Solving Nonlinear Integro-Differential Equations Using the Combined Homotopy Analysis Transform Method With Adomian Polynomials

Nahid Khanlari ${ }^{1}$ and Mahmoud Paripour ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, 65138, Iran
${ }^{2}$ Department of Mathematics, Hamedan University of Technology, Hamedan, 65156-579, Iran
*Corresponding author: paripour@gmail.com

Abstract

In this paper, we propose a reliable combination of the homotopy analysis method (HAM) and laplace transform-Adomian method to find the analytic approximate solution for nonlinear integrodifferential equations. In this technique, the nonlinear term is replaced by its Adomian polynomials for the index k, and hence the dependent variable components are replaced in the recurrence relation by their corresponding homotopy analysis transforms components of the same index. Thus, the nonlinear integro-differential equation can be easily solved with less computational work for any analytic nonlinearity due to the properties and available algorithms of the Adomian polynomials. The results show that the method is very simple and effective.

Keywords. Nonlinear integro-differential equations; Homotopy analysis method; Laplace transform method; Adomian polynomials

MSC. 35 R 09
Received: June 19, 2018
Accepted: July 26, 2018
Copyright © 2018 Nahid Khanlari and Mahmoud Paripour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Integral and integro-differential equations are known to play an important role in characterizing many social, biological, physical and engineering problems. Nonlinear integral and integrodifferential equations are usually hard to solve analytically while exact solutions are rather difficult to be obtained. Some different valid methods have been developed to solving nonlinear
integral equations in the last few years [8, 9, 11]. The homotopy analysis method (HAM) is a general analytic approach to get series solutions of various types of nonlinear equations [2,3,7]. The HAM provides us a simple way to ensure the convergence of solution series, by introducing the auxiliary parameter \hbar [31,34]. By properly choosing the basis functions of initial approximations, auxiliary linear operators, and auxiliary parameter \hbar, HAM gives rapidly convergent successive approximations of the exact solution. The main aim of this article is to present analytical and approximate solution of nonlinear integro-differential equations by using the combined homotopy analysis method (HAM) and Laplace transform-Adomian. In this work, we introduce a comprehensive and more efficient approach to use the homotopy analysis transform method to solve nonlinear integro-differential equations. The nonlinear function is replaced by its Adomian polynomials and then the dependent variable components are replaced by their corresponding differential transform component of the same index. The first step is to consider the following nonlinear intergro-differential equations of the second kind:

$$
\begin{equation*}
u^{(n)}(x)=f(x)+\int_{a}^{x} k(x, t) F(u(t)) d t, \tag{1}
\end{equation*}
$$

where the upper limit may be either variable or fixed, $u^{n}(x)=\frac{d^{n} u}{d x}$, the kernel of the integral $k(x, t)$ and $f(x)$ are known function and $F(u(t))$ is a nonlinear function of $u(x)$, with initial conditions $u(a)=\alpha_{0}, u^{(1)}(a)=\alpha_{1}, \cdots, u^{(n-1)}(a)=\alpha_{n-1}$.

2. Preliminaries and Notations

To begin with, review of the Adomian decomposition method is presented here.

2.1 Adimian's Decomposition Method

Let us define the nonlinear equation

$$
\begin{equation*}
x=c+N(x), \tag{2}
\end{equation*}
$$

where N is a nonlinear function and c is a constant. The Adomian method consists of representing the solution of (2) as a series

$$
\begin{equation*}
x=\sum_{n=0}^{\infty} x_{n}, \tag{3}
\end{equation*}
$$

and the nonlinear function as the decomposed form

$$
\begin{equation*}
N(x)=\sum_{n=0}^{\infty} A_{n}, \tag{4}
\end{equation*}
$$

where $A_{n}(n=0,1,2, \ldots)$ are the Adomian polynomials of x_{0}, x_{1}, \ldots given by

$$
A_{n}=\frac{1}{n!} \frac{d^{n}}{d \lambda^{n}}\left[N\left(\sum_{i=0}^{n} \lambda^{i} x_{i}\right)\right]_{\lambda=0}, \quad n=0,1,2, \cdots,
$$

substituting (3) and (4) into (2) yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} x_{n}=c+\sum_{n=0}^{\infty} A_{n} . \tag{5}
\end{equation*}
$$

