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Abstract. The Shannon entropy is a mathematical expression for quantifying the amount of
randomness which can be used to measure information content. It is used in objective function.
Mutual Information (MI) uses Shannon entropy in order to determine shared information content
of two images. The Shannon entropy, which was originally derived by Shannon in the context of
lossless encoding of messages, is also used to define an optimum message length used in the Minimum
Description Length (MDL) principle for groupwise registration. We first derived the Shannon entropy
from the integral of probability density function (pdf ), and thenfound that Gaussian has maximum
entropy over all possible distribution. We also show that the entropy of the flat distribution is less
than the entropy of the Gaussian distribution with the same variance. We then investigated the effect
of bin-width on the computed entropy. We analyzed the relationship between the computed entropy
and the integral entropy when we vary bin-width, but fix variance and the number of samples. We
then found that the value of the computed entropy lies within the theoretical predictions at small and
large bin-widths. Wealso show two types of bias in entropy estimators.

Keywords. Entropy; Objective function; Gaussian distribution; Flat distribution

MSC. 94Axx

Received: May 8, 2016 Accepted: August 15, 2016

Copyright © 2017 Sri Purwani, Sudradjat Supian and Carole Twining. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://dx.doi.org/10.26713/jims.v9i4.1023


1118 Analyzing the Effect of Bin-width on the Computed Entropy: S. Purwani et al.

1. Introduction

The Shannon entropy is a measure of information. It is the underlying concept of mutual
information [Pluim et al., 2000] used to determine shared information content of two images.
Although some early papers [Viola, 1995, Viola and Wells III, 1997] used the ‘Parzen Window’
method for density estimation to compute MI, a review paper by Pluim et al. [Pluim et al.,
2003] noted that the majority of the papers used histogram for computing MI, and hence the
entropy (see e.g., [Studholme et al., 1995, Sabuncu and Ramadge, 2008, Twining and Taylor,
2011]). We then probed the effect of bin-width on the computed entropy, and analyzed the
relationship between the computed entropy and the integral entropy when we vary bin-width,
but fix variance. It is shown that the value of the computed entropy lies within the theoretical
predictions at small and large bin-widths. In other case,suppose our data and our events
really are discrete. According to Paninski and Carlton [Paninski, (2003), Carlton, (1969)], the
entropy estimated from the finite sample using the probability estimate (1) is always an under-
estimate on average. We then investigated the effect of sample size to the entropy of the actual
distribution (a flat distribution). It is shown that as the number of samples increases, estimates
approach the true value but always under-estimate the entropy. The following section defines
the computed entropy and calculates the integral entropy.

2. The Computed and Integral Entropy

The Shannon entropy [Shannon, 1948] is defined as

E =−∑
i

Pi logPi (1)

where Pi is the probability of bin i of a histogram. This can be approximated from the continuous
one, the integral of probability density function (pdf ), as follows∫

−ρ (x) logρ (x)dx ≈−∑
i

w
(

Pi

w

)
log

(
Pi

w

)
,

=−∑
i

Pi logPi + logw (2)

where ρ (x) and w are thepdf and the bin-width respectively. Pi is an area under ρ (x)
approximated by Pi ≈ ρ (xi)× w. To understand this phenomenon (see Section 4), eqn. (2)
is applied to a 1D Gaussian distribution with varying bin width, a fixed σ and probability
density function of the form,

ρ (x)= 1p
2πσ2

exp
(
− x2

2σ2

)
. (3)

The left hand side of eqn. (2) gives∫
−ρ (x) logρ (x)dx =−

∫
1p

2πσ2
exp

(
− x2

2σ2

)
×

(
− x2

2σ2 − 1
2

log
(
2πσ2))dx. (4)

We need to transform eqn. (4) to the polar coordinate system by using,

(I (α))2 =
∫ ∞

−∞

∫ ∞

−∞
exp

(−αx2 −αy2)dxdy (5)
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where x2 + y2 = r2. The transformation results in

I (α)=
∫ ∞

−∞
exp

(−αx2)dx =
√
π

α
(6)∫ ∞

−∞
exp

(
− x2

2σ2

)
dx = (

2πσ2) 1
2

where α= 1
2σ2 . This shows the probability of the Gaussian over the whole range is equal to 1

1p
2πσ2

∫ ∞

−∞
exp

(
− x2

2σ2

)
dx = 1.

Then, to proceed the remaining part of eqn. (4), we differentiate eqn. (6) with respect to α, which
gives

−
p

2πσ3 =−
∫ ∞

−∞
x2 exp

(
− x2

2σ2

)
dx

or giving
1p

2πσ2

∫ ∞

−∞
x2 exp

(
− x2

2σ2

)
dx =σ2.

Hence, the Gaussian entropy (4) is given by

−
∫

1p
2πσ2

exp
(
− x2

2σ2

)(
− x2

2σ2 − 1
2

log
(
2πσ2))dx = 1

2
(
1+ log

(
2πσ2)) . (7)

The following section will derive the maximum entropy.

