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Abstract. This article discusses the nonlinear refractive index of silicon nanoparticles starting from
the basic formalism to some of the consequent physical phenomena like self focusing and self phase
modulation. Several experimental techniques mainly based on Z-scan are discussed to measure the
nonlinear refractive index. Another less explored technique for silicon nanoparticles, which studies the
far-field optical fringe pattern formed by spatial self-phase modulation, is also discussed. Computation
of the nonlinear refractive index is shown in detail by employing these two techniques. While Z-scan
can estimate the nonlinear coefficient of a medium in a chosen time scale, the optical fringe method
can predict the overall nonlinear refractive index due to all possible physical mechanisms. Some of
the recent results for silicon nanoparticles using these two techniques are also discussed.
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1. Introduction
Nonlinear optical properties of materials have become increasingly important since the invention
of laser. The origin of nonlinear (NL) optics lies in the NL response of materials to the incident
laser radiation. Potentially, NL optical effects can play a major role in the development of high-
speed data-processing and communication systems. Various all-optical NL devices operating as
switches, routers or frequency converters, have been shown to be technically feasible, but they
are not yet of practical interest because of the limitations of existing NL materials.
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In the past decades, silicon nanoparticles (SiNP) have generated large interest as a promising
key material to establish a Si based photonics [1]. Room temperature light emission from SiNP is
attainable by reducing their dimensions down to a few nanometers, localizing the electron-hole
pairs. On the other hand, the low absorption coefficient makes SiNP attractive as active medium
in waveguide structures. In recent years, tremendous research work has been undertaken to
explore the NL optical properties of low dimensional semiconductors, especially, SiNP [2–11].
Optical nonlinearities of the SiNP are relatively larger than that in bulk Si and about 200 times
larger than that for silica at fiber-optic wavelengths [1], making this system a good candidate
for applications in nonlinear optics. It has been shown that there is a strong correlation of
the third-order optical nonlinearity and hence the NL refractive index, of the SiNP with the
electronic quantum confinement effect [11,12]. Recently, an all-optical logic gate operating in
the gigabits per second regime exploiting the NL optical properties of SiNP is demonstrated [13],
as both the absorption coefficient and refractive index can be easily controlled by the application
of external optical fluences.

This article is organised as follows: Section 2 gives a formal theoretical background of NL
refractive index, its origin and discusses some fascinating NL phenomena like self focussing
and self-phase modulation. Section 3 discusses some of the experimental techniques to measure
the NL refractive index of NL media in various forms. In Section 4 computation of NL refractive
index is shown in detail by employing two techniques in particular, e.g. Z scan and optical fringe
pattern formation. Some of the recent results for SiNP using these two techniques are also
discussed.

2. Theoretical Background
In this section, let us recall some concepts of NL optics. Let P(ω) be the induced polarization in
a medium at a given frequency ω due to an electric field E(ω) of an incident laser radiation. At
low laser intensities, one can assume that P(ω) depends linearly on E(ω). Neglecting anisotropy,
the linear optical properties of a given material at frequency ω are fully described by the
refractive index n(ω) or the relative dielectric constant εr(ω) or the susceptibility χ(ω). Since the
ω dependence of the above mentioned quantities is obvious, henceforth it will be dropped from
the notations for simplicity. The relation among these quantities are given by εr = n2 = 1+χ. At
sufficiently high laser intensities, P deviates from its linear dependence on E. The expression for
P involves higher-order terms in E. In electric dipole approximation, P can be mathematically
expressed in a Taylor series as

