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Abstract. The ground state and excited states energies of 2-electron quantum dot with spherical
harmonic oscillator type potential has been determined. The energy spectrum and wave functions
for the quantum dot of asymmetric confinement are obtained by analytically solving the eigenvalue
equation in the magnetic field. The effect of various relativistic corrections to kinetic energy, Darwin
term and spin-orbit for the zero-dimensional structure to the energy eigenvalues and wave functions is
also investigated. The thermal properties like internal energy, entropy and free energy are discussed
graphically with radius of quantum dot and pressure and are found to have interesting dependence on
the radius and pressure parameter with relativistic corrections for our model.
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1. Introduction
The research on the low-dimensional structures has drawn considerable interest due to
their unique properties [1] and potential applications in physics, chemistry and engineering,
specifically in the development of semiconductor microelectronic and optoelectronic devices [2]
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such as electro-optic modulators [3], inter-band lasers and inter-sub band long wavelength
detectors [4]. These structures can be quantum dots, quantum wires, quantum wells, quantum
rings, super-lattices, etc. [5–7]. Quantum dots, in particular, have extensively been explored
both experimentally and theoretically in the last few years, among all the low-dimensional
semiconductor structures [8,10,11]. The motion of electrons in quantum dots can be confined
in all three dimensions with advanced manufacturing techniques thereby producing the zero-
dimensional structures. The confinement of charge carriers in quantum dots or artificial atoms
generates discrete energy levels with spacing of a few MeV [12]. Studies have shown that the
confinement potential plays a very crucial role in determining the linear and non-linearoptical,
electrical and magnetic properties of quantum dots and is modulated for a wide range of dot sizes
and shapes [13–22]. Also, these novel properties and its effect on impurity states are extensively
investigated under the influence of external perturbations such as electron-phonon interaction,
magnetic field, electric field, temperature, impurity and pressure [23–27]. Various models
have been studied to understand the effect of confinement potentialon dot parameters namely
disk-like (cylindrical) model, rectangular confinement potential, spherical harmonic potential,
non-spherical oscillator, ring shaped oscillator, ring shaped non-spherical oscillator [28–30].

In this work, we have studied the effect of relativity on the thermodynamic properties in the
GaAs quantum dots. With an appropriate confining potential, the theoretical physics associated
with the quantum dots is mainly concerned for the electron-electron interaction in a correct
way at nanoscale thus the thermodynamic properties of nanostructures become an important
subject in physical science. The energy levels and the modified wave functions for both the
ground (1s) and first excited (1p) states in the presence of magnetic field and relativistic effects
as perturbation terms were computed theoretically within the effective mass approximation.
The effect of relativistic corrections on the thermodynamic parameters have been calculated
as a function of dot radius and the pressure. Among the studies available on various physical
properties of quantum dots, there are few studies on thermodynamics properties of quantum
dots [31–36]. To the best of our knowledge, no investigation has so far been made to understand
the dependence of internal energy, entropy and free energy on the dot radius and pressure with
relativistic corrections to the kinetic energy, Darwin term and spin-orbit interactions.

The paper is organized as follows. In Section 2 we first give a theoretical background on the
problem considered. The main idea of our approach is then summarized in the same section.
In the same section the Relativistic corrections to the energy states are described. Section 3
describes the various thermodynamic properties mathematically. In Section 4 is dedicated to
results of the calculations and their probable physical reasons are discussed and finally, the
paper ends with a brief summary and concluding remarks.

2. Theory and Model

2.1 Energy Levels and Wave Functions
Here we are considering a two-electron spherical Quantum dot in the presence of magnetic field
under the confinement spherical harmonic oscillator potential for GaAs quantum dot is model
ledas:

V (r i)=−V0e
−r2

i
2R2

P (2.1)
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where V (r i) is the confinement potential of the quantum dot, r i is the position coordinate of
the ith particle, V0 is the depth potential and RP give the measure of Range of confinement
potential which represents the size of quantum dot and P represents the hydrostatic pressure.

