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Absolute Area Approximation in Channel Routing is NP-Hard

Rajat Kumar Pal

Abstract. The computational complexity of minimizing area of routing in two-
and three-layer channels is known to be NP-hard [9, 13]. In this paper we
establish the result of computing an absolute approximate solution for no-dogleg
two-layer VH channel routing is NP-hard. This result holds for channels with
only two-terminal nets, where we impose a restriction of a partition of nets, such
that the nets of the same class in the partition are to be assigned to the same
track in any routing solution. We have proved the NP-hardness of the absolute
area approximation problem for channels with nets having a bounded number of
terminals per net. The later results have also been extended for routing using
restricted doglegging. All the problems considered above for the two-layer VH
routing model remain NP-hard even in the three-layer HVH routing model.

1. Introduction

In VLSI layout design it is required to realize a specified interconnection among
different modules using minimum possible area. This is known as the routing
problem. There exist several routing strategies for efficient interconnection among
different modules. One of the most important types of routing strategies is channel
routing [5, 6, 7, 10, 11, 15]. A channel has two open ends, the left and right
sides of the rectangle. The other two sides (viz., the upper and lower sides of
the rectangle) have two rows of terminals. The terminals are aligned vertically in
columns. A set of terminals that need to be electrically connected together is called
a net. A subnet of a net is a subset of the set of terminals of the net. Typically,
the connections required are specified as two equal sized lists of numbers, one for
the terminals of the upper row of the channel and the other for the terminals of
the lower row of the channel. The size of these lists is the number of columns in
the channel. The terminals of the same net are assigned the same number. The
unconnected terminals are assigned number zero.

Throughout the paper we consider the reserved layer Manhattan routing model,
where only horizontal and vertical wire segments are used for interconnecting
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the nets, and the wire segments are assigned to the respective layers [7, 10, 15].
The layer that has only horizontal (vertical) wire segments is called a horizontal
(vertical) layer H (V ). The connection between a horizontal and a vertical wire
segment of the same net in two such adjacent layers is achieved using a via hole.

Often in order to obtain a feasible routing solution or a solution with fewer
numbers of tracks, the horizontal wire segment of a net is split into two (or more)
parts and assigned to different tracks. This kind of routing is known as dogleg
routing [5]. In no-dogleg routing no such splitting of horizontal wire segments is
allowed, and it needs less via holes. If the route for a net is allowed to dogleg only
in those columns in which it contains a terminal, then it is called a restricted dogleg
route, otherwise it is known as an unrestricted dogleg route. In this paper we study
the issues of establishing results on approximate area minimization for two- and
three-layer no-dogleg and restricted dogleg routing only.

1.1. Preliminaries and Basic Definitions

The channel routing problem (CRP) is the problem of computing a feasible route
for the nets so that the number of tracks required (and hence the channel area) is
minimized. We say that a routing solution is feasible if all the nets can be assigned
without any conflict. We assume that in a feasible routing solution, the routing
wires do not extend beyond the left and right ends of the channel. Therefore,
in order to minimize the routing area, the horizontal wire segments of the nets
need to be distributed amongst a minimum number of tracks. This process of
assignment of the horizontal wire segments to tracks is guided by two important
constraints viz., the horizontal constraints and the vertical constraints. Let Li (Ri)
be the leftmost (rightmost) column position of net ni , then Ii = (Li , Ri) is known
as the interval or span of the net. Suppose we use a single horizontal wire segment
for routing each net. Then, this wire segment spans the entire interval Ii of net
ni . So, routing the nets amounts to assigning intervals to horizontal tracks of the
channel. The horizontal constraints determine whether two intervals Ii and I j of
two different nets ni and n j , respectively, are assignable to the same track.

Vertical constraints determine the order in which the intervals should be
assigned from top to bottom across the channel. Suppose we have a column in
a channel with a terminal of net ni on the top and a terminal of net n j (n j 6= ni) at
the bottom. Then, in order to assign the vertical wire segments of the nets in the
column we must keep a gap of at least one track so that these two wire segments
do not overlap. In other words we can say that if the horizontal wire segment of
net ni is assigned to track t i and the horizontal wire segment of net n j is assigned
to track t j , then t i is a track nearer the top row than track t j .