P = ε0[χ(1)E+χ(2)EE+χ(3)EEE+ . . .] (1)

where ε0, χ(n) and E are the dielectric permittivity of free space, the nth order susceptibility
tensor and the electric field in the medium respectively. This expression is valid only if the
optical frequency is non-resonant and E is not too large so that the series expansion converges
rapidly. These susceptibilities are solely the properties of the material and depend upon the
electronic structure of the atoms/molecules as well as their geometrical arrangement in the
bulk. For example, χ(2) vanishes for materials with inversion symmetry. The first term on the
right hand side of Eq. (1) denotes the linear polarization, which varies linearly with electric
field E. This is responsible for linear absorption and refraction. The remaining terms are
associated with light-induced NL effects. The second term χ(2)EE has a quadratic dependence
on the electric field E. This second-order polarization gives rise to the electro-optic effect,
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second harmonic generation, sum frequency generation and other second-order processes. The
third-order polarization denoted by χ(3)EEE is responsible for third harmonic generation,
optical phase conjugation and intensity dependent absorption and refraction in the medium.
All the above NL optical phenomena are exploited in developing various devices for frequency
conversion, optical switching, optical limiting and optical logic circuits, etc.

Since the susceptibility is a function of E, the refractive index, n, of the medium depends on
E. For a NL medium, this dependence has significant contribution when subjected to intense
electromagnetic field leading to an effect called self focusing. Since this does not affect the
frequency, one can extract the expression for refractive index from Eq. (1) by choosing the
fundamental harmonic term as follows [14]

n =
√

1+
(
χ(1) + 3

4
χ(3)|E|2

)
. (2)

This can further be simply expressed as the combination of linear and NL contributions

n = n0 +∆n(|E|2) (3)

where n0 is the intensity independent linear refractive index and ∆n(|E|2), the intensity
dependent NL refractive index induced by an optical field E.

The NL refractive index is determined by several physical mechanisms acting on a broad
range of time scales. The various contributions are

nnl = nnl(electronic)+nnl(non-electronic) . (4)

The electronic contribution originates from optical transitions involving the bound electrons
having very fast response time, of the order of 10−15s. The non-electronic processes are
nonradiative interactions due to vibrational, electrostrictive and thermal contributions. The
vibrational response time is of the order of 10−13s15. The electrostrictive response time is roughly
equal to the time required for an acoustic deformation to travel across the diameter of the
beam (∼ 10−8s). Thermal diffusion time scales are even longer and depend on the thermal
properties of the medium. Examples of electronic nonlinearity are second- and third harmonic
generation. Some of non-electronic NL phenomenon are temperature-, density-, and order
parameter-changes, cis-trans isomerism, phase transition, etc.

Now let us discuss the effects of NL refractive index of a medium in form of some physical
processes. When an intense beam passes through a medium having refractive index given
by Eq. (3), it yields to some very fascinating phenomena like self focusing and self phase
modulation [16]. These are typical of NL wave propagation that results from wavefront
distortions inflicted on a beam by itself while traversing a NL medium. Consider a single
mode laser beam with a Gaussian transverse profile propagating into the said medium with
a refractive index n. If ∆n is positive, the central part of the Gaussian beam having a higher
intensity should experience a larger refractive index while traversing the medium. Therefore,
beam travels at a slower velocity than that at the edge. Consequently, the original plane
wavefront of the beam gets progressively more curved, when the beam travels in the medium [16].
The distortion is similar to that imposed on the beam by a positive lens. Since the optical ray
propagation is in the direction perpendicular to the wavefront, the beam appears to focus by
itself. Thus, self-focusing can be briefly explained as an induced lens effect. If ∆n is negative, a
negative lens effect occurs giving rise to a similar reverse phenomenon, known as self defocusing.
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However, the beam should undergo diffraction due to its finite cross-section. Self-focusing
will be prominent only when it is stronger than diffraction. In many cases, the field-induced
refractive index of a NL medium can be approximated by

∆n =
{n2

2
|E|2

}
esu

= {n2I}MKS (5)

where n2 is a constant, called as the NL coefficient and I is the intensity of the incident beam
(in MKS). Since |E| (in CGS units) is inversely proportional to the beam radius, the self-focusing
action remains stronger than the diffraction action (if it was strong initially, otherwise the latter
will dominate).