The convergence of the series in (5) gives the desired relation

$$
x_{0}=c,
$$

$$
x_{n+1}=A_{n}, \quad n=0,1,2, \ldots,
$$

The polynomials A_{n} have been generated for all kinds of nonlinearity by Wazwaz [36]. Therefore Adomian polynomials are given by

$$
\begin{aligned}
& A_{0}=N\left(x_{0}\right), \\
& A_{1}=x_{1} N^{\prime}\left(x_{0}\right), \\
& A_{2}=x_{2} N^{\prime}\left(x_{0}\right)+\frac{1}{2!} x_{1}^{2} N^{\prime \prime}\left(x_{0}\right), \\
& A_{3}=x_{3} N^{\prime}\left(x_{0}\right)+x_{1} x_{2} N^{\prime \prime}\left(x_{0}\right)+\frac{1}{3!} x_{1}^{3} N^{\prime \prime \prime}\left(x_{0}\right), \\
& A_{4}=x_{4} N^{\prime}\left(x_{0}\right)+\left(\frac{1}{2!} x_{2}^{2}+x_{1} x_{3}\right) N^{\prime \prime}\left(x_{0}\right)+\frac{1}{2!} x_{1}^{2} x_{2} N^{\prime \prime \prime}\left(x_{0}\right)+\frac{1}{4!} x_{1}^{4} N^{(i v)}\left(x_{0}\right) .
\end{aligned}
$$

It should be pointed out that A_{0} depends only on x_{0}, A_{1} depends only on x_{0} and x_{1}, A_{2} depends only on x_{0}, x_{1} and x_{2}, and so on. Hence, we may also write A_{n} as $A_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. Suppose $s_{m}=x_{0}+x_{1}+x_{2}+\ldots+x_{m}$. Then, $s_{m}=c+A_{0}+A_{1}+A_{2}+\ldots+A_{m-1}$ is the ($m+1$)-term approximation of x. Such s_{m} can serve as a practical solution in each iteration.

2.2 Hypothesis and Generalities

Let us consider the general nonlinear functional equation:

$$
\begin{equation*}
u-N(u)=f \tag{6}
\end{equation*}
$$

where N and f are, respectively, operator and function given in convenient spaces. It is necessary to find a function u satisfying equation (6). N is supposed to be such that (6) assumes a unique solution in some well-adapted spaces.

Adomian technique allows us to find the solution of (6) as an infinite series $u=\sum_{i=1}^{\infty} u_{i}$ using the recurrent scheme written below:

$$
\begin{aligned}
u_{0} & =f \\
u_{1} & =A_{0}\left(u_{0}\right), \\
& \vdots \\
u_{n} & =A_{n-1}\left(u_{0}, \cdots, u_{n-1}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
A_{n}=\frac{1}{n!} \frac{d^{n}}{d \lambda^{n}}\left[F\left(\sum_{i=0}^{n} \lambda^{i} u_{i}\right)\right]_{\lambda=0}, \quad n=0,1,2, \cdots . \tag{7}
\end{equation*}
$$

For the present work, we shall suppose that
(i) the solution u of (6) can be found as a series of functions u_{i}, i.e., $u=\sum_{i=0}^{\infty} u_{i}$. Furthermore, this series is supposed to be absolutely convergent, i.e., $\sum_{i=0}^{\infty}\left|u_{i}\right|<\infty$.
(ii) the nonlinear function $N(u)$ is developable in the entire series with a convergence radius equal to infinity. In other words, we may write

$$
N(u)=\sum_{i=0}^{\infty} N_{(0)}^{n} \frac{u^{n}}{n!}, \quad|u|<\infty .
$$

This last hypothesis is almost always satisfied in concrete physical problems.
Theorem 2.1. With the previous hypothesis (i) and (ii), the Adomian series $u=\sum_{i=0}^{\infty} u_{i}$ is a solution of equation (6), when the u_{i} 's satisfy relationship (7).

Proof of this theorem is given in [10].

3. Description of the Method

Let us consider integro-differential equations of the second kind

$$
u^{(n)}(x)=f(x)+\int_{a}^{x} K(x, t) F(u(t)) d t .
$$

To solve the nonlinear integro-differential equations, the Laplace transform can be applied on both sides of eq. (1), to result in

$$
\begin{align*}
& \left.\mathscr{L}\left[u^{(n)}(x)\right]\right]=\mathscr{L}[f(x)]+\mathscr{L}\left[\int_{a}^{x} K(x, t) F(u(t)) d t\right], \tag{8}\\
& s^{n} L[u(x)]-s^{n-1} u(0)-s^{n-2} u^{\prime}(0)-\cdots-u^{(n-1)}(0)=\mathscr{L}[f(x)]+\mathscr{L}[K(x, t)] \mathscr{L}[F(u(t))], \tag{9}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
\mathscr{L}[u(x)]=\frac{1}{s} u(0)+\frac{1}{s^{2}} u^{\prime}(0)+\cdots+\frac{1}{s^{n}} u^{(n-1)}(0)+\frac{1}{s^{n}} \mathscr{L}[f(x)]+\frac{1}{s^{n}} \mathscr{L}[K(x, t)] \mathscr{L}[F(u(t))] . \tag{10}
\end{equation*}
$$

To overcome the difficulty of the nonlinear term $F(u(x)$), we apply the Adomian decomposition method for handling (10).