These two constraints are represented by two important constraint graphs viz.,
the horizontal constraint graph (HCG) and the vertical constraint graph (VCG),
respectively [10, 15]. Horizontal constraints can be represented using an HCG,
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HC = (V, E), where a vertex vi ∈ V corresponds to interval Ii of net ni in the
channel. An undirected edge {vi , v j} ∈ E, if the intervals Ii and I j , corresponding
to the nets ni and n j , intersect at a column. An undirected edge {vi , v j} in the HCG
indicates that the corresponding intervals Ii and I j are horizontally constrained,
and are not assignable to the same track in the channel.

The local density of a column is the maximum number of nets passing through
the column. The channel density (or only density of a channel) is the maximum
of all the local densities. We denote channel density by dmax . A channel of density
dmax has at least one column spanned by dmax nets. Each of these dmax nets must
be put in distinct tracks of the same horizontal layer.

We often represent horizontal constraints by the complement of the HCG.
We call this graph the horizontal non-constraint graph (HNCG) and denote it by
HNC = (V, E′), where V is the set of vertices corresponding to the intervals, and
E′ = {{vi , v j}|{vi , v j} 6∈ E} [10]. A set of vertices of a graph such that each pair of
vertices in the set has an edge between them is called a clique. Note that a clique
of the HNCG corresponds to a set of non-overlapping intervals that may safely be
assigned to the same track in a routing solution.

The VCG, V C = (V, A) is constructed to represent the vertical constraints. Here
a vertex vi ∈ V corresponds to interval Ii of net ni in the channel. A net whose
corresponding vertex in the VCG is incident to a directed edge is said to be vertically
constrained. Suppose we wish to assign two nets, ni and n j to tracks of the same
horizontal layer. A directed edge (vi , v j) in the VCG indicates that the net ni has
to connect a top terminal and the net n j has to connect a bottom terminal at the
same column position. Therefore, interval Ii must be assigned to a track above the
one to which interval I j is assigned. For an acyclic VCG we denote the length of
the longest path in the VCG by vmax , where vmax is equal to the number of vertices
belonging to the path. Thus the minimum number of tracks required to route a
two-layer channel is max(dmax , vmax).

We say that a multi-layer routing solution is a density routing solution, if it
requires ddmax/ie tracks where i is the number of horizontal layers. Note that
ddmax/ie is a lower bound on the number of tracks required to route a channel
of density dmax .

1.2. Existing Results and Our Contribution

Area minimization is the key objective in channel routing. Since the problem
of minimizing area in two-layer VH and three-layer HVH channel routing is
known to be NP-hard [9, 13], several heuristics for area minimization have
been proposed, which generate routing solutions for several standard benchmark
channels within a small number of tracks more than the optimal number required
to route those channels[3, 4, 7, 11, 12, 15]. Even though most of these heuristics
run in polynomial time, it is not known whether there exists a polynomial time
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algorithm that computes a routing solution for any given instance of the CRP
within a constant number of tracks more than the optimal number required for
that instance. Such an algorithm is called an absolute approximation algorithm.
In this paper we have established that the problem of computing an absolute
approximate solution for no-dogleg two-layer VH routing is NP-hard. This implies
it is unlikely that there is a polynomial time absolute approximation algorithm for
area minimization.

There are very few NP-hard optimization problems whose absolute
approximations can be computed in polynomial time. One problem is that of
determining the minimum number of colours needed to colour a planar graph
[8]. Determining if a planar graph is three colourable is NP-hard. However, all
planar graphs are four colourable. Another problem is the maximum programs
stored problem [8]. Assume that we have n programs and two storage devices,
say disks. Let li be the amount of storage needed to store the ith program. Let L
be the storage capacity of each disk. Determining the maximum number of these
n programs that can be stored on the two disks (without splitting a program over
the disks) is NP-hard. However, by considering programs in order of nondecreasing
storage requirement li , we can obtain a polynomial time absolute approximation
algorithm. The NP-hardness of computing absolute approximations for a problem
depicts the degree of hardness of the problem. The results of NP-hardness of
absolute approximation problems derived in this paper depict that channel routing
is indeed a very hard computational problem.

Computational problems become easier to solve for simpler inputs and
consequently, proving intractability results becomes harder. So far we have
considered channels with multi-terminal nets that have virtually unlimited number
of terminals per net. A natural question is whether the absolute area approximation
problem is NP-hard for channels with bounded degree nets. A net with a bounded
number of terminals is known as a bounded degree net. We have proved the
NP-hardness of the absolute area approximation problem for channels with nets
having a maximum of five terminals per net.