The change in optical-field-induced refractive index also leads to self-induced phase
modulation of the beam. Consider a laser pulse |E(t)|2 propagating in a NL medium of length l. If
∆n in the medium has an instantaneous response ∆n(t)= n2

2 |E(t)|2, the output has a self-phase
modulation given by [16]

∆φ(t)= ω

c
∆n(t)l = ω

c
n2

2
|E(t)|2l (6)

Correspondingly this results in a frequency modulation, ∆ω(t)=−∂(∆φ(t))
∂t , which appears to be a

broadened spectrum.
Analogically, a similar phenomenon of self-phase modulation can occur in space depending

on the transverse intensity profile of a beam, which is known as spatial self-phase modulation.
When an intense laser beam passes through a NL medium, the change in the refractive index
gives rise to a velocity distribution of the laser beam in the transverse plane. Hence there occurs
spatial phase variation. For a beam with a Gaussian-like transverse profile, the phase increment
∆φ(r) across the beam profile has a bell-shaped distribution and can be written as [16]

∆φ(r)=∆φ0 exp
(−2r2

a2

)
(7)

where a is a constant and ∆φ0 is the maximum phase increment at r = 0. Thus constructive or
destructive interference occur when ∆φ(r1)−∆φ(r2)= mπ, for m being an even or odd integer
respectively. When ∆φ0 is much larger than 2π, a concentric multiple ring pattern appears on
the far-field observation screen placed perpendicular to the direction of the transmitted beam
through the NL medium. The total number of rings, N, can be estimated from the relation [16]

N ∼= ∆φ0

2π
. (8)

Concentric optical fringe patterns due to self-phase modulation have been observed in various
systems such as, SiNP [17], Gold nanoparticles [18, 19] and nematic liquid crystal films [20]
using a continuous wave laser beam.

3. Experimental Techniques
The NL refractive index can be measured by using a variety of techniques including
NL interferometry [21], degenerate four-wave mixing [22], nearly degenerate three-wave
mixing [23], ellipse rotation [24] and beam distortion measurements [25]. The first three
methods, namely, NL interferometry and wave mixing, are potentially sensitive techniques,
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but require relatively complex experimental apparatus. On the other hand, beam distortion
measurements are relatively insensitive and require detailed wave propagation analysis. A very
simple and sensitive single-beam technique, termed as Z-scan technique, has been demonstrated
by Sheik-Bahae et al. [26] in order to measure both the sign and magnitude of the NL refractive
index and NL absorption coefficient for a wide variety of materials in different time scales.
In case of SiNP, Z-scan is the extensively used technique to estimate the NL coefficient as
discussed in the next section. This technique in particular and some other specific techniques
are discussed in the following.

(i) Z-scan
In the conventional Z-scan experiment, the transmittance of a NL medium is recorded by a
photodetector while the sample (which is a NL medium) is scanned through (Z-axis) the focused
laser beam. This is called an open aperture Z-scan. Plot between sample position (z) measured
with respect to the focal plane and the normalized transmittance curve depicts only the losses
due to the linear and NL absorptions of the sample from which the NL absorption coefficient
is calculated. If the transmitted light is measured through a finite aperture in the far field as
a function of the sample position, it is called as a closed aperture Z-scan. The curve displays
both the absorption and scattering where the coefficient of NL refractive index can be obtained.
A general scheme of the setup of the Z-scan technique is depicted in Fig. 1. As the sample moves
through the beam focus (at z = 0), self-focusing or -defocusing modifies the wave front phase,
thereby modifying the detected beam intensity. A pre-focal transmittance maximum (peak),
followed by a post-focal transmittance minimum (valley) is a Z-scan signature of a negative
nonlinearity. An inverse Z-scan curve (i.e., a valley followed by a peak) characterize a positive
nonlinearity. Fig. 2 depicts these two situations.