To achieve this goal, we first represent the linear term $u(x)$ on the left side by an infinite series of components given by

$$
\begin{equation*}
u(x)=\sum_{n=0}^{\infty} u_{n}(x), \tag{11}
\end{equation*}
$$

where the components $u_{n}(x), n \geq 0$ will be recursively determined. However, the nonlinear term $F(u(x))$ on the right side of (10) will be represented by an infinite series of the Adomian polynomials A_{n} in the form

$$
\begin{equation*}
F(u(x))=\sum_{n=0}^{\infty} A_{n}, \quad A_{n}=\frac{1}{n!} \frac{d^{n}}{d \lambda^{n}}\left[F\left(\sum_{i=0}^{n} \lambda^{i} u_{i}\right)\right]_{\lambda=0}, \quad n=0,1,2, \cdots, \tag{12}
\end{equation*}
$$

where $A_{n}, n \geq 0$ can be obtained for all forms of nonlinearity.
Substituting (11) and (12) into (10) leads to

$$
\mathscr{L}\left[\sum_{n=0}^{\infty} u_{n}(x)\right]=\frac{1}{s} u(0)+\frac{1}{s^{2}} u^{\prime}(0)+\cdots+\frac{1}{s^{n}} u^{(n-1)}(0)+\frac{1}{s^{n}} \mathscr{L}\left[f(x)+\frac{1}{s^{n}} \mathscr{L}[K(x, t)] \mathscr{L}\left[\sum_{n=0}^{\infty} A_{n}(t)\right] .\right.
$$

We define the nonlinear operator

$$
\begin{equation*}
N[\varphi(x ; q)]=\mathscr{L}\left[\varphi^{(n)}(x ; q)\right]-\mathscr{L}[f(x)]-\mathscr{L}\left[\int_{a}^{x} k(x, t) \sum_{n=0}^{\infty} A_{n}(t) d t\right], \tag{13}
\end{equation*}
$$

where $q \in[0,1]$ is an embedding parameter and $\varphi(x ; q)$ is the real function of x and q. Now, we can construct the zero order deformation equation

$$
\begin{equation*}
(1-q) \mathscr{L}\left[\varphi(x ; q)-u_{0}(x)\right]=q \hbar H(x) N[\varphi(x ; q)], \tag{14}
\end{equation*}
$$

Obviously, when $q=0$ and $q=1$, it holds that $\varphi(x ; 0)=u_{0}(x), \varphi(x ; 1)=u(x)$ respectively, where the initial guess of the exact solution $u(x)$ is $u_{0}(x), H(x) \neq 0$ an auxiliary function, $\hbar \neq 0$ is an auxiliary parameter $\varphi(x ; q)$ is an unknown function and \mathscr{L} is an auxiliary linear operator. Thus, as q increases from 0 to $1, \varphi(x ; q)$ varies from the guess $u_{0}(x)$ to the exact solution $u(x)$. Expanding $\varphi(x ; q)$ Taylor's series with respect to q, we have

$$
\varphi(x ; q)=\varphi(x ; 0)+\sum_{m=1}^{\infty} u_{m}(x) q^{m}, \quad m=1,2, \cdots,
$$

where

$$
u_{m}(x)=\left.\frac{1}{m!} \frac{\partial^{m} \varphi(x ; q)}{\partial q^{m}}\right|_{q=0}, \quad m=1,2, \cdots
$$

The previous relation can be written in the following form

$$
\begin{equation*}
\varphi(x ; q)=u_{0}(x)+\sum_{m=1}^{\infty} u_{m}(x) q^{m}, \quad m=1,2, \cdots . \tag{15}
\end{equation*}
$$