We have also proved that computing an area absolute approximate solution is
NP-hard in the no-dogleg routing model for channels with two-terminal nets under
a certain restriction. The restriction imposed is that nets must be assigned to tracks
in pre-specified groups. The motivation for such a restriction of groupings of nets
(in their assignment to tracks) stems from practical design issues in VLSI, where it
is preferable to group certain nets into the same track provided their spans do not
overlap.

All the problems considered above for the two-layer VH routing model remain
NP-hard even in the three-layer HVH routing model. The above results have also
been extended for routing using restricted doglegging.
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1.3. Organization of the Paper

The paper is organized as follows. In Section 2, we prove that the problem of
computing a k-absolute approximate solution for channels with multi-terminal nets
in the no-dogleg routing model is NP-hard. In Section 3, we prove that the problem
of computing a k-absolute approximate solution for channels with multi-terminal
nets in the restricted dogleg routing model is NP-hard under a certain restriction.
In Section 4, we prove that the problem of computing a k-absolute approximate
solution for channels with bounded degree nets in the no-dogleg routing model is
NP-hard. In Section 5, we conclude the paper with a few remarks.

2. Absolute Approximation for Two-Layer No-Dogleg Routing

We know that the problem of routing a channel with two-terminal nets using a
minimum number of tracks in the reserved two-layer no-dogleg Manhattan routing
model has been shown to be NP-hard by LaPaugh [9]. Consequently, the problem
of routing a channel with multi-terminal nets using a minimum number of tracks
in the reserved two-layer restricted dogleg Manhattan routing model is also NP-
hard. The two-layer channel routing problem remains NP-hard even if unrestricted
doglegging is permitted [14]. So, it is unlikely that there exist polynomial time
algorithms for minimizing channel area. A natural question arises: Is there a
polynomial time absolute approximation algorithm for two-layer no-dogleg channel
routing? In this section, we prove that the problem of computing an absolute area
approximate solution in the no-dogleg two-layer VH routing model is NP-hard. We
use a reduction from the well-known problem TNVHK [9], of computing a routing
solution of minimum number of tracks for a given instance of two-terminal nets of
the two-layer CRP. The problem TNVHK is as follows.

Problem. Two-terminal No-dogleg VH channel routing (TNVHK).

Instance. Two m element vectors TOP and BOTTOM containing the terminals
of n ≤ m two-terminal nets assigned to the channel, and a number k of tracks
between TOP and BOTTOM.

Question. Is there a legal wiring of the channel in the no-dogleg VH routing model
of interconnect using no more than k tracks?

TNVHK is a kind of CRP for which no known polynomial time algorithm finds the
optimal solution for all instances. Consequently, note that the problem of routing
a channel with multi-terminal nets using a minimum number of tracks in the
reserved two-layer restricted dogleg Manhattan routing model (MRVHK) is also
NP-hard. It is easy to see that MRVHK reduces to TNVHK by restricting the number
of terminals for each net to two [9]. The problem MRVHK is as follows.

Problem. Multi-terminal Restricted dogleg VH channel routing (MRVHK).
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Instance. Two m element vectors TOP and BOTTOM containing the terminals
of n ≤ m multi-terminal nets assigned to the channel, and a number k of tracks
between TOP and BOTTOM.

Question. Is there a legal wiring of the channel in the restricted dogleg VH routing
model of interconnect using no more than k tracks?

Consider the following approximation problem MNVHAA1: Given a channel
specification of multi-terminal nets, compute a two-layer no-dogleg routing solution
whose number of tracks is at most one more than the minimum number of tracks
required for the given instance. In other words, we wish to compute a 1-absolute
approximate solution for two-layer no-dogleg routing. We show that the problem
MNVHAA1 is as hard as the problem TNVHK by a polynomial transformation from
TNVHK to MNVHAA1.

Theorem 1. The problem MNVHAA1 of computing a two-layer no-dogleg routing
solution, whose number of tracks is at most one more than the minimum number of
tracks required for a given channel specification of multi-terminal nets, is NP-hard.

Proof. To show that MNVHAA1 is NP-hard, we consider the following reduction
from TNVHK to MNVHAA1. We construct an instance I ′ of MNVHAA1 from any
instance I of TNVHK using a polynomial time transformation. Let t be the
minimum number of tracks required for routing the instance I . We construct the
instance I ′ in such a manner that the minimum number of tracks required to
route I ′ is 2t + 1. Since 2t + 1 tracks are sufficient for routing I ′, the 1-absolute
approximation question for I ′ can be stated as computing a routing solution for I ′

within 2t + 2 tracks. We show that I has a t-track solution if and only if I ′ has a
2t + 2 tracks solution, thereby showing that MNVHAA1 is as hard as TNVHK.