Under the approximation r i ¿ R, the unperturbed Hamiltonian for a system of two
interacting electrons, H0 reduces to

H0 =− ~2

2m∗
P

N∑
i=1

∇2
r i
+γ2

N∑
i

r2
i (2.2)

where γ2 = V0
2R2

P
and m∗

p is the effective electronic mass as a function of hydrostatic pressure.

To include the effects from the underlying lattice and the interaction with the electrons
from the valence and core bands the effective mass approximation is taken into account. Thus,
thenon-relativistic Hamiltonian of a system of 2 electrons in a spherical quantum dot under the
electric and magnetic fields (2.2) can be written as:

HT = H0 +H′
pot +H′

M1 +H′
M2 +H′

M3 , (2.3)

H′
pot =

N∑
i=1

− e2

εP r i
−NV0 . (2.4)

Here 1st two terms i.e. H0 +H′
pot represent the contribution of hydrogenic Impurity and εP

represents the dielectric constant of impurity which depends on hydrostatic pressure and
temperature as,

εP,T = 12.74∗ e−1.67∗10−3P ∗ e9.4∗10−5(T−75.6) . (2.5)

The third term represents the energy due to the interaction between particles orbital magnetic
dipole moment

(
qL

2cmp

)
and magnetic field B.

H′
M1 =−qBLcoscosϕ

2m∗
P c

. (2.6)

The fourth term gives ratio of the paramagnetic and diamagnetic contribution which is very
small and thus can be ignored i.e.

H′
M2 =

N∑
i=1

q2|B|2r2
i sin2θ

8m∗
P c2 , (2.7)

where 〈r2
i 〉 = a2

0 where a0 is the Bohr radius, and shift due to Magnetic energy correction is
given by the Paschen Back effect as

H′
M3 =

〈
Ψnlm

∣∣∣∣∣ eBL iZ

2m∗
P c

∣∣∣∣∣Ψnlm

〉
=∆EB = BµB (2.8)

and µB = e~
2m∗

P c is Bohr’ s magneton.
The Schrodinger equation with spherical symmetric harmonic oscillator potential (2.4) is

exactly solvable with the following Energy spectrum:

Eni l i =
N∑

i=1

(
2ni + l i + 3

2

)
~w (2.9)

where ni l i = 0,±1,±2, . . . .
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The Eigen values ET for the Hamiltonian (2.5) is given by the Schrodinger equation:

HTΨnlm = ETΨnlm (2.10)

and the solution of the unperturbed Hamiltonian is given by

H0Ψnlm = E0Ψnlm (2.11)

where nlm are the atomic quantum numbers of the wave function Ψ(r,θ,ϕ).
For any arbitrary state, the complete wave function, Ψ(r,θ,φ), can be written as

Ψ(r,θ,ϕ)=∑
nl

NnlRnl(r)Y m
l (θ,ϕ) (2.12)

where spherical harmonic Y m
l (θ,ϕ) is the eigenfunction of L2(θ,ϕ) satisfying

L2(θ,ϕ)Y m
l (θ,ϕ)= l(l+1)h2Y m

l (θ,ϕ) (2.13)

and the radial wave function Rnl(r) is the solution of the equation(
d2

dr2 +2r
d
dr

− l(l+1)
r2

)
Rnl(r)+ 8π2m

h2 [Enl −V (r)]Rnl(r)= 0

where r stands for the relative radial coordinates. The radial wave function Rnl(r) is well
behaved at the boundaries (the finiteness of the solution requires that Rnl(0)= Rnl(r →∞)= 0)
and the transformation

unl(r)= r∗Rnl(r) (2.14)

Reducing radial equation to the simple form[
− ~2

2m∗
P

d2

dr2 + ~2l(l+1)
2m∗

P r2 + V0

2R2
P

r2 −Enl(r)

]
unl(r)= 0 (2.15)

The general solution of this radial equation is

Rnl(r)= Nnlrl exp
(
−ηr2

2

)
Ll+0.5

n−l/2(ηr2) (2.16)

where η2 = 2m∗
PV0

2R2~2 and La
b(ηr2) is the generalized Laguerre polynomial.

