 1 1 0 1 1 0 1 1 0

0 1 1 1 0 1 0 1 0 1

0 1 1 1 1 0 1 0 1 0

1 1 1 0 0 1 0 0 0 0

1 1 0 1 1 0 1 1 0 1

1 0 1 0 0 1 1 0 1 1









































(b)









































0 0 0 0 0 1 1 1 1 0

0 0 0 1 1 0 1 1 1 1

0 0 1 0 0 1 0 0 1 1

0 1 0 0 1 1 1 0 1 1

0 1 1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0

1 1 0 1 0 0 0 0 1 1

1 1 1 0 0 1 1 1 1 1

1 1 0 1 1 0 0 1 1 0

1 1 1 1 1 1 1 0 0 0









































3. IPP Codes

In this section we construct a new class of q-ary 2-IPP codes by using latin

square designs. First we define IPP codes [6] in general and Gossip codes [15] in

particular, which are in fact a class of IPP codes.

3.1. w-IPP code

Let Q be an alphabet of size q and Ql denote the set of l-tuples over Q. A code C ,

of length l and size N over Q, is a subset of size N of Ql and is called an (N , l,q)-

code. A codeword c in C is an l-tuple (c1, c2, . . . , cl ). For a subset X of C , we define

the set of descendents of X as

desc(X ) = {a ∈Ql : ai ∈ {x i : x ∈ X}, 1≤ i ≤ l}.

If a ∈ desc(X ), then x ∈ X is a parent of a. The set of descendents is a subset of

Ql that can be constructed by a coalition of users who have codewords in X . For a

code C , define descw(C) = {a ∈Ql : a ∈ desc(X ), X ⊂ C , |X | ≤ w}.

A w-IPP code is a code with the property that for all words in descw(C) at least

one parent can be found.
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In view of the above definition of IPP code, we restate the marking assumption

as follows:

3.2. Marking Assumption

(i) Colluders can make changes only at detected positions.

(ii) At a detected position, colluders can use one of the alphabet symbols

matching with any one of their codewords at that position.

3.3. Gossip Codes

These are w-IPP codes, which can identify at least one user involved in creating

an illegal copy under the above marking assumption, when w users collude. The

construction of c-Gossip Codes by using t-designs was introduced in [7] and [8]. In

[15] Gossip Codes were constructed with minimum possible code length specified

for these codes (see [8]) in terms of alphabet size q, number of codewords M

and collusion size c. In this paper a new class of q-ary 2-IPP codes, where q > 3

is an even number, has been explicitly constructed using latin square designs. We

now give the construction of Gossip Codes presented in [8]. Let B(M ,q) be the

0/1-matrix consisting of l columns and M rows such that each column is created

by placing q − 1 ones and M − q + 1 zeros. The parameters q and M are chosen

such that q ≥ 3 and M ≥ q+ 1. The codeword matrix G(M ,q) is constructed from

B(M ,q) by replacing the q− 1 ones in each column, with the q− 1 different non-

zero symbols of Q and retaining the zeros unaltered. The code matrix G(M ,q) is

called a Gossip Code and each column of this matrix is called a gossip column. For

example, 2-Gossip(7,7,4) code is given by the following matrix.





















1 1 1 0 0 0 0

2 0 0 1 1 0 0

3 0 0 0 0 1 1

0 2 0 2 0 0 2

0 3 0 0 2 2 0

0 0 2 3 0 3 0

0 0 3 0 3 0 3





















Remark 3.1. The tracing method is based on the fact that every illegal fingerprint

contains at least one non-zero symbol. Since every non-zero symbol appears

exactly once in a gossip column. Hence this non-zero symbol traces at least one

of the culprit.

3.4. Some Combinatorial Structures

In this section, we recall definitions of some structures used for the construction

of 2-IPP codes (for ref. see [9]).
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(i) Latin Square Design. Let X be a set of n elements {x1, x2, . . . , xn}. A latin

square of order n is an n× n array of elements of X such that each row and

each column of array contains each element of X exactly once.