Let the number of nets in I be n and the length of the channel in I be m. We
construct I ′ by duplicating the channel specification of I into two groups A and
B, each group containing n nets. This gives 2n nets spread over 2m columns in
I ′. Group A consists of one copy of I having n two-terminal nets in the first m
columns of I ′. Group B also has a copy of I having n two-terminal nets in the last
m columns of I ′. The construction of I ′ is such that in any routing solution for
I ′, any net of group A is assigned to a track above the track to which any net of
group B is assigned. In order to achieve this separation, we add one additional net
s, called the separator net, as follows. For each net ai of A and bi of B, 1 ≤ i ≤ n,
we could have introduced vertical constraints (ai , s) and (s, bi), in order to achieve
the separation. However, it is sufficient to introduce such vertical constraints for
nets ai of A whose corresponding nets in I are sink vertices in the VCG of A and for
nets b j of B whose corresponding nets in I are source vertices in the VCG of B. Let
p (q) be the number of such sink (source) nets in I . Therefore, introducing only
p+ q new columns in I ′ we can realize the required separation. So, I ′ has 2n+ 1
nets and 2m+ p+q columns (see Figure 1). This completes the construction of I ′.
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Figure 1. The constructed instance I ′ of multi-terminal nets, where
ai ∈ A is a sink net and b j ∈ B is a source net.

Now we show that the instance I has a two-layer no-dogleg routing solution of
t tracks if and only if the instance I ′ has a two-layer no-dogleg routing solution of
2t + 2 tracks.

Suppose, there is a t-track two-layer no-dogleg routing solution for the channel
specification of n two-terminal nets in I . We show that there is a two-layer no-
dogleg routing solution S for I ′ using 2t + 2 tracks. Since I can be routed within t
tracks, the nets of group A in I ′ can be assigned within the topmost t tracks. From
the construction of I ′ we know that the separator net s must be assigned below the
nets of group A. So, s can be assigned to the (t +1)th track from the top. The nets
of group B in I ′ must be assigned below s, within the next t tracks. This gives a
(2t+2)-track routing solution for I ′, where the bottommost track in S is an empty
track.

Now suppose, there is a (2t + 2)-track routing solution S for I ′. We show that
there is a t-track two-layer no-dogleg routing solution for I . Note that according
to the construction of I ′ we have the VCG as follows. Vertices corresponding to
the sink nets in group A are immediate ancestors of the vertex corresponding to
the separator net s. Similarly, the vertices corresponding to the source nets in
group B are immediate descendants of the vertex corresponding to the separator
net s. So for any routing solution S for I ′, no net of group B can be assigned to
a track above the track to which a net of group A is assigned. Moreover in S,
all the nets of group A are separated by the separator net s from all the nets of
group B. Therefore, either the nets of group A or the nets of group B use only t
tracks. Hence we can compute a two-layer no-dogleg t-track routing solution for
the channel specification of n two-terminal nets in I . ¤

So far we have proved that the problem MNVHAA1 is NP-hard. In a similar
manner, we can show that the problem MNVHAAK is also NP-hard. We pose the
problem as follows. Given a channel specification of multi-terminal nets, compute
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a two-layer no-dogleg routing solution whose number of tracks is at most k (for any
fixed k > 1) more than the minimum number of tracks required for the given instance.
In other words, we wish to compute a k-absolute approximate solution for two-layer
no-dogleg routing.

Now we show that MNVHAAK is NP-hard by reducing the problem TNVHK to
this problem.

Theorem 2. The problem MNVHAAK of computing a two-layer no-dogleg routing
solution, whose number of tracks is at most k (for any fixed k > 1) more than
the minimum number of tracks required for a given channel specification of multi-
terminal nets, is NP-hard.