The initial guess $u_{0}(x)$ is chosen such that satisfies the initial conditions of problem. If the auxiliary linear operator, the auxiliary parameter \hbar, and the auxiliary function are properly chosen, the series (15) converges at $q=1$, and we get the solution

$$
\begin{equation*}
u(x)=u_{0}(x)+\sum_{m=1}^{\infty} u_{m}(x), \quad m=1,2, \cdots, \tag{16}
\end{equation*}
$$

for brevity define the vector

$$
\vec{u}_{n-1}(x)=\left\{u_{0}(x), u_{1}(x), \cdots, u_{n-1}(x)\right\} .
$$

According to the definition (16), the governing $u_{m}(x)$ can be derived from the zero-order deformation equation (14) m times with respective to q and then dividing it by m ! and finally setting $q=0$, we obtain the m th-order deformation equation

$$
\begin{equation*}
\mathscr{L}\left[u_{m}(x)-\mathscr{X}_{m} u_{m-1}(x)\right]=\hbar q H(x) R_{m}\left(u_{m-1}(x)\right), \tag{17}
\end{equation*}
$$

subject to initial conditions

$$
\begin{equation*}
u(a)=\alpha_{0}, u^{(1)}(a)=\alpha_{1}, \cdots, u^{(n-1)}(a)=\alpha_{n-1}, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{m}\left(u_{m-1}, x\right)=\left.\frac{1}{(m-1)!} \frac{\partial^{m-1} N[\varphi(x ; q)]}{\partial q^{m-1}}\right|_{q=0} \tag{19}
\end{equation*}
$$

and

$$
\chi_{m}= \begin{cases}0, & m \leq 1 \\ 1, & m \geq 2\end{cases}
$$

From (19) and using (13), we have

$$
\begin{equation*}
R_{m}\left[\varphi_{m-1}(x)\right]=\frac{\partial^{n} \varphi_{m-1}}{\partial x^{n}}-\left(1-\mathscr{X}_{m}\right) f(x)-\int_{a}^{x} K(x, t)\left[\sum_{n=0}^{m-1} A_{m-1-n}(t)\right] d t . \tag{20}
\end{equation*}
$$

In this way, it is easy to obtain $u_{m}(x)$ for $m \geq 1$ at m th-order. We have

$$
u(x)=u_{0}(x)+\sum_{m=1}^{\infty} u_{m}(x),
$$

when $n \rightarrow \infty$ and we get an accurate approximation of the original equation.

Definition 3.1. The relative errors τ_{n} of the n terms approximation is

$$
\tau\left(x_{i}\right)=\frac{\left|u_{\text {exact }}-u_{\mathrm{mpp}}\left(x_{i}\right)\right|}{\left|u_{\text {exact }}\left(x_{i}\right)\right|} .
$$

4. Convergence Analysis

In this section, one theorem and conditions in the framework of convergence of the homotopy analysis method are stated.

Theorem 4.1. The series

$$
\varphi_{0}(x)+\sum_{m=1}^{\infty} \varphi_{m}(x)
$$

converges, where $\varphi_{m}(x)$'s are resulted from (17), (18) and (20), the limit of the series is an exact solution of (1).

Proof. Since, by hypothesis, the series is convergent, it holds

$$
S(x)=\sum_{m=0}^{\infty} \varphi_{m}(x) .
$$

So, the necessary condition for the convergence of the series is valid, that is,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \varphi_{m}(x)=0 \tag{21}
\end{equation*}
$$

using (17) and (21), we have

$$
\begin{aligned}
\hbar H(x) \sum_{m=1}^{+\infty} R_{m}\left[\vec{\varphi}_{m-1}(x)\right] & =\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \mathscr{L}\left[\varphi_{m}(x)-\mathscr{X}_{m} \varphi_{m-1}(x)\right] \\
& =\mathscr{L}\left\{\lim _{n \rightarrow \infty} \sum_{m=1}^{+\infty}\left[\varphi_{m}(x)-\mathscr{X}_{m} \varphi_{m-1}(x)\right]\right\}=\mathscr{L}\left\{\lim _{n \rightarrow \infty} \varphi_{n}(x)\right\}=0 .
\end{aligned}
$$

