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Abstract. In this paper, we propose a reliable combination of the homotopy analysis method (HAM)
and laplace transform-Adomian method to find the analytic approximate solution for nonlinear integro-
differential equations. In this technique, the nonlinear term is replaced by its Adomian polynomials for
the index k, and hence the dependent variable components are replaced in the recurrence relation by
their corresponding homotopy analysis transforms components of the same index. Thus, the nonlinear
integro-differential equation can be easily solved with less computational work for any analytic
nonlinearity due to the properties and available algorithms of the Adomian polynomials. The results
show that the method is very simple and effective.

Keywords. Nonlinear integro-differential equations; Homotopy analysis method; Laplace transform
method; Adomian polynomials

MSC. 35R09

Received: June 19, 2018 Accepted: July 26, 2018

Copyright © 2018 Nahid Khanlari and Mahmoud Paripour. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

1. Introduction
Integral and integro-differential equations are known to play an important role in characterizing
many social, biological, physical and engineering problems. Nonlinear integral and integro-
differential equations are usually hard to solve analytically while exact solutions are rather
difficult to be obtained. Some different valid methods have been developed to solving nonlinear
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integral equations in the last few years [8, 9, 11]. The homotopy analysis method (HAM) is
a general analytic approach to get series solutions of various types of nonlinear equations
[2, 3, 7]. The HAM provides us a simple way to ensure the convergence of solution series, by
introducing the auxiliary parameter ~ [31,34]. By properly choosing the basis functions of initial
approximations, auxiliary linear operators, and auxiliary parameter ~, HAM gives rapidly
convergent successive approximations of the exact solution. The main aim of this article is
to present analytical and approximate solution of nonlinear integro-differential equations by
using the combined homotopy analysis method (HAM) and Laplace transform-Adomian. In this
work, we introduce a comprehensive and more efficient approach to use the homotopy analysis
transform method to solve nonlinear integro-differential equations. The nonlinear function is
replaced by its Adomian polynomials and then the dependent variable components are replaced
by their corresponding differential transform component of the same index. The first step is to
consider the following nonlinear intergro-differential equations of the second kind:

u(n)(x)= f (x)+
∫ x

a
k(x, t)F(u(t))dt, (1)

where the upper limit may be either variable or fixed, un(x) = dnu
dx , the kernel of the integral

k(x, t) and f (x) are known function and F(u(t)) is a nonlinear function of u(x), with initial
conditions u(a)=α0, u(1)(a)=α1, · · · ,u(n−1)(a)=αn−1.

2. Preliminaries and Notations
To begin with, review of the Adomian decomposition method is presented here.

2.1 Adimian’s Decomposition Method
Let us define the nonlinear equation

x = c+N(x), (2)

where N is a nonlinear function and c is a constant. The Adomian method consists of
representing the solution of (2) as a series

x =
∞∑

n=0
xn, (3)

and the nonlinear function as the decomposed form

N(x)=
∞∑

n=0
An, (4)

where An (n = 0,1,2, . . .) are the Adomian polynomials of x0, x1, . . . given by

An = 1
n!

dn

dλn

[
N

(
n∑

i=0
λixi

)]
λ=0

, n = 0,1,2, · · · ,

substituting (3) and (4) into (2) yields
∞∑

n=0
xn = c+

∞∑
n=0

An . (5)

The convergence of the series in (5) gives the desired relation

x0 = c,

Communications in Mathematics and Applications, Vol. 9, No. 4, pp. 637–650, 2018



Solving Nonlinear Integro-Differential Equations Using the Combined. . . : N. Khanlari and M. Paripour 639

xn+1 = An, n = 0,1,2, . . . ,

The polynomials An have been generated for all kinds of nonlinearity by Wazwaz [36]. Therefore
Adomian polynomials are given by

A0 = N(x0),

A1 = x1N ′(x0),

A2 = x2N ′(x0)+ 1
2!

x2
1N ′′(x0),

A3 = x3N ′(x0)+ x1x2N ′′(x0)+ 1
3!

x3
1N ′′′(x0),

A4 = x4N ′(x0)+
(

1
2!

x2
2 + x1x3

)
N ′′(x0)+ 1

2!
x2

1x2N ′′′(x0)+ 1
4!

x4
1N(iv)(x0) .