(ii) Perfect Hash Family. An (n, m, w) perfect hash family is a set of functions

F such that f : {1,2, . . . , n} → {1,2, . . . , m} for each f ∈ F , and for any

X ⊆ {1,2, . . . , n} such that |X | = w, there exists at least one f ∈ F such that

f |X is one-to-one. When |F | = N , an (n, m, w)-perfect hash family will be

denoted by PHF (N ; n, m, w) can be depicted as an N×n matrix with enteries

from {1,2, . . . , m}, having the property that in any w columns there exists at

least one row such that the w enteries in the given w columns are distinct.

(iii) Separating Hash Family. An (N ; n, m) hash family F of N functions f :

{1,2, . . . , n} → {1,2, . . . , m} is called an (N ; n, m, w1, w2) separating hash

family denoted (N ; n, m, w1, w2)-SHF if for any two disjoint subsets X , Y of

{1,2, . . . , n} and |X | = w1 and |Y | = w2 there is a function f in F such that

f (X ) and f (Y ) are distinct.

3.5. A Class of q-ary 2-IPP Codes: Construction

Let Q = {0,1,2, . . . , r} be a set of alphabets, where r (= q − 1) > 2 is an odd

number. We now use the following steps for the construction.

(I) Firstly we construct a latin-square design in which all the symbols on the

main diagonal are distinct. For this, we use a recursive method described

below:

(i) First row of the design consists of all the non-zero symbols of Q taken

in any order. Let it be (a1, a2, . . . , ar).

(ii) The elements of the second row are obtained by applying the

permutation f , on the elements of the first row, given as:

f : {a1, a2, . . . , ar} → {a1, a2, . . . , ar} such that f (ai) = ai+1, 1 ≤ i ≤

r − 1 and f (ar) = a1

(iii) The elements of the third row are obtained by permuting the elements

of the second row in the same manner as the elements of the first

row were permuted to obtain the second row. Following this recursive

procedure, we can obtain rth row of the matrix from (r − 1)th row.

The resulting r× r matrix is a latin square design of order r having the

additional property of distinct elements on the main diagonal. Let this

matrix be denoted by M1 = [ai j]r×r

(II) We construct a matrix M3 of order r × 2r using the matrices M1 above and

M2 =













a11 0 0 · · · 0

0 a22 0 · · · 0
...

...
...

...

0 0 0 · · · ar r













by placing the columns of the matrices

M1 and M2 at alternate positions, starting from the first column of M1,
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i.e., at the first position the column (a11, a21, . . . , ar1)
t of M1, at the

second position place the column (a11, 0, 0, . . .)t of M2, at the third position

place the column (a12, a22, . . . , ar2)
t of M1, at the fourth position place

the column (0, a22, 0, . . . , 0)t of M2. Continuing like this place the column

(ar1, ar2, . . . , ar r)
t of M1 at (2r−1)th position and the column (0,0, . . . , ar r)

t

of M2 at 2rth position. The resultant matrix so obtained is given below.

M3 =













a11 a11 a12 0 0 0 · · · a1r 0

a21 0 a22 a22 0 0 · · · a1r 0
...

...
...

...
...

ar1 0 ar2 0 0 0 · · · ar r ar r













(III) We now construct a matrix M5 of order 2r × 2r using the matrices M3

and M4 =













a11 0 0 a12 · · · 0 a1r

0 a21 a22 0 · · · 0 a2r

...
...

...
...

0 ar1 0 ar2 · · · ar r 0













by placing the rows of

these matrices at alternate positions, starting from the first row of M3, i.e.,

at the first position place the row (a11, a11, a12, 0, . . . , a1r , 0) of M3, at

the second position place the row (a11, 0, 0, a12, . . . , 0, a1r) of M4, at the third

position place the row (a21, 0, a22, a22, . . . , a2q, 0) of M3 and at the fourth

position place the row (0, a21, a22, 0, . . . , 0, a2r); continuing like this, place

the row (ar1, 0, ar2, 0, . . . , ar r , ar r) of M3 at (2r − 1)th position and

(0, ar1, 0, ar2, . . . , ar r , 0) at 2rth position The matrix M5 so constructed is as

follows.

M5 =























a11 a11 a12 0 a13 0 . . . a1r 0

a11 0 0 a12 0 a13 . . . 0 a1r

a21 0 a22 a22 a23 0 . . . a2r 0

0 a21 a22 0 0 a23 . . . 0 a2r

...
...