Figure 1. General schematics of experimental setup of the Z-scan technique: chopper (Ch); lens (L);
sample (S); iris (I), photo detector (PD) and personal computer (PC).

(ii) Modified forms of Z-scan
Since its invention, the conventional Z scan technique has been improvised for better sensitivity
and to study a variety of materials. These include the use of non-Gaussian-beam profiles, thick
samples, measurements in reflection mode (reflection Z-scan, appropriate for opaque materials)
and total beam-profile distortions [27]. In spite of these advances, however, it is still not
convenient to use the Z-scan technique in certain situations. For example, the excitation laser
wavelength has to be off resonance for strongly NL absorption materials so that transmitted
optical signal can be measured. Weak NL materials require intense optical beam, often resulting
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Figure 2. Typical Z-scan plots showing positive and negative nonlinearity.

in damage of the material. Also Z-scan cannot be used to study opaque and highly absorptive
optical samples, and surface properties of non-transparent materials like semiconductors. This
holds true even for frozen aqueous samples where formation of microcrystals and cracks lowers
the transparency of the sample.

There is a novel Photoacoustic Z scan (PAZ scan) [27] technique devised recently to measure
the NL absorption coefficient of a wide variety of non-transparent, highly absorbing, optically
thick samples. This technique combines the advantages of the conventional Z scan method
and the sensitivity of photoacoustic detection. In this method the sample is scanned through
the focused laser beam and the generated photoacoustic signal is recorded using a focused
ultrasound transducer.

The NL response of a material can have several physical origins and it is important to
differentiate among them. As for example, when some glassy materials or liquids are excited by
a continuous (cw) or quasi-cw (with high repetition rate) laser beam, thermal nonlinearities
are unavoidable. In that case, a thermally managed eclipse Z scan technique [28] is used
to simultaneously measure the thermal and non-thermal contribution to the NL refractive
properties along with the absorptive properties.

(iii) Optical fringe pattern
Another potential technique, but little explored for SiNP, is the formation of optical fringe
pattern. With this technique, the NL refractive index is calculated by studying the optical fringe
pattern formed due to spatial self phase modulation of a focused cw laser beam after traversing
through a NL medium [17–20]. Since the fringe pattern can be observed in reflection geometry,
this method is also useful to measure the change in refractive index of an opaque medium e.g.
semiconductors. However, it is not possible to know the exact physical origin of nonlinearity by
this method as the fringe pattern is related to the total change in refractive index due to all
possible NL processes.
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4. Discussions
This section deals with calculation and discussion of some results of nonlinear refractive
index using Z-scan and optical fringe pattern methods. The Z-scan method has been used
extensively by many research groups to measure the third-order NL susceptibility [4–6] and the
NL refractive index [7–11] resulting from the quantum confinement of Si. In this technique, to
calculate the nonlinear coefficient, the experimentally measured closed aperture transmittance
T(x) is fitted with the following expression [29]

T(x)= 1+ 4∆φ
(x2 +9)(x2 +1)

. (9)

where x = z/z0, is defined as the reduced distance from the focal point, z being the absolute
longitudinal distance and z0 the Rayleigh range of the beam and ∆Φ is the phase change. This
phase change ∆Φ is related to the nonlinear coefficient n2 (in SI units) by

n2 =∆φλα/[2
p

2πI0(1− e−αl)] (10)

where α, I0 and l are the linear absorption coefficient at the used wavelength λ, the peak
intensity at the focus position and the thickness of the sample, respectively.