It should be pointed out that A0 depends only on x0, A1 depends only on x0 and x1, A2 depends
only on x0, x1 and x2, and so on. Hence, we may also write An as An(x0, x1, . . . , xn). Suppose
sm = x0+x1+x2+. . .+xm. Then, sm = c+A0+A1+A2+. . .+Am−1 is the (m+1)-term approximation
of x. Such sm can serve as a practical solution in each iteration.

2.2 Hypothesis and Generalities
Let us consider the general nonlinear functional equation:

u−N(u)= f (6)

where N and f are, respectively, operator and function given in convenient spaces. It is necessary
to find a function u satisfying equation (6). N is supposed to be such that (6) assumes a unique
solution in some well-adapted spaces.

Adomian technique allows us to find the solution of (6) as an infinite series u =∑∞
i=1 ui using

the recurrent scheme written below:

u0 = f ,
u1 = A0(u0),

...
un = An−1(u0, · · · ,un−1),

...

where

An = 1
n!

dn

dλn

[
F

(
n∑

i=0
λiui

)]
λ=0

, n = 0,1,2, · · · . (7)

For the present work, we shall suppose that

(i) the solution u of (6) can be found as a series of functions ui , i.e., u =∑∞
i=0 ui . Furthermore,

this series is supposed to be absolutely convergent, i.e.,
∑∞

i=0 |ui| <∞.

(ii) the nonlinear function N(u) is developable in the entire series with a convergence radius
equal to infinity. In other words, we may write

N(u)=
∞∑

i=0
Nn

(0)
un

n!
, |u| <∞.
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This last hypothesis is almost always satisfied in concrete physical problems.

Theorem 2.1. With the previous hypothesis (i) and (ii), the Adomian series u =
∞∑

i=0
ui is a solution

of equation (6), when the ui ’s satisfy relationship (7).

Proof of this theorem is given in [10].

3. Description of the Method
Let us consider integro-differential equations of the second kind

u(n)(x)= f (x)+
∫ x

a
K(x, t)F(u(t))dt .

To solve the nonlinear integro-differential equations, the Laplace transform can be applied on
both sides of eq. (1), to result in

L [u(n)(x)]]=L [ f (x)]+L

[∫ x

a
K(x, t)F(u(t))dt

]
, (8)

snL[u(x)]− sn−1u(0)− sn−2u′(0)−·· ·−u(n−1)(0)=L [ f (x)]+L [K(x, t)]L [F(u(t))], (9)

or equivalently

L [u(x)]= 1
s

u(0)+ 1
s2 u′(0)+·· ·+ 1

sn u(n−1)(0)+ 1
sn L [ f (x)]+ 1

sn L [K(x, t)]L [F(u(t))]. (10)

To overcome the difficulty of the nonlinear term F(u(x)), we apply the Adomian decomposition
method for handling (10).

To achieve this goal, we first represent the linear term u(x) on the left side by an infinite
series of components given by

u(x)=
∞∑

n=0
un(x) , (11)

where the components un(x), n ≥ 0 will be recursively determined. However, the nonlinear
term F(u(x)) on the right side of (10) will be represented by an infinite series of the Adomian
polynomials An in the form

F(u(x))=
∞∑

n=0
An, An = 1

n!
dn

dλn

[
F

(
n∑

i=0
λiui

)]
λ=0

, n = 0,1,2, · · · , (12)

where An, n ≥ 0 can be obtained for all forms of nonlinearity.
Substituting (11) and (12) into (10) leads to

L

[ ∞∑
n=0

un(x)

]
= 1

s
u(0)+ 1

s2 u′(0)+·· ·+ 1
sn u(n−1)(0)+ 1

sn L

[
f (x)+ 1

sn L [K(x, t)
]
L

[ ∞∑
n=0

An(t)

]
.