...
...

ar1 0 ar2 0 ar3 0 . . . ar r ar r

0 ar1 0 ar2 0 ar3 . . . ar r 0























.

Finally, augment a row (a11, 0, a22, 0, . . . , ar r , 0) with this matrix as a

(2r + 1)th row to obtain the desired matrix of order (2r + 1)× 2r.

We consider the resulting matrix M = [ci j](2r+1)×(2r) a Hash family in which

a column represents the values of a Hash function corresponding to the values

1,2, . . . , 2r + 1. These columns are denoted by h1,h2, . . . ,h2r . The rows of this

matrix are considered as (2r + 1) codewords those may be assigned to (2r + 1)

users. These rows(users) are denoted by u1,u2, . . . ,u2r+1.

We prove that the collection of these (2r + 1) codewords is a 2-IPP code and for

proving this, it suffices to prove the Theorem 3.8 in wake of the following theorem

obtained in [6].
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Theorem 3.2. Let M be the matrix representing an (N , n,q) code C. Then C is a

2-IPP code if and only if M is simultaneously an (N , n,q, 3)-PHF and an (N , n,q, 2, 2)-

SHF.

Theorem 3.3. The matrix M above represents a (2r, 2r + 1,q, 3) perfect hash

family(PHF) and a (2r, 2r + 1,q, 2, 2) separating hash family (SHF).

Proof. Using Definition 3.4(ii), for proving that M represents a (2r, 2r + 1,q, 3)

PHF, it suffices to describe those rows which are having distinct elements in any

of the three columns of the matrix M and for this Table 1 is provided. The first

column of table contains all possible combinations of three columns of the matrix,

the second column describes the corresponding rows having distinct elements in

the chosen columns and 1≤ i, j, k ≤ r; i 6= j

Table 1

Columns Rows

h2i−1, h2 j−1, h2 j u2k−1 for all k 6= j, u2i

h2i, h2 j−1, h2 j u2i−1; u2k, k 6= i

h2i−1, h2 j−1, h2k−1 u2k−1 for all k

h2i, h2 j , h2k u2k for all k

h2i, h2 j , h2k−1 u2i−1; u2 j−1; u2k for all k 6= i

h2i−1, h2 j−1, h2k u2k−1 for all k; u2i; u2 j

Using Definition 3.4(iii), for proving that M represents a (2r, 2r+1,q, 2, 2) SHF,

we give the following Table 2 in which it is revealed that there exists atleast one

hash function h for any two subsets X and Y of the set {1,2, . . . , 2r + 1} such that

with |X | = 2 = |Y |, X ∩ Y = φ implies that h(X ) ∩ h(Y ) = φ. The last column of

the table describes these functions corresponding to all possible combinations of

the above said subsets X and Y of {1,2, . . . , 2r + 1} listed in the first two columns

and 1≤ i, j, k ≤ r; i 6= j.

This proves the theorem. �

4. Decoding Algorithm

(1) Since for 1 ≤ i, j ≤ r, every column h2 j contains the non-zero symbols ai j

(i 6= j) respectively in the rows u2i and the symbol a j j in the row u2 j−1.

Therefore, a illegal codeword, made by the coalition of two users, containing

ai j at 2 jth position indicates that u2i(i 6= j) and u2 j−1(i = j) are the parents of

the codeword.
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Table 2

A B Function(s)

{2i− 1, 2i} {2 j− 1, 2 j} h2i−1(A) = {aii}, h2i−1(B) = {0, a j i}

h2 j−1(A) = {a j j}, h2 j−1(B) = {0, ai j}

{2i− 1, 2 j} {2 j− 1, 2i} h2i(A) = {aii , a j i}, h2i(B) = {0}

h2 j(A) = {0}, h2 j(B) = {a j j , ai j}

{2i− 1, 2 j− 1} {2i, 2 j} h2k−1(A) = {aik, a jk}, h2k−1(B) = {0}

h2k(A) = {0}, h2k(B) = {aik, a jk} for all k 6= i, j

{2r + 1, 2i− 1} {2 j− 1, 2 j} h2k−1(A) = {aik, akk}, h2k−1(B) = {a jk, 0} for all k 6= j