Here, the normalization constant is defined as

Nnl =
[√

2n+l+2ηl+1.5
p
π

]√(n−l
2

)
!

(n+l
2

)
!

(n+ l+1)!
(2.17)

where l = n,n−2, . . . , lmin and lmin = 1 if l is odd and = 0 if l is even.
The expectation value is evaluated by determining the general closed form solution for such

states, in terms of Laguerre polynomials, together with corresponding eigen values as〈
ϕnlm

∣∣∣∣ 1
r i

∣∣∣∣ϕnlm

〉
= N2

nlm

2ηl+1

∫ ∞

0
e−xi xl

i

[
Ll+0.5

n−l
2

(x)2
]

dxi (2.18)

where xi = ηr2
i

= N2
nlm

2ηl+1

n−l
2∑
k

n−l
2∑
s

 −1k+sΓ(k+ s+ l+1)Γ
(n+l+3

2

)2

Γ
(n−l

2 −k+1
)
Γ

(n−l
2 − s+1

)
Γ(l+ s+1.5)Γ(l+ j+1.5)k! s!

 (2.19)

The above model can be extended to quantum mechanical two interacting electrons confined
in three-dimensional dot geometry. Due to the fact that electron-electron interactions which
are known to be quite important in such quasi-zero-dimensional structures are enhanced
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by the presence of an additional confinement arising from the magnetic field. However, the
complicated nature of the recursion relations appeared in solving the complex integral is given
below〈

ϕnlm

∣∣∣∣ 1
r i j

∣∣∣∣ϕnlm

〉
= ∑

i 6= j

∑
l

∑
m

∫ ∞

0
|R(r i)|2nlr

2
i dr

∫ ∞

0
|R(r i)|2n1l1

r2
j dr∫

|Υm
l (Θ1Φ1)|2dΩ1

∫
|Υm

l (Θ2Φ2)|2dΩ2Υ
∗m
l (Θ1Φ1)Υm

l (Θ1Φ1) (2.20)

2.2 Relativistic Corrections
Although the relativistic effects in the hydrogen atom due to the motion of electrons is small, still,
even small numbers become significant for zero-dimensional quantum dots. The Relativistic
corrections are applied to Hamiltonian as first order perturbations and the energy eigen values
can be further improved by mass correction, Spin orbit coupling and Darwin term.

2.2.1 Energy Shift due to Spin-Orbit Coupling
This term arises due to the fact that spin of the electron modifies the energy level. Due to spin,
electron behaves like a little electromagnet, so a moving magnet interacts with the electric field
of nucleus causing a change in the energy states. The Spin orbit interaction can remove the
spin degeneracy when the potential for electrons in semiconductors is inversion asymmetric. It
can split up spin degeneracy associated with quantum number j even without magnetic field.
This term is important to study for semiconducting structures as it enables spin orientation and
optical detection. The influence of the electron spin on the charge transport in semiconductor
nanostructures has attracted considerable interest in recent years.

We are performing a change of basis to |lsmlms〉 basis and taking the coupled wave functions
as the linear combination of the spin wave functions,

Ψnl jm j =
∑

ml ms

〈lsmlms| jm j〉Ψnl l ms (2.21)

where 〈lsmlms| jm j〉 are Clebsch-Gordan coefficients. The first order energy corrections (∆Eso)
are computed as

∆Eso = 〈Ψnl jm j |HSO|Ψnl jm j〉 (2.22)

∆Eso =
〈
Ψnl jm j

∣∣∣∣∣ N∑
i=1

1
2m∗2

P c2r i

dVc

dr
~L ·~S

∣∣∣∣∣Φnl jm j

〉
(2.23)

V(c)=− e2

εP r

∆Eso = e2~2

4εP m∗2
P c2

{
j( j+1)− l(l+1)− 3

4

}〈
Φnl jm j

∣∣∣∣∣∑ 1
r3

i

∣∣∣∣∣Ψnl jm j

〉
(2.24)