Proof. To show that MNVHAAK is NP-hard we use a polynomial transformation
similar to that in the proof of Theorem 1. We construct an instance I ′ of MNVHAAK
for any instance I of TNVHK by making k+1 copies of the channel specification of
I and using k additional separator nets. As in the proof of Theorem 1, we use the
separator nets to ensure that all nets of one copy are separated from all the nets
of another copy in any routing solution of I ′. This can be realized by introducing
vertical constraints between the sink nets of the ith copy and the ith separator
net, and between the ith separator net and the source nets of the (i + 1)th copy,
1 ≤ i ≤ k, of I ′. So for any routing solution of I ′, a net of the ith copy must be
assigned to a track above the track to which a net of the (i+1)th copy is assigned.
Assuming that instance I has p sink nets and q source nets, we therefore require a
total of (k+ 1)m+ k(p+ q) (or k(m+ p+ q) +m) columns and (k+ 1)n+ k (or
k(n+ 1) + n) nets in I ′. This completes the construction of I ′.

As in the proof of Theorem 1, we can show that the instance I has a two-layer
no-dogleg routing solution of t tracks if and only if the instance I ′ has a routing
solution of (k+ 1)t + 2k tracks. ¤

3. Absolute Approximation for Two-Layer Restricted Dogleg Routing

In this section we consider routing with restricted doglegging for instances
with multi-terminal nets. Here the horizontal wire segment of a net is permitted
to dogleg only at columns where it has a terminal. We propose the following
approximation problem. Given a channel specification of multi-terminal nets,
compute a two-layer restricted dogleg routing solution whose number of tracks is at
most one more than the minimum number of tracks required for the given instance.
In order to prove this problem NP-hard, it is sufficient to prove that this problem
is NP-hard for a restricted class of inputs viz., two-terminal nets [9]. Since the
inputs are now restricted to two-terminal nets, restricted dogleg routing of such
nets amounts to no-dogleg routing. In other words, all we need to prove is the
NP-hardness of the problem of routing a channel of two-terminal nets using no-
doglegging with number of tracks at most one more than the minimum number of
tracks required for the given instance.
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Figure 2. The constructed instance I ′ of two-terminal nets, where (i) ai

and a′i are to be assigned to the same track, (ii) b j and b′j are to be
assigned to the same track, and (iii) si and s j are to be assigned to the
same track.

In Section 2, we have proved that the problem MNVHAA1 is NP-hard.
There we used a polynomial transformation from the problem TNVHK. In that
transformation, while constructing an instance of the problem MNVHAA1, we
had to introduce a separator net and the relevant vertical constraints. Due to
these vertical constraints, the constructed instance had a multi-terminal separator
net; the other nets in the constructed instance had at most three terminals. So,
the technique of proving MNVHAA1 NP-hard (in Theorem 1) does not appear to
be useful in proving the NP-hardness of the following problem. Given a channel
specification of two-terminal nets, compute a two-layer no-dogleg routing solution
whose number of tracks is at most one more than the minimum number of tracks
required for the given instance. The computational complexity of this problem
remains open. However, for channels with two-terminal nets we can prove NP-
hardness for a related approximation problem (TNVHAA1P) as stated below. Here
we impose a restriction of a partition of two-terminal nets, such that the nets of
the same class in the partition are to be assigned to the same track in any routing
solution. Given a channel specification of two-terminal nets and a partition P of nets,
compute a two-layer no-dogleg routing solution S so that the number of tracks in S is
at most one more than the minimum number of tracks required for the given instance,
where any pair of nets in a class of P is assigned to the same track in S.

The proof of NP-hardness of the problem TNVHAA1P is identical to that of the
problem MNVHAA1 with the difference that now we use only two-terminal nets
and impose a restriction of an a priori partition of nets in the assignment of nets to
tracks. We show that TNVHAA1P is NP-hard by a polynomial transformation from
the problem TNVHK to TNVHAA1P as follows.

Given an instance I of TNVHK, we construct an instance (I ′, P) of TNVHAA1P,
such that I ′ has a two-layer no-dogleg routing solution using 2t + 2 tracks, where
the nets of I ′ are assigned as per partition P, if and only if I has a two-layer no-
dogleg routing solution of t tracks.
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To prove that TNVHAA1P is NP-hard we use a construction similar to that in the
proof of Theorem 1. I has n two-terminal nets, p sink nets, and q source nets. In
constructing I ′, we duplicate the instance I into two groups A and B, in a manner
similar to that in the proof of Theorem 1. For convenience, we place all the nets
of group A to the left of all the nets of group B. Following the proof technique of
Theorem 1, all we need to prove is that by using several additional two-terminal
nets in I ′(in addition to the nets of group A and group B), we can ensure that
all nets of group A will be assigned to tracks above the tracks to which all nets
of group B are assigned in any routing solution of I ′. These additional nets are
used to propagate vertical constraints from each net of group A corresponding to
a sink net of I to each net of group B corresponding to a source net of I . Let ai