Since $\hbar \neq 0$, we must have

$$
\sum_{m=1}^{+\infty} R_{m}\left[\vec{\varphi}_{m-1}(x)\right]=0
$$

on the other hand, we have

$$
\begin{align*}
& \sum_{m=1}^{\infty} R_{m}\left[\varphi_{m-1}(x)\right]=\sum_{m=1}^{\infty}\left[\frac{\partial^{n} \varphi_{m-1}}{\partial x^{n}}-\left(1-\mathscr{X}_{m}\right) f(x)-\int_{a}^{x} K(x, t)\left[\sum_{n=0}^{m-1} A_{m-1-n}(t)\right] d t\right]=0, \\
&=\sum_{m=0}^{\infty} \varphi_{m}^{(n)}(x)-f(x)-\sum_{m=1}^{\infty}\left\{\int_{a}^{x} K(x, t) \times\left[\sum_{n=0}^{m-1} A_{m-1-n}(t) d t\right]\right\}=0, \\
&=\sum_{m=0}^{\infty} \varphi_{m}^{(n)}(x)-f(x)-\int_{a}^{x} K(x, t)\left[\sum_{m=1}^{\infty}\left(\sum_{n=0}^{m-1} A_{m-1-n}(t)\right)\right] d t=0, \\
&=\sum_{m=0}^{\infty} \varphi_{m}^{(n)}(x)-f(x)-\int_{a}^{x} K(x, t) \sum_{r=0}^{\infty} A_{r}(t) d t=0, \\
& s^{(n)}(x)-f(x)-\int_{a}^{x} K(x, t) F(s(t))=0, \tag{22}
\end{align*}
$$

Also, from the initial conditions (18), the following holds:

$$
S(0)=\sum_{i=0}^{\infty} \varphi_{i}(0)=\varphi_{0}(0)=u_{0}(0)=u_{0},
$$

since $s(x)$ satisfies (22), we conclude that it is an exact solution of (1).

5. Applications and Numerical Results

In this section, we implement the proposed method on some different examples with different types of nonlinearity. All algebraic computations are executed using MATHEMATICA software package. We report absolute error which is defined by $E_{u}=\left|u_{\text {exact }}-u_{\text {app }}\right|$, where $u_{\text {app }}=\sum_{i=0}^{m} u_{i}(x)$.

Example 5.1. Consider the nonlinear Volterra integro-differential equation

$$
\left\{\begin{array}{l}
u^{\prime}(x)=\frac{9}{4}-\frac{5}{2} x-\frac{1}{2} x^{2}-3 e^{-x}-\frac{1}{4} e^{-2 x}+\int_{0}^{x}(x-t) u^{2}(t) d t, \\
u(0)=2,
\end{array}\right.
$$

which has the exact solution $u(x)=1+e^{-x}$.
The nonlinear term $F(u(x))=u^{2}(x)$, can be expressed by Adomian Polynomials A_{n}, where

$$
A_{n}=\frac{1}{n!} \frac{d^{n}}{d \lambda^{n}}\left[F\left(\sum_{i=0}^{n} \lambda^{i} u_{i}\right)\right]_{\lambda=0}, \quad n=0,1,2, \cdots
$$

Applying Laplace transform, we have

$$
s u(s)-u(0)=\frac{9}{4 s}-\frac{5}{2 s^{2}}-\frac{1}{s^{3}}-\frac{3}{s+1}-\frac{1}{4(s+2)}+\frac{1}{s^{2}} \mathscr{L}\left\{A_{n}(x)\right\},
$$

which satisfies

$$
u(s)=\frac{2}{s}+\frac{9}{4 s^{2}}-\frac{5}{2 s^{3}}-\frac{1}{s^{4}}-\frac{3}{s(s+1)}-\frac{1}{4 s(s+2)}+\frac{1}{s^{3}} \mathscr{L}\left\{A_{n}(x)\right\} .
$$

A nonlinear operator can be defined as:

$$
N[\varphi(x ; q)]=\mathscr{L}[\varphi(x ; q)]+\left(-\frac{2}{s}-\frac{9}{4 s^{2}}+\frac{5}{2 s^{3}}+\frac{1}{s^{4}}+\frac{3}{s(s+1)}+\frac{1}{4 s(s+2)}\right)-\frac{1}{s^{3}} \mathscr{L}\left\{A_{n}(x)\right\} .
$$

The m-th order deformation equation is:

$$
u_{m}(x)=\mathscr{X}_{m} u_{m-1}(x)+\hbar H(x) \mathscr{L}^{-1} R_{m}\left(u_{m-1}(x)\right),
$$

for which $\hbar=-1, H(x)=1$,

$$
R_{m}\left(u_{m-1}(x)\right)=\mathscr{L}\left[u_{m-1}\right]-\left(\frac{2}{s}+\frac{9}{4 s^{2}}-\frac{5}{2 s^{3}}-\frac{1}{s^{4}}-\frac{3}{s(s+1)}-\frac{1}{4 s(s+2)}\right)(1-\mathscr{X} m)-\frac{1}{s^{3}}\left\{A_{n}(x)\right\},
$$