The NL coefficient of the refractive index has been calculated at different wavelengths (or
excitation energies) for SiNP prepared by various fabrication methods. Hernandez et al. [29]
have evaluated the NL coefficient for SiNPs prepared by plasma enhanced chemical vapor
deposition. For excitation at 0.80 eV, in the nanosecond regime, the nonlinearity is mainly of
thermal origin and the NL coefficient is very high, −10−8cm2/W. For excitation at 1.5 eV, in
the femtosecond regime, the nonlinearity is due to electronic response and the NL coefficient
is smaller, 10−12cm2/W. The electronic susceptibility, associated with intraband transitions, is
highly enhanced for SiNP with a size below 2 nm due to the appearance of electronic transitions
between discrete levels induced by quantum confinement. Changing the pulse duration in
nanosecond range increases the NL coefficient proportionately as shown for SiNP embedded in
SiO2 films at 1.16 eV [30]. In this regime, it is shown that free carriers hold major influence
on the NL properties as compared to two-photon absorption (TPA), bound electron or thermal
effects. In another report [31], the NL coefficient of a similar system (SiNP in SiO2 films) is
shown to be large in the excitation range 1.52 to 1.66 eV, due to contribution from defect states
at low annealing temperatures. As the crystals grow with higher annealing temperature, the
defect state contribution is reduced and the quantized electronic states are considered to be
the major origin of the large NL coefficient. References [32] and [33] show some methods to
enhance the NL coefficient further in a confined system. SiNP doped with phosphorus (P) show
enhanced NL coefficient as P concentration increased at 1.6 eV in the femtosecond range [32].
This is a strong indication that impurity control may be an additional parameter to enhance the
NL optical responses of SiNP. Petris et al. [33] measured precisely both electronic and thermal
NL coefficients of periodic nano-patterned Si on insulator (SOI), un-patterned SOI and bulk
silicon, using a reflection Z-scan setup with femtosecond laser pulses at 1.55 eV. These results
could be important in silicon photonics, for achievement of NL optical devices with properties
controlled by nano-patterning. Most of the data reported so far show large deviations due to the
inhomogeneity of the samples owing to various fabrication techniques, preparation conditions
and different particle size distributions.

There are several reports [17–20, 34] on computation of NL refractive index by studying
the optical fringe patterns formed by far-field diffraction from various NL media. Consider a
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Gaussian laser beam of the following intensity profile, I(r), is incident on a NL medium.

I(r)= I0 exp
(
−2r2

ω2

)
(11)

where I0 the maximum intensity at the center of the Gaussian laser beam and ω is the beam
waist. The far-field diffraction intensity distribution from such a medium is given by [20]

I(x)= I0

∣∣∣∣i ( 2π
λZ

)∫ ∞

0
rdrJ0

(
krx
2Z

)
exp

(
−2

r2

ω2 − iφ(r)
)∣∣∣∣2 (12)

where x is the distance from the center of the far field pattern to the observation point, λ the
wavelength of incident laser beam, z the distance from the sample to the observation point,
J0(x) the zero-order Bessel function of the first kind and k (= 2π/λ) the wave number in free
space. The phase shift φ(r) plays the most important role in determining the final intensity
distribution. It consists of two parts contributed by the linear and NL phase differences. The
linear part is due to the distance Z and the radius of curvature R of the wavefront of the incident
laser beam. The nonlinear part of phase shift is given by

φNl(r)= k ln2 I(r) . (13)

There are several physical mechanisms which can induce a change in refractive index
proportional to the light intensity in a NL medium. According to Eq. (12), the far-field diffraction
patterns will be alike as long as the additional phase shifts are identical. In other words, the
effect of the additional phase shift caused by the refractive index change on the far-field
diffraction pattern is only relevant to the magnitude of the additional phase shift produced after
the beam passes through the medium. It is not relevant to the mechanism by which the change
in the refractive index occurs. By simulation of the experimental far-field intensity distribution
pattern by using Eqs. (12) and (13), the NL coefficient can be estimated. The value of n2 can
also be estimated by a simple linear relation between the number rings and the maximum
nonlinear phase shift φNl(0) using Eqs. (8) and (13), of course with proper attention paid to the
beam curvature R [18].