3. The Maximum Entropy

Using a fixed variance and some constraints:∫
ρ (x)dx = 1,

∫
xρ (x)dx = 0,

∫
x2ρ (x)dx =σ2,

we construct the lagrangian

L =
∫

−ρ (x) logρ (x)dx−α

(∫
ρ (x)dx−1

)
−β

(∫
xρ (x)dx

)
−γ

(∫
x2ρ (x)dx−σ2

)
where α, β and γ are the Lagrange multipliers. Taking the functional derivative with respect to
ρand equating it to zero gives an extremum at

δL

δρ (x)
=− logρ (x)−1−α−βx−γx2 = 0

=⇒ ρ (x)≈ exp
(−[

γx2 +βx−α′]) , where α′ =−1−α.

This shows that for a fixed variance, a Gaussian has maximum entropy over allpossible
distributions [Lisman and Zuylen (1972), Brown (1992), Brun et al. (2011)]. As a comparison, a
flat distribution with a probability density function

ρ (x)=
{

1
2a −a ≤ x ≤ a
0 otherwise

has the entropy 1
2 log

(
12σ2), which is less than the entropy of the Gaussian distribution (7) with

the same variance.Using results from Section 2, we come to the comparison in the next section.
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4. The Effect of Bin-width to the Computed Entropy

We can now substitute the result of eqn. (7) into eqn. (4) to obtain the relationship to the
bin-width, which equation can be written as follows:

1
2

(
1+ log

(
2πσ2))≈−∑

i
Pi logPi + logw. (8)

To test the relationship in eqn. (8), we vary the bin-width and use a fixed σ and n (the number
of samples). When the bin-width w → 0 for finite n, we will have in the limit n occupied bins,
each with only a single entry. Then Pi = 1

n and the right side of eqn. (8) results in

−∑
i

Pi logPi + logw ≈ logn+ logw.

On the other hand, when the bin-width w →∞ this gives Pi → 1, hence

−∑
i

Pi logPi + logw ≈ logw.

We plotted a graph (see Figure 1) to compare the Gaussian entropy to these results. We used a
randomly generated set of numbers from MATLAB (which was generated only once) by using
Gaussian distribution, with n = 10000 samples and σ= 3. On the same data we computed the
histograms (hence Pi) for various different bin-widths. We plot the value of the left hand side of
eqn. (8) as a horizontal straight line (Red), and the values of the right hand side of eqn. (8) over
varying bin-width as the black circles. The theoretical predictions at small and large bin-widths
are shown as the green and purple lines respectively.

 
 

 

 

 

Figure 1. Comparison of integral and computed entropy

This graph shows that our analysis of the effect of bin-width on the computed entropy
is correct, and that we can approximate the integral entropy by the entropy of a histogram
provided we take enough care with our choice of bin-width. The following section introduces
two types of bias in entropy estimators.
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5. Limited Sample Size and Under-estimate the Entropy

We have seen how the entropy of a histogram can be used to estimate the integral entropy. But
there is case we need to consider. Suppose our data and our events really are discrete. Then from
a limited sample we are then trying to estimate the true bin probabilities. The usual maximum
likelihood estimate is:

Pi = ni

n
where ni is the number of samples in bin i and n is the total number of samples. Then

Eestimate =−∑
i

Pi logPi.

Obviously, if n is small, some bins will be empty, when they have a non-zero probability.
According to Paninski and Carlton [Paninski (2003), Carlton (1969)], the entropy estimated
from the sample using this probability estimate is always an under-estimate on average. To
demonstrate this, consider a flat distribution between 0 and 1, then divided into m equal bins
Pi = 1

m . Therefore, the entropy of the actual distribution is:

E =−
m∑

i=1
Pi logPi = logm.

If we generate n random numbers, compute estimated probabilities Pi ≈ ni
n and hence estimated

entropy, we have the results shown in Figure 2.

 

 

Figure 2. The number of samples on the top from left to right is 50 and 100 and on the bottom 1000 and
10000 respectively. The number of bins between 0 and 1 is kept fixed at m = 50. Estimated entropy is
calculated repeatedly 1000 times and plotted in 50 bins. As n increases, estimates approach the true
value (small red circle on the x-axis) but always under-estimate the entropy. Note varying scale on the
x-axis
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6. Conclusions

The effect of bin-width on the computed entropy suggests that we can approximate the integral
entropy by the entropy of a histogram provided we take enough care with our choice of bin-width.

In other case, the effect of limited sample size to the estimated entropy of the actual
distribution (see Figure 2) shows, as n increases, estimates approach the true value, but always
under-estimate the entropy. This then shows the two types of bias in entropy estimators, as
given by Moddemeijer [Moddemeijer (1989)],

• Approximating a continuous distribution by a histogram, and

• Finite sample size means the histogram of the sample different from the actual histogram.
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