We define the nonlinear operator

N[ϕ(x; q)]=L [ϕ(n)(x; q)]−L [ f (x)]−L

[∫ x

a
k(x, t)

∞∑
n=0

An(t)dt

]
, (13)

where q ∈ [0,1] is an embedding parameter and ϕ(x; q) is the real function of x and q. Now, we
can construct the zero order deformation equation

(1− q)L [ϕ(x; q)−u0(x)]= q~H(x)N[ϕ(x; q)], (14)
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Obviously, when q = 0 and q = 1, it holds that ϕ(x;0)= u0(x), ϕ(x;1)= u(x) respectively, where
the initial guess of the exact solution u(x) is u0(x), H(x) 6= 0 an auxiliary function, ~ 6= 0 is
an auxiliary parameter ϕ(x; q) is an unknown function and L is an auxiliary linear operator.
Thus, as q increases from 0 to 1, ϕ(x; q) varies from the guess u0(x) to the exact solution u(x).
Expanding ϕ(x; q) Taylor’s series with respect to q, we have

ϕ(x; q)=ϕ(x;0)+
∞∑

m=1
um(x)qm, m = 1,2, · · · ,

where

um(x)= 1
m!

∂mϕ(x; q)
∂qm

∣∣∣
q=0

, m = 1,2, · · · .

The previous relation can be written in the following form

ϕ(x; q)= u0(x)+
∞∑

m=1
um(x)qm, m = 1,2, · · · . (15)

The initial guess u0(x) is chosen such that satisfies the initial conditions of problem. If the
auxiliary linear operator, the auxiliary parameter ~, and the auxiliary function are properly
chosen, the series (15) converges at q = 1, and we get the solution

u(x)= u0(x)+
∞∑

m=1
um(x), m = 1,2, · · · , (16)

for brevity define the vector

~un−1(x)= {u0(x),u1(x), · · · ,un−1(x)} .

According to the definition (16), the governing um(x) can be derived from the zero-order
deformation equation (14) m times with respective to q and then dividing it by m! and finally
setting q = 0, we obtain the mth-order deformation equation

L [um(x)−Xmum−1(x)]= ~qH(x)Rm(um−1(x)), (17)

subject to initial conditions

u(a)=α0, u(1)(a)=α1, · · · ,u(n−1)(a)=αn−1, (18)

where

Rm(um−1, x)= 1
(m−1)!

∂m−1N[ϕ(x; q)]
∂qm−1

∣∣∣
q=0

(19)

and

χm =
{

0, m ≤ 1
1, m ≥ 2.

From (19) and using (13), we have

Rm[ϕm−1(x)]= ∂nϕm−1

∂xn − (1−Xm) f (x)−
∫ x

a
K(x, t)

[
m−1∑
n=0

Am−1−n(t)

]
dt. (20)

In this way, it is easy to obtain um(x) for m ≥ 1 at mth-order. We have

u(x)= u0(x)+
∞∑

m=1
um(x),

when n →∞ and we get an accurate approximation of the original equation.
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Definition 3.1. The relative errors τn of the n terms approximation is

τ(xi)=
∣∣uexact −umpp(xi)

∣∣
|uexact(xi)|

.

4. Convergence Analysis
In this section, one theorem and conditions in the framework of convergence of the homotopy
analysis method are stated.

Theorem 4.1. The series

ϕ0(x)+
∞∑

m=1
ϕm(x)

converges, where ϕm(x)’s are resulted from (17), (18) and (20), the limit of the series is an exact
solution of (1).

Proof. Since, by hypothesis, the series is convergent, it holds

S(x)=
∞∑

m=0
ϕm(x)·

So, the necessary condition for the convergence of the series is valid, that is,

lim
m→∞ϕm(x)= 0· (21)

using (17) and (21), we have

~H(x)
+∞∑
m=1

Rm
[
~ϕm−1(x)

]= lim
n→∞

n∑
m=1

L
[
ϕm(x)−Xmϕm−1(x)

]
=L

{
lim

n→∞

+∞∑
m=1

[
ϕm(x)−Xmϕm−1(x)

]}=L
{

lim
n→∞ϕn(x)

}
= 0·

Since ~ 6= 0, we must have
+∞∑
m=1

Rm
[
~ϕm−1(x)

]= 0,

on the other hand, we have
∞∑

m=1
Rm[ϕm−1(x)]=

∞∑
m=1

[
∂nϕm−1

∂xn − (1−Xm) f (x)−
∫ x

a
K(x, t)