2.2.2 Energy Shift due to Relativistic Correction to Kinetic Energy
This term arises due to the modification in the kinetic energy of particle due to the relativistic
mass variation with velocity of particle and is given as

Hk =− p4

8m∗3
P c2

(2.25)
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The relativistic correction for the Impurity energy levels is calculated by applying first order
perturbation as

∆Ek = 〈Ψnlml ms |HK |Ψnlml ms〉 =− 1
2m∗

P c2 E2
nl +

N∑
i=1

γ4〈γr4
i 〉nl +

N∑
i=1

2e2γ2

εP
〈r1

i 〉nl +
∑ e4

ε2
P

〈 1
r4

i

〉
nl

−∑ 2e2

εP
〈r i〉nlEn −

∑
2γ2En〈r2

i 〉nl (2.26)

2.2.3 Energy Correction due to Darwin Term
This relativistic correction arises from “Zitterbewegung” of electron – giggling – which smears
effective potential felt by electron. Darwin term acts only at the origin as for l 6= 0 wave function
of impurity vanishes at r = 0, so we only consider l = 0.

HD = πe2~2

2m∗2
P c2εP

δ(r i) (2.27)

Here δ(r i) is the Dirac delta function and the energy shift due to this term is written as

∆ED= πe2~2

2m∗2
P c2εP

〈Ψnlm|δ(r i)|Ψnlm〉 (2.28)

2.3 Thermal Properties of Spherical Quantum Dot
In this section, we have considered the canonical formalism in which the system is allowed
to exchange heat from the surroundings at constant Temperature, Volume and the number of
particles. A partition function Z is the essential link between the coordinates of microscopic
systems and the thermodynamic properties. Once Partition function Z is evaluated appropriately
for the two electron system, then all the thermodynamic quantities, such as Helmholtz free
energy (FH), Internal energy (U), Entropy S, etc, are estimates as the different derivatives
of Z.

Z =
∞∑

n=0

∞∑
l=0

e−βE′
T (2.29)

Here, Temperature β= 1
KBT , T = Temperature, KB = Boltzmann constant.

E′
T (Total Energy)= ET +∆ED +∆EK +∆ESO (2.30)

After obtaining the Partition function Z appropriately for the two electron system, we can
estimate all the thermodynamic quantities, such as Helmholtz free energy (FH), Internal energy
(U), Entropy S, etc., as the different derivatives of Z.

Internal Energy: U =− log Z
∂β

(2.31)

Helmholtz Free Energy: FH =− log Z
β

(2.32)

Entropy: S = U−FH
T (2.33)

The numerical values of the pressure and temperature will be changed to study their effects
on the corrected energy values and the thermodynamic potentials in the presence of magnetic
field. The pressure- and temperature-dependence is also included in the mass and quantum dot
dimensions as

R(P)= R0(1− (1.5082∗10−3P)) (2.34)

m(P)= m∗
0 e0.078P (2.35)
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3. Results
We have studied behaviour of these properties with different confinement strength, Temperature,
Pressure and dot radius.

Here, thermodynamic properties such as Internal Energy, Entropy and free energy of
a spherical quantum dot has been studied as a function of pressure and dot radius, using
effective atomic units (a.u.) for calculations. All the figures have been plotted using both
with and without Relativistic effect. Our results are summarized in Figures 1–8. For GaAs,
material parameters that have been used are m(0)= 1 and ε(0)= 12.9 and all the graphs have
been plotted for 3 different potentials such are: V01 = 136.234 MeV, V02 = 244.110 MeV and
V03= 379.863 MeV. The main purpose to show both the relativistic and non-relativistic effect is
that during initial small values of dot radius, relativistic effect has a negative correction in all
the three thermodynamic quantities but for higher values for dot radius the effect is positive
and increasing. But in the case of pressure, all the three thermodynamic quantities has an
increasing effect from the initial small values and this effect goes on increasing with higher
values also.