be a net of group A corresponding to any sink net of I and b j be a net of group B
corresponding to any source net of I . To propagate a vertical constraint from the
net ai to the net b j in I ′, we introduce four two-terminal nets a′i , b′j , si and s j ,
where (i) (a′i , si) and (s j , b′j) are two vertical constraints, (ii) ai and a′i are forcibly
assigned to the same track, (iii) b j and b′j are forcibly assigned to the same track,
and (iv) si and s j are forcibly assigned to the same track (see Figure 2). The nets
si and s j are called separator nets. The conditions (ii), (iii), and (iv) above are
ensured by constructing the appropriate partition P of nets that force these three
conditions in every routing solution of I ′.

We now state precisely how the additional nets are introduced. Consider the net
ai of group A corresponding to a sink net of I . The net a′i is introduced by inserting
two new columns to the right of the rightmost column of ai . The net si is also made
to span exactly these two columns. The vertical constraints (a′i , si) are realized by
introducing two top terminals of the two-terminal net a′i and two bottom terminals
of the two-terminal separator net si in these two columns. In a similar manner, the
net b′j is introduced by inserting two new columns to the right of the rightmost
column of b j . The net s j is also made to span exactly these two columns. The
vertical constraints (s j , b′j) are realized by introducing two top terminals of the
two-terminal separator net s j and two bottom terminals of the two-terminal net b′j
in these two columns. Note that the separator nets are introduced by inserting two
new columns just to the right of each of the sink nets ai of group A and each of the
source nets b j of group B. So, no two separator nets overlap each other. Therefore,
we can place all the separator nets in the same class of partition P and force them
to be assigned to the same track in every routing solution of I ′. Each net of A (B)
that does not correspond to a sink (source) net of I , is in a separate singleton class
of P. This completes the construction of I ′. It is easy to see that the number of
columns and the number of nets in I ′ are polynomial in the size of the instance I .
We summarize the result in the following theorem.

Theorem 3. The problem TNVHAA1P of computing a two-layer no-dogleg routing
solution S, whose number of tracks is at most one more than the minimum number of
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tracks required for a given channel specification of two-terminal nets, where any pair
of nets in a class of P is assigned to the same track in S for a given partition P of nets,
is NP-hard.

Now we state the general problem TNVHAAKP of computing a k-absolute
approximate solution for two-terminal no-dogleg two-layer channel routing, and
show that this problem is NP-hard. We pose the problem as follows. Given a channel
specification of two-terminal nets and a partition P of nets, compute a two-layer no-
dogleg routing solution S so that (i) number of tracks in S is at most k (for any fixed
k > 1) more than the minimum number of tracks required for the given instance, and
(ii) any pair of nets in a class of P is assigned to the same track in S.

Note that the problem TNVHAAKP is similar to the problem MNVHAAK. We can
show that the problem TNVHAAKP is NP-hard by a polynomial transformation from
the problem TNVHK to TNVHAAKP in a manner similar to the proof of NP-hardness
of MNVHAAK. The construction is as in the proof of Theorem 3. We state the result
in the following theorem.

Theorem 4. The problem TNVHAAKP of computing a two-layer no-dogleg routing
solution S, whose number of tracks is at most k (for any fixed k > 1) more than the
minimum number of tracks required for a given channel specification of two-terminal
nets, where any pair of nets in a class of P is assigned to the same track in S for a
given partition P of nets, is NP-hard.

It follows from the above result that allowing for multi-terminal nets and
restricted doglegging does not improve the possibility of finding a k-absolute
approximate solution for two-layer channel routing. So, we can conclude that the
following problem is also NP-hard. Given a channel specification of multi-terminal
nets and a partition P of subnets, compute a two-layer restricted dogleg routing
solution S so that (i) number of tracks in S is at most k (for any fixed k > 1) more
than the minimum number of tracks required for the given instance, and (ii) any pair
of subnets in a class of P is assigned to the same track in S.