[
m−1∑
n=0

Am−1−n(t)

]
dt

]
= 0,

=
∞∑

m=0
ϕ(n)

m (x)− f (x)−
∞∑

m=1

{∫ x

a
K(x, t)×

[
m−1∑
n=0

Am−1−n(t)dt

]}
= 0,

=
∞∑

m=0
ϕ(n)

m (x)− f (x)−
∫ x

a
K(x, t)

[ ∞∑
m=1

(
m−1∑
n=0

Am−1−n(t)

)]
dt = 0,

=
∞∑

m=0
ϕ(n)

m (x)− f (x)−
∫ x

a
K(x, t)

∞∑
r=0

Ar(t)dt = 0,

s(n)(x)− f (x)−
∫ x

a
K(x, t)F(s(t))= 0, (22)

s(n)(x)= f (x)−
∫ x

a
K(x, t)F(s(t))· (23)
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Also, from the initial conditions (18), the following holds:

S(0)=
∞∑

i=0
ϕi(0)=ϕ0(0)= u0(0)= u0,

since s(x) satisfies (22), we conclude that it is an exact solution of (1).

5. Applications and Numerical Results
In this section, we implement the proposed method on some different examples with different
types of nonlinearity. All algebraic computations are executed using MATHEMATICA software

package. We report absolute error which is defined by Eu = |uexact−uapp|, where uapp =
m∑

i=0
ui(x).

Example 5.1. Consider the nonlinear Volterra integro-differential equation{
u′(x)= 9

4 − 5
2 x− 1

2 x2 −3e−x − 1
4 e−2x +∫ x

0 (x− t)u2(t)dt,
u(0)= 2,

which has the exact solution u(x)= 1+ e−x.
The nonlinear term F(u(x))= u2(x), can be expressed by Adomian Polynomials An, where

An = 1
n!

dn

dλn

[
F

(
n∑

i=0
λiui

)]
λ=0

, n = 0,1,2, · · · .

Applying Laplace transform, we have

su(s)−u(0)= 9
4s

− 5
2s2 − 1

s3 − 3
s+1

− 1
4(s+2)

+ 1
s2 L {An(x)},

which satisfies

u(s)= 2
s
+ 9

4s2 − 5
2s3 − 1

s4 − 3
s(s+1)

− 1
4s(s+2)

+ 1
s3 L {An(x)}.

A nonlinear operator can be defined as:

N[ϕ(x; q)]=L [ϕ(x; q)]+
(
−2

s
− 9

4s2 + 5
2s3 + 1

s4 + 3
s(s+1)

+ 1
4s(s+2)

)
− 1

s3 L {An(x)}.

The m-th order deformation equation is:

um(x)=Xmum−1(x)+~H(x)L −1Rm(um−1(x)),

for which ~=−1, H(x)= 1,

Rm(um−1(x))=L [um−1]−
(
2
s
+ 9

4s2 − 5
2s3 − 1

s4 − 3
s(s+1)

− 1
4s(s+2)

)
(1−X m)− 1

s3 {An(x)},

where An,n ≥ 0, n = 0,1,2, · · · , we consider

u0(x)= 2− x+ 1
2

x2 − 5
6

x3 + 5
24

x4 − 7
120

x5 +·· · ,

m=1−→ u1(x)= x2

2
· A0 where A0 = F(u0)= u2

0(x),

m=2−→ u2(x)= x2

2
· A1 where A1 = u1F ′(u0)= 2u0(x)u1(x),

m=3−→ u3(x)= x2

2
· A2 where A2 = u2F ′(u0)+ 1

2!
u2

1F ′′(u0)= 2u0(x)u2(x)+u2
1(x),
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using the MATHEMATICA package, we obtain

u1(x)= 2
3

x3 − 1
6

x4 + 1
20

x5 +·· · ,

the solution is given by

ϕm(x)= u0(x)+
m∑

i=1
ui(x), m = 1,2,3, · · · ,

u(x)= lim
m→∞ϕm(x)= lim

m→∞u0(x)+
m∑

i=1
ui(x)= 1+ e−x.

Some numerical results of this solution are presented in Table 1 and Figure 1.