{2r + 1, 2i} {2 j− 1, 2 j} h2i−1(A) = {aii}, h2i−1(B) = {0, a j i}

{2r + 1, 2i− 1} {2i, 2 j− 1} h2k−1(A) = {aik, akk}, h2k−1(B) = {0, a jk} for all k 6= i, j

h2 j(A) = {0}, h2 j(B) = {ai j , a j j}

{2r + 1, 2i− 1} {2i, 2 j} h2k−1(A) = {aik, akk}, h2k−1(B) = {0}

h2k(A) = {0}, h2k(B) = {aik, a jk} for all k 6= i, j

{2r + 1, 2i} {2i − 1, 2 j− 1} h2k−1(A) = {akk, 0}, h2k−1(B) = {aik, a jk} for all k 6= i, j

{2r + 1, 2i} {2i − 1, 2 j} h2i(A) = {aii , 0}, h2i(B) = {aii , a j i}

(2) For 1 ≤ i, j ≤ r, every column h2 j−1 contains the non-zero symbols ai j(i 6= j)

respectively in the rows u2i−1. Therefore, a illegal codeword containing ai j

(i 6= j) at (2 j−1)th position indicates that u2i−1 is the parent of the codeword.

(3) Since the codewords with non-zero symbols at the even positions have been

discussed in (1) and non-zero symbols of the form ai j(i 6= j) at the odd

positions have been discussed in (2). Further, observe that codeword having

all zero’s is not possible by the coalition of any two users. Therefore, the only

illegal codewords which are left to be considered contain the symbols aii at

one or more (2i−1) positions, where 1≤ i ≤ r. For this consider the following

observations from Table 2

(i) For any two rows u2i−1, u2 j−1 there exists a function h2k−1 for all k 6= i, j

such that h2k−1(2i− 1) = aik and h2k−1(2 j− 1) = a jk.

(ii) For any two rows u2i−1, u2 j( j 6= i) there exist functions h2i and h2 j−1

such that h2i(2i − 1) = aii and h2i(2 j) = a ji .

From these observations we conclude that the user u2i is the parent of the

codeword in which aii appears at one (2i − 1)th position and u2r+1 is the

parent of a codeword in which aii ’s appear at two or more (2i−1)th positions.
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Example 4.1. Let q = 4. Using the method of construction given in 3.5, the q-ary

2-IPP(6,7,4) code obtained is as follows.

















1 1 3 0 2 0

1 0 0 3 0 2

3 0 2 2 1 0

0 3 2 0 0 1

2 0 1 0 3 3

0 2 0 1 3 0

















5. Conclusions

(1) we see in Example 2.9 that for k = 2, l = 6, size of the code is 6 and for k = 3,

l = 6, size of the code is 8. We see in Example 2.10 that for k = 2,l = 10, size of

the code is 10 and for k = 4,l = 10, size of the code is 12. Using Table(see [5]

and p. 26 of [10]), we observe that the optimal size of frameproof codes arisen

due to part (ii) of Theorem 2.6, for l = 6 and l = 10 is respectively 4 and 6.

This shows that for these lengths the respective optimal size of code due to part

(i) of Theorem 2.6 is more than that of code due to part (ii) of Theorem 2.6. It

requires further investigation to see whether it happens in general. Moreover,

the optimal size of code due to part (i) of Theorem 2.6 seems to be depending

on the value of k. This fact also requires further investigation for finding the

optimal size of a code in general.

(2) Unlike Gossip Codes, 2-IPP codes defined in this paper contains non-zero

symbols appearing more than once in certain columns.

(3) In the construction of 2-IPP codes (see Section 3.5) a restriction on q to be an

even number is imposed. However one can also construct 2-IPP codes when q

is odd. For example, if q = 5 then M1 is given by











1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4











(4) Comparing the parameters of the 2-IPP(6,7,4) code(due to construction 3.5)

given in Example 4.1 with the parameters of 2-Gossip(7,7,4) code (see

Section 3.3) we see that the alphabet size is same in both the codes and the

size of both the codes is also same, i.e., 7. But length of the code given in

Example 4.1 is shorter than that of 2-Gossip(7,7,4) code. Now since both the

codes are 2-IPP codes, therefore due to shorter length, this particular 2-IPP

code which is due to the construction discussed in this paper is better than

2-Gossip(7,7,4) code.
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