Strengthening Impacts on the Auxiliary and Morphological Changes of TiO\(_2\) Degussa

Authors

  • D. Prasanna PG & Research Department of Physics, Pachaiyappa'S College, Chennai 30

DOI:

https://doi.org/10.26713/jamcnp.v7i2.1329

Keywords:

Scanning electron microscopy, TEM, X-ray photoelectron spectroscopy, Titanium Dioxide (TiO\(_2\))

Abstract

Titanium dioxide (TiO\(_2\)) is an uncommon class of metal oxides that are generally utilized in an assortment of photograph catalysis applications and items in the natural and vitality, including selfcleaning surfaces, hydrogen development and sun(solar energy) oriented vitality conversion. Herein, impact of strengthening treatment on the structure and morphology of TiO\(_2\) (P25) was evaluated. Powder X-ray diffraction, examining electron microscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy investigation were led to assign the development and portrayal of the auxiliary, substance piece and morphology of TiO\(_2\). The strengthening temperature influences the crystalline measurements, structure and the morphology of the samples. Strengthening temperature of 500\(^\circ\)C is an ideal vale to keep up an exceptionally steady crystalline morphology and all around characterized particles of TiO\(_2\) (P25).

Downloads

Download data is not yet available.

References

D. M. Antonelli and J. Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol–Gel method, Angewandte Chemie International Edition in English 34 (1995), 2014 – 2017, DOI: 10.1002/anie.199520141.

S. Bakardjieva, J. Å ubrt, V. Å tengl, M. J. Dianez and M. J. Sayagues, Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Applied Catalysis B: Environmental 58 (2005), 193 – 202, DOI: 10.1016/j.apcatb.2004.06.019.

G. Cerrato, L. Marchese and C. Morterra, Structural and morphological modifications of sintering microcrystalline TiO2: an XRD, HRTEM and FTIR study, Applied Surface Science 70 (1993), 200 – 205, DOI: 10.1016/0169-4332(93)90427-D.

S. Chandrasekaran, E. J. Kim, J. S. Chung, C. R. Bowen, B. Rajagopalan, V. Adamaki, R. Misra and S. H. Hur, High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst, Journal of Materials Chemistry A 4 (2016), 13271 – 13279, DOI: 10.1039/C6TA05043C.

S. Chandrasekaran, E. J. Kim, J. S. Chung, I.-K. Yoo, V. Senthilkumar, Y. S. Kim, C. R. Bowen, V. Adamaki and S. H. Hur, Structurally tuned lead magnesium titanate perovskite as a photoelectrode material for enhanced photoelectrochemical water splitting, Chemical Engineering Journal 309 (2017), 682 – 690, DOI: 10.1016/j.cej.2016.10.087.

S. Chandrasekaran, J. S. Chung, E. J. Kim and S. H. Hur, Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting, Chemical Engineering Journal 290 (2016), 465 – 476, DOI: 10.1016/j.cej.2016.01.029.

S. Chandrasekaran, J. S. Chung, E. J. Kim and S. H. Hur, Advanced nano-structured materials for photocatalytic water splitting, Journal of Electrochemical Science & Technology 7 (2016), 1 – 12, DOI: 10.5229/JECST.2016.7.1.7.

S. Chandrasekaran, S. H. Hur, E. J. Kim, B. Rajagopalan, K. F. Babu, V. Senthilkumar, J. S. Chung, W. M. Choi and Y. S. Kim, Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting, RSC Advances 5 (2015), 29159 – 29166, DOI: 10.1039/C5RA02934A.

S. Chandrasekaran, Y. L. T. Ngo, L. Sui, E. J. Kim, D. K. Dang, J. S. Chung and S. H. Hur, Highly enhanced visible light water splitting of CdS by green to blue upconversion, Dalton Transactions 46 (2017), 13912 – 13919, DOI: 10.1039/C7DT02936E.

B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie and M. S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir 17 (2001), 2664 – 2669, DOI: 10.1021/la0015213.

H. Jensen, A. Soloviev, Z. Li and E. G. Sí¸gaard, XPS and FTIR investigation of the surface properties of different prepared titania nano-powders, Applied Surface Science 246 (2005), 239 – 249, DOI: 10.1016/j.apsusc.2004.11.015.

M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima and M. Anpo, Preparation of nitrogensubstituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation, The Journal of Physical Chemistry B 110 (2006), 25266 – 25272, DOI: 10.1021/jp064893e.

S. G. Kumar and L. G. Devi, Review on modified TiO2 photocatalysis under UV/Visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics, The Journal of Physical Chemistry A 115 (2011), 13211 – 13241, DOI: 10.1021/jp204364a.

D. Li, H. Haneda, S. Hishita and N. Ohashi, Visible-light-driven N–F–Codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization, Chemistry of Materials 17 (2005), 2588 – 2595, DOI: 10.1021/cm049100k.

O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam and J. Panpranot, Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye, Chemical Engineering Journal 164 (2010), 77 – 84, DOI: 10.1016/j.cej.2010.08.027.

A. Mills and S. Morris, Photomineralisation of 4-chlorophenol sensitised by titanium dioxide: a study of the effect of annealing the photocatalyst at different temperatures, Journal of Photochemistry and Photobiology A: Chemistry 71 (1993), 285 – 289, DOI: 10.1016/1010-6030(93)85012-W.

S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki and S. Yoshikawa, Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell, Solar Energy Materials and Solar Cells 86 (2005), 269 – 282, DOI: 10.1016/j.solmat.2004.06.010.

B. Ohtani, O. Prieto-Mahaney, D. Li and R. Abe, What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, Journal of Photochemistry and Photobiology A: Chemistry 216 (2010), 179 – 182, DOI: 10.1016/j.jphotochem.2010.07.024.

H.-T. Pao and C.-M. Tsai, CO2 emissions, energy consumption and economic growth in BRIC countries, Energy Policy 38 (2010), 7850 – 7860, DOI: 10.1016/j.enpol.2010.08.045.

T. Tatsuma, S. Saitoh, Y. Ohko and A. Fujishima, TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability, Chemistry of Materials 13 (2001), 2838 – 2842, DOI: 10.1021/cm010024k.

J. Wang, J. Polleux, J. Lim and B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles, The Journal of Physical Chemistry C 111 (2007), 14925 – 14931, DOI: 10.1021/jp074464w.

K. Woan, G. Pyrgiotakis and W. Sigmund, Photocatalytic carbon-nanotube-TiO2 composites, Advanced Materials 21 (2009), 2233 – 2239, DOI: 10.1002/adma.200802738.

H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, P25-Graphene composite as a high performance photocatalyst, ACS Nano 4 (2009), 380 – 386, DOI: 10.1021/nn901221k.

B. Zielinska, J. Grzechulska, R. J. Kalenczuk and A. W. Morawski, The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide, Applied Catalysis B: Environmental 45 (2003), 293 – 300, DOI: 10.1016/S0926-3373(03)00178-4.

M. Zlamal, J. M. Macak, P. Schmuki and J. Krí½sa, Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes, Electrochemistry Communications 9 (2007), 2822 – 2826, DOI: 10.1016/j.elecom.2007.10.002.

Downloads

Published

2020-08-31
CITATION

How to Cite

Prasanna, D. (2020). Strengthening Impacts on the Auxiliary and Morphological Changes of TiO\(_2\) Degussa. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(2), 107–114. https://doi.org/10.26713/jamcnp.v7i2.1329

Issue

Section

Research Article