4. Absolute Approximation for Two-Layer No-Dogleg Routing with Bounded
Degree Nets

In this section we consider the problem of two-layer no-dogleg routing for
instances with nets having a bounded number of terminals. We define a net
with a bounded number of terminals as a bounded degree net. The problem of
finding a k-absolute approximate solution for a channel specification of two-
terminal nets in two-layer no-dogleg routing is an open problem. So, the following
question naturally arises. Is there a polynomial time k-absolute approximation
algorithm for a channel specification of bounded degree nets? In this section we
prove that the problem of computing a k-absolute approximate solution is as hard
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as the problem MNVHAAK; we show that for channels with nets having as low
as an upper bound of five on the number of terminals per net. In this regard we
wish to address the following approximation problem BNVHAA1: Given a channel
specification of bounded degree nets, compute a two-layer no-dogleg routing solution
whose number of tracks is at most one more than the minimum number of tracks
required for the given instance. Now we prove that this problem is NP-hard.

The proof of NP-hardness of the problem BNVHAA1 is identical to that of the
problem MNVHAA1 with the difference that now we use only bounded degree nets.
We show that the problem BNVHAA1 is NP-hard by a polynomial transformation
from the problem TNVHK to BNVHAA1 as follows. Given an instance I of TNVHK,
we construct an instance I ′ of BNVHAA1 such that the constructed channel
specification I ′ has a two-layer no-dogleg routing solution using 2t + p + q − 1
tracks if and only if I has a two-layer no-dogleg routing solution of t tracks, where
p is the number of sink nets and q is the number of source nets in I .

The initial part of the construction is same as in the proof of Theorem 1. So,
we have two groups A and B of nets, each having n two-terminal nets. Here the
objective is to use only bounded degree separator nets so that a net of group A is
assigned to a track above the track to which a net of group B is assigned. This
is achieved by (i) propagating vertical constraints from the p nets of group A
corresponding to the p sink nets of I , to a single separator net s1, (ii) propagating
a vertical constraint from the separator net s1 to another separator net s2, and (iii)
propagating vertical constraints from s2 to the q nets of group B corresponding to
the q source nets of I (see Figure 3). The vertical constraint (s1, s2) is introduced
to realize the propagation of the vertical constraint from s1 to s2, mentioned in
(ii) above. The propagation of vertical constraints as mentioned in (i) and (iii)
above requires more elaboration. Since (i) and (iii) are similar and symmetric,
we discuss the realization of (i) only. We use a tree of separator nets, where each
net is of bounded degree. The leaf nodes of the tree are the p nets of group A
corresponding to the p sink nets of I . The root of the tree is the separator net s1.
The leaf or lowest level of the tree consists of these p nets. Every next higher level
in the tree has dx/2e nodes, each node being the parent of at most two nodes of
the next lower level, where the number of nodes in the lower level is x . For each
child-parent pair (c, p), we introduce a vertical constraint (c, p) in the VCG of I ′.
This completes the construction of the tree realizing the propagation of vertical
constraints in (i) above. Note that each separator net s1, s2, or any net in the tree
above, requires five terminals: one to propagate a vertical constraint further, two
to receive two vertical constraints from two other nets, and two more to tie up the
net at the left and right ends so that all such nets overlap each other (see Figure 4).

In order to ensure that no two separator nets are assigned to the same track
in any routing solution of I ′, we construct the separator nets so that all of them
overlap each other. We tie up each separator net introducing a left tie up block
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Figure 3. Propagation of vertical constraints from p sink nets of group A
to q source nets of group B through bounded degree separator nets.

to the left of the constructed channel and a right tie up block to the right of the
constructed channel. In each tie up block there is a column with a terminal of a
separator net at the bottom and the top terminal unconnected (see Figure 4). This
completes the construction of I ′.

It is easy to see that the number of columns and the number of nets in I ′ are
polynomial in the size of the instance I . In I ′ we have 2n + p + q − 2 bounded
degree nets, where p (q) is the number of sink (source) nets in I . If the length of
the channel specification of I be m of n two-terminal nets, then the length of the
constructed channel specification in I ′ is O(m+ n).

As in the proof of Theorem 1, it is easy to see that the instance I has a two-
layer no-dogleg routing solution of t tracks if and only if the instance I ′ has a
two-layer no-dogleg routing solution of 2t + p + q − 1 tracks. Note that in any
feasible routing solution each of the separator nets is assigned to a separate track.
Moreover, according to the construction no net of group B is assigned to a track
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Figure 4. The constructed instance I ′ with bounded degree nets.

above the track to which a net of group A is assigned. The remaining part of
the proof is similar to the proof of Theorem 1. We summarize the result in the
following theorem.