Figure 1

Table 1. Numerical results of Example 5.1

x uexc(x) uapp(x) |uexc(x)−uapp(x)|
0.00 2.00000 2.00000 0.00000
0.02 1.98020 1.98047 2.72480E-4
0.04 1.96079 1.96177 9.83263E-4
0.06 1.94176 1.94374 1.97877E-4
0.08 1.92312 1.92623 3.1118E-3
0.10 1.90484 1.90908 4.23904E-3
0.12 1.88692 1.89214 5.21869E-3
0.14 1.86936 1.87527 5.90821E-3
0.16 1.85214 1.85831 6.16192E-3
0.18 1.83527 1.84110 5.82864E-3
0.20 1.81873 1.82348 4.74895E-3

Example 5.2. Consider the nonlinear Volterra integro differential equation{
u′′(x)= 2+2x+ x2 − x2ex − e2x +∫ x

0 ex−tu2(t)dy,
u(0)= 1, u′(0)= 2,
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which has the exact solution u(x)= x+e−x. The nonlinear term F(u(x))= u2(x), can be expressed
by Adomian polynomials An, where

An = 1
n!

dn

dλn

[
F

(
n∑

i=0
λiui)

)]
λ=0

, n = 0,1,2, · · · .

Applying Laplace transform, we have

u(s)= 1
s
+ 2

s2 + 2
s3 + 2

s4 + 2
s5 − 2

s2(s−1)3 − 1
s2(s−2)

+ 1
s2(s−1)

L {An(x)}.

A nonlinear operator can be defined as:

N[ϕ(x; q)]=L [ϕ(x; q)]+
(
−1

s
− 2

s
− 2

s3 − 2
s4 − 2

s5 + 2
s2(s−1)3 + 1

s2(s−2)

)
− 1

s2(s−1)
L {An(x)}.

The m-th order deformation equation is written as

um(x)=Xmum−1(x)+~H(x)L −1Rm(um−1(x)),

for which ~=−1, H(x)= 1,

Rm(um−1(x))=L [um−1]−
(
1
s
+ 2

s
+ 2

s3 + 2
s4 + 2

s5 − 2
s2(s−1)3 − 1

s2(s−2)

)
(1−Xm)

− 1
s2(s−1)

L {An(x)}, n = 0,1,2 · · · ,

where An,n ≥ 0, we consider

u0(x)= 1+2x+ x2

2
− x4

6
− 7

60
x5 +·· · ,

m=1−→ u1(x)=L −1
[

1
s2(s−1)

L {A0}
]

, where A0 = F(u0)= u2
0(x),

m=2−→ u2(x)=L −1
[

1
s2(s−1)

]
L {A1}], where A1 = u1F ′(u0)= 2u0(x)u1(x),

m=3−→ u3(x)=L −1
[

1
s2(s−1)

L {A2}
]

, where A2 = u2F ′′(u0)+ 1
2!

u2
1F ′′(u0)= 2u0(x)u2(x)+u2

1(x),

m=4−→ u4(x)=L −1
[

1
s2(s−1)

L {A3}
]

, where

A3 = u3F ′(u0)+u1u2F ′′(u0)+ 1
3!

u3
1F ′′′(u0)= 2u0(x)u3(x)+2u1(x)u2(x),

...

Using the MATHEMATICA package, we obtain

u1(x)= 1
6

x3 + 5
24

x4 + 1
8

x5 + 3
80

x6 +·· · ,

u2(x)= 1
360

x6 +·· · .

The solution is given by

ϕm(x)= u0(x)+
m∑

i=1
ui(x) , m = 1,2, · · ·

u(x)= lim
m→∞ϕm(x)= lim

m→∞u0(x)+
m∑

i=1
ui(x)= x+ ex.
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Some numerical results of this solution are presented in Table 2 and Figure 2.