In Figure 1, the variation of Entropy versus Dot radius (R) for three different confinement
potentials at T = 300 K has been shown. At smaller effective QD radius, the entropy of the
two electrons bounds in the QD increases rapidly with increase in radius. As we increase V0,
the entropy curve of the two electron system shifts downwards, and it can be attributed to
stronger confinement through V0. Further as the radius of the QD is increased to almost 30 nm,
the changes in the entropy with increase in effective radius becomes less prominent. As the
interaction of the electrons is repulsive in nature and is inverse in relationship with relative
position, the changes in total internal energy of the electrons in QD are less affected by increase
in radius of QD. This therefore manifests in the peculiar shape of the entropy curves.

Figure 1

In Figure 2 and 3, we have plotted Entropy vs Pressure for a constant Temperature of 200 K.
The main purpose to show the effect of pressure on the entropy was to find the effect on effective
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mass and radius of QD. The interesting interplay of effect of pressure on the effective mass and
effective radius of the QD results in the near cusp shape of the entropy curves. This interplay is
downplayed by the enhancement of V0 which is shown by the near liner nature of the entropy
curve for V0 = 244 as shown clearly in Figure 3 and with enhancement in V0 the dip moves
towards the left of axis.

Figure 2

Figure 3

In Figure 4, A plot of Internal Energy versus Dot radius at T = 300 K has been shown. Here
we see that initially Internal Energy is negative in value because as we know that there is an
electron-electron interaction at lower energy levels and at higher levels with increase in QD
radius the kinetic energy value is more dominant than the coulomb potential energy, hence
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internal energy increasing with increase in effective QD radius. Here the effective radius is
less prominent at the higher values than in the beginning. Also it can be observed that the
difference in relativistic and non-relativistic energies is of the order of approx. 10-5 nm asseen
in the closet.

Figure 4

In Figure 5 and 6, variation of internal energy versus pressure for the different potentials
for a fixed temperature of 300 K has been shown. The effect of pressure on the effective mass
and effective radius of QD results in the dip in the internal energy curve. This effect is more
prominent at the lower potential, as with increase in potential the dip vanishes completely and
shift towards the left axis, which can be seen in Figure 6.

Figure 5

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 5, No. 1, pp. 41–53, 2018



50 The Effect of Relativistic Quantum Corrections on the Thermal Properties. . . : S. Dahiya et al.

Figure 6

In Figure 7 and 8, plot of free energy vs pressure at a constant temperature T = 200 K
has been shown. Valuable information which free energy gives is how likely the system
transformation from one state to another state spontaneously takes place. Figure 7 shows
the pressure dependence of the free energy for the QD. As it can be predicted from both the
graphs that free energy is negative for pressure and also increasing with increase in pressure. It
is common to have a decreasing trend of free energy and during the progression of any natural
process it becomes more negative. The degree of decrease in free energy is estimated by the
entropy (S) of the system, where the slope of free energy curve is a negative entropy.

Figure 7

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 5, No. 1, pp. 41–53, 2018



The Effect of Relativistic Quantum Corrections on the Thermal Properties. . . : S. Dahiya et al. 51

Figure 8

4. Discussion
In conclusion, we have calculated the discrete energy spectra for two electrons in a two-
dimensional harmonic oscillator that serves as a simple but suitable model for quantum dots on
semiconductor interfaces. We have investigated analytically the thermodynamic properties of a
quantum dot as a function of radius without any effect of external magnetic and electric fields.
By imposing the relativistic corrections of Pauli’s spin-orbit (SO) coupling, Darwin’s correction,
and mass-velocity (MV) interaction, we computationally study the electronic structure of an
electron confined in a spherical quantum dot (QD), and discuss the influence of these relativistic
terms. The results have been presented at near room temperatures. We have found that the
internal energy and entropy is increasing with the QD radius but there is a slight dip in both
the entropy and internal energy when calculated with pressure which vanishes with increase in
the potential. The relation of Helmholtz free energy with pressure is negative in nature with
the increase in values and is having the slope of the curve negative to that of entropy.
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