Though this method is well studied in materials like liquid crystals [20], surprisingly there
are very few reports of application of this method to nanoparticles [17–19]. The NL refractive
index is measured by Prusty et al. [17] for SiNP prepared by laser-induced etching. Here they
show that the NL coefficient depends on the size distribution of the nanoparticles present in
the medium. Thus, the optical fringe pattern formed at the far-field in reflection geometry
evolves not only with the incident laser intensity, but also with the change in size distribution.
Fig. 3 shows the far-field intensity distribution of optical fringe patterns calculated theoretically.
Fig. 3(a) corresponds to the pattern formed by the probing laser beam of intensity 0.3 kW/cm2,
when it falls on a bulk Si substrate where the SiNP are not yet formed. An intensity distribution
is shown to evolve in Fig. 3(b) as SiNP are formed with an average size of 4 nm, when probed
at an intensity of 0.3 kW/cm2. As the probing intensity is increased from 0.3 and 0.6 kW/cm2

keeping the size constant, the far-field intensity distribution evolves further as shown in Fig. 3(c).
Figs. 4(a)-(c) are the experimentally observed fringe patterns corresponding, respectively, to
Figs. 3(a)-(c). Thus the overall change in refractive index contributing to the nonlinear phase
shift is shown to be a function of the particle sizes and the probing beam intensity. Since
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the sample is kept in the focal plane, the linear part of the phase shift only gives a constant
contribution.

Majles Ara et al. [19] have shown a fair agreement between the estimated values of the NL
coefficient of gold nanoparticles by comparing the results of Z-scan and optical fringe pattern
method. The interplay between the number of generated rings and the nonlinear phase-shift
induced by convergent and divergent Gaussian beams is thoroughly investigated theoretically
and experimentally for a colloidal solution of gold nanoparticles [18]. By looking to the whole
changes in the diffraction patterns, they show that a linear relation exists for both situations.
The effect of contributions from both the linear and NL phase differences on the formation
and evolution of the far-field diffraction pattern of a Gaussian beam passing through nonlinear
media is studied in detail by numerical method [34]. When the divergent Gaussian beam passes
through the self-defocusing media, or the convergent Gaussian beam passes through the self-
focusing media, the thick diffraction ring pattern with both the central dark spot and the larger
distribution range will emerge in the far-field plane. Whereas in reverse case, when a divergent
Gaussian beam transmits through the self-focusing media, or the convergent Gaussian beam
passes through the self-defocusing media, the thin diffraction ring pattern with both the central
bright spot and the smaller distribution range will emerge in the far-field plane. However,
extreme care must be exercised while using this simple linear relation to estimate the NL
coefficient experimentally since the total phase difference also depends on the sign and value of
the beam curvature at the sample position.

Figure 3. Theoretically calculated far-field intensity distribution of optical fringe patterns (a) in absence
of SiNP at a probing laser beam of intensity 0.3 kW/cm2, (b) in presence of SiNP of average size of 4 nm
at a probing laser beam of intensity 0.3 kW/cm2 and (c) in presence of SiNP of average size of 4 nm at a
probing laser beam of intensity 0.6 kW/cm2.
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(a) (b) (c)

Figure 4. (a)-(c): Experimentally observed fringe patterns corresponding, respectively, to the calculated
far-field intensity distribution shown in Figs 3(a)-(c).

5. Conclusions
In summary, the NL refractive index of the SiNP is discussed starting from the basic formalism
to some of the consequent physical phenomena like self focusing and self phase modulation.
Among various available experimental techniques, the Z scan method is invariably used to
estimate the NL coefficient for SiNP, prepared under various fabrication conditions, subjected
to various time scales and different excitation energies. This leads to a large scatter in the
available data. Estimation of NL refractive index from the far-field optical fringe pattern of
SiNP is also discussed in detail. With careful analysis of the fringe pattern, one can estimate
the overall NL refractive index due to all possible physical mechanisms in the SiNP. It also
predicts that apart from the incident laser intensity, NL coefficient is dependent on the size
distribution of SiNP.
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