Figure 2

Table 2. Numerical results of Example 5.2

x uexc(x) uapp(x) |uexc(x)−uapp(x)|
0.00 1.00000 1.00000 0.00000
0.02 1.0402 1.04042 2.16577E-4
0.04 1.08081 1.08175 9.37538E-4
0.06 1.12184 1.12412 2.28194E-3
0.08 1.16329 1.16767 4.38752E-3
0.10 1.20517 1.21259 7.41437E-3
0.12 1.24750 1.25905 1.15497E-3
0.14 1.29027 1.30729 1.70138E-2
0.16 1.33351 1.35758 2.40683E-2
0.18 1.37722 1.41024 3.30265E-2
0.20 1.42140 1.46567 4.42678E-2

Example 5.3. We used the proposed method to find the approximate solution of the following
nonlinear integro-differential equation{

u′′′(x)=−2
3 − 5

3 cos x+ 4
3 cos2 x+∫ x

0 cos(x− t)u2(t)dt,
u(0)= u′(0)= 1, u′′(0)=−1,

which has the exact solution u(x) = sin x+ cos x. The nonlinear term F(u(x)) = u2(x), can be
expressed by Adomian polynomials An, where

An = 1
n!

dn

dλn

[
F

(
n∑

i=0
λ2ui

)]
λ=0

, n = 0,1,2, · · · .

Applying Laplace transform, we have

u(s)= 1
s
+ 1

s2 − 1
s3 − 2

3s4 − 5
3s2(1+ s2)

+ 4(2+ s2)
3s4(4+ s2)

+ 1
s2(1+ s2)

L {An(x)}, n = 0,1,2, · · · .
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A nonlinear operator can be defined as:

N[ϕ(x; q)]=L [ϕ(x; q)]+
(
−1

s
− 1

s2 + 1
s3 + 2

3s4 + 5
3s2(1+ s2)

− 4(2+ s2)
3s4(4+ s2)

)
− 1

s2(1+ s2)
L {An(x)}, n = 0,1,2, · · · .

The m-th order deformation equation is:

um(x)= χmum−1(x)+hH(x)L −1Rm(um−1(x)),

in which h =−1, H(x)= 1,

Rm(um−1(x))=L [um−1]−
(
1
s
+ 1

s2 − 1
s3 − 2

3s4 − 5
3s2(1+ s2)

+ 4(2+ s2)
3s4(4+ s2)

)
(1−Xm)

− 1
s2(1+ s2)

L {An(x)}, n = 0,1,2 · · · ,

where n, An ≥ 0 we consider u0(x)= 1+ x− x2

2 − x3

6 − x5

120 +·· · ,

m=1−→ u1(x)=L −1
[

1
s2(1+ s2)

×L {A0}
]

, where A0 = F(u0)= u2
0(x),

⇒ u1(x)= x3

6
+ x4

3
− x5

120
− 43x6

180
− 23x7

1680
+·· · ,

and for m = 2,3,4, · · ·

u2(x)= x6

18
+ x3

6
+ 7x8

90
−·· · ,

using the MATHEMATICA package, the solution is given by

ϕm(x)= u0(x)+
m∑

i=1
ui(x), m = 1,2,3, · · ·

u(x)= lim
m→∞ϕm(x)= lim

m→∞u0(x)+
m∑

i=1
ui(x)= sin x+cos x.

Some numerical results of this solution are presented in Table 3 and Figure 3.

Figure 3
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Table 3. Numerical results of Example 5.3

x uexc(x) uapp(x) |uexc(x)−uapp(x)|
0.00 1.00000 1.00000 0.00000
0.02 1.0198 1.01980 1.37991E-6
0.04 1.03919 1.03920 1.14101E-5
0.06 1.05816 1.05820 3.97525E-5
0.08 1.07672 1.07681 9.71538E-5
0.10 1.09484 1.09503 1.95418E-4
0.12 1.11252 1.11287 3.47374E-4
0.14 1.12976 1.13033 5.66843E-4
0.16 1.14655 1.14741 8.68596E-4
0.18 1.16287 1.16414 1.26832E-3
0.20 1.17874 1.18052 1.78257E-3

6. Conclusion
The homotopy analysis transform with Adomian polynomials is applied to solve nonlinear
integro-differential equations. This method is clearly a very powerful and efficient technique to
find the analytical solutions for the wide class of differential and integro-differential equations.
In this way, we have great freedom to choose the auxiliary linear operator L , and the auxiliary
function H(x) and initial function u0(x), but in other methods we do n’t have this advantages.
The convergence accuracy of this method was examined in several numerical examples.
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