Theorem 5. The problem BNVHAA1 of computing a two-layer no-dogleg routing
solution, whose number of tracks is at most one more than the minimum number of
tracks required for a given channel specification of bounded degree nets, is NP-hard.

Now we propose the general problem BNVHAAK of computing a k-absolute
approximate solution for a channel specification of bounded degree nets in the
two-layer no-dogleg routing model and show that this problem is also NP-hard.
We pose the problem as follows. Given a channel specification of bounded degree
nets, compute a two-layer no-dogleg routing solution whose number of tracks is at
most k (for any fixed k > 1) more than the minimum number of tracks required for
the given instance. We can prove that this problem is also NP-hard.

Note that the problem BNVHAAK is similar to the problem MNVHAAK; here the
only difference is that we use k(p+ q− 2) bounded degree separator nets instead
of using k multi-terminal separator nets as in the proof of MNVHAAK. We can show
that the problem BNVHAAK is NP-hard by a polynomial time transformation from
the problem TNVHK to BNVHAAK in a manner similar to the proof of NP-hardness
of MNVHAAK. The construction of the instance of problem BNVHAAK is similar to
that of the instance of problem BNVHAA1 as in the proof of Theorem 5.

It is easy to verify that the number of nets and the length of the channel
specification in I ′ are polynomial in the size of the instance I . It is not a difficult
task to prove that the instance I ′ is such that I has a two-layer no-dogleg routing
solution of t tracks if and only if I ′ has a two-layer no-dogleg routing solution of
(k+ 1)t + k(p+ q− 2)+ k tracks, where p (q) is the number of sink (source) nets
in I . We summarize the result in the following theorem.
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Theorem 6. The problem BNVHAAK of computing a two-layer no-dogleg routing
solution, whose number of tracks is at most k (for any fixed k > 1) more than the
minimum number of tracks required for a given channel specification of bounded
degree nets, is NP-hard.

We have proved that the problem BNVHAAK of computing a k-absolute
approximate solution in the two-layer no-dogleg routing is NP-hard for channels
with bounded degree nets (for any fixed k ≥ 1); an open question is whether this
problem remains NP-hard for channels with two-terminal nets. Since we cannot
answer this question, we cannot show that the problem of computing a k-absolute
approximate solution in the two-layer restricted dogleg routing model is NP-hard
for channels with unbounded degree nets. Nevertheless, the bounded degree result
implies that the problem of computing a k-absolute approximate solution is NP-
hard for routing using a limited form of restricted doglegging, where instead of
permitting doglegging at every terminal column of each net, we permit doglegging
only at terminal columns separated by a constant number of terminals for each
net. This constant is same as the bound on the number of terminals of each net for
which the problem BNVHAAK has been proved NP-hard.

All the results proved so far for the two-layer VH routing model hold even in
the three-layer HVH routing model.

5. Conclusion

In this paper we have proved that several problems of computing absolute
approximate solutions in two-layer and three-layer channel routing are NP-hard.
Since bounded degree nets are simpler than nets with an unbounded number of
terminals, it is relatively harder to prove NP-hardness results for channels with
bounded degree nets. We have shown that the NP-hardness results also hold for
channels with bounded degree nets.

Interesting questions concerning the computational complexity of channel
routing problems that remain open are those of computing absolute approximate
solutions under the multi-layer ViHi , 2 ≤ i < dmax , and ViHi+1, 3 ≤ i + 1 < dmax ,
routing models, where horizontal and vertical layers of interconnect alternate.
The computational complexity of computing relative approximate solutions under
the two-layer and three-layer routing models is also open. These problems are
likely to be polynomial time solvable. A polynomial time algorithm for the relative
approximation question for two-layer channel routing has been designed for the
case where routing of wires is allowed beyond the left and right ends of the channel
(see [1, 2]). A density routing solution can be computed in polynomial time for the
ViHi−1, 1≤ i−1< dmax , routing model. Such a density solution with ddmax/(i−1)e
tracks is related by a constant factor to the minimum number of tracks ddmax/ie
(ddmax/(i+1)e) in the ViHi (ViHi+1) routing model. So, the relative approximation
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question remains open only for the two-layer VH routing model and the three-layer
HVH routing model.

The problems of computing absolute approximate solutions are also open for
the cases of two-terminal no-dogleg two-layer VH routing model and two-terminal
no-dogleg three-layer HVH routing model.
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