where $A_{n}, n \geq 0, n=0,1,2, \cdots$, we consider

$$
\begin{aligned}
& u_{0}(x)=2-x+\frac{1}{2} x^{2}-\frac{5}{6} x^{3}+\frac{5}{24} x^{4}-\frac{7}{120} x^{5}+\cdots, \\
& \xrightarrow{m=1} u_{1}(x)=\frac{x^{2}}{2} \cdot A_{0} \text { where } A_{0}=F\left(u_{0}\right)=u_{0}^{2}(x), \\
& \xrightarrow{m=2} u_{2}(x)=\frac{x^{2}}{2} \cdot A_{1} \text { where } A_{1}=u_{1} F^{\prime}\left(u_{0}\right)=2 u_{0}(x) u_{1}(x), \\
& \xrightarrow{m=3} u_{3}(x)=\frac{x^{2}}{2} \cdot A_{2} \text { where } A_{2}=u_{2} F^{\prime}\left(u_{0}\right)+\frac{1}{2!} u_{1}^{2} F^{\prime \prime}\left(u_{0}\right)=2 u_{0}(x) u_{2}(x)+u_{1}^{2}(x),
\end{aligned}
$$

using the Mathematica package, we obtain

$$
u_{1}(x)=\frac{2}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{20} x^{5}+\cdots,
$$

the solution is given by

$$
\begin{aligned}
& \varphi_{m}(x)=u_{0}(x)+\sum_{i=1}^{m} u_{i}(x), \quad m=1,2,3, \cdots, \\
& u(x)=\lim _{m \rightarrow \infty} \varphi_{m}(x)=\lim _{m \rightarrow \infty} u_{0}(x)+\sum_{i=1}^{m} u_{i}(x)=1+e^{-x} .
\end{aligned}
$$

Some numerical results of this solution are presented in Table 1 and Figure 1 .

Figure 1

Table 1. Numerical results of Example 5.1

x	$u_{\text {exc }}(x)$	$u_{\text {app }}(x)$	$\left\|u_{\text {exc }}(x)-u_{\text {app }}(x)\right\|$
0.00	2.00000	2.00000	0.00000
0.02	1.98020	1.98047	$2.72480 \mathrm{E}-4$
0.04	1.96079	1.96177	$9.83263 \mathrm{E}-4$
0.06	1.94176	1.94374	$1.97877 \mathrm{E}-4$
0.08	1.92312	1.92623	$3.1118 \mathrm{E}-3$
0.10	1.90484	1.90908	$4.23904 \mathrm{E}-3$
0.12	1.88692	1.89214	$5.21869 \mathrm{E}-3$
0.14	1.86936	1.87527	$5.90821 \mathrm{E}-3$
0.16	1.85214	1.85831	$6.16192 \mathrm{E}-3$
0.18	1.83527	1.84110	$5.82864 \mathrm{E}-3$
0.20	1.81873	1.82348	$4.74895 \mathrm{E}-3$

Example 5.2. Consider the nonlinear Volterra integro differential equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)=2+2 x+x^{2}-x^{2} e^{x}-e^{2 x}+\int_{0}^{x} e^{x-t} u^{2}(t) d y, \\
u(0)=1, \quad u^{\prime}(0)=2,
\end{array}\right.
$$

which has the exact solution $u(x)=x+e^{-x}$. The nonlinear term $F(u(x))=u^{2}(x)$, can be expressed by Adomian polynomials A_{n}, where

$$
\left.A_{n}=\frac{1}{n!} \frac{d^{n}}{d \lambda^{n}}\left[F\left(\sum_{i=0}^{n} \lambda^{i} u_{i}\right)\right)\right]_{\lambda=0}, \quad n=0,1,2, \cdots
$$

Applying Laplace transform, we have

$$
u(s)=\frac{1}{s}+\frac{2}{s^{2}}+\frac{2}{s^{3}}+\frac{2}{s^{4}}+\frac{2}{s^{5}}-\frac{2}{s^{2}(s-1)^{3}}-\frac{1}{s^{2}(s-2)}+\frac{1}{s^{2}(s-1)} \mathscr{L}\left\{A_{n}(x)\right\} .
$$

A nonlinear operator can be defined as:

$$
N[\varphi(x ; q)]=\mathscr{L}[\varphi(x ; q)]+\left(-\frac{1}{s}-\frac{2}{s}-\frac{2}{s^{3}}-\frac{2}{s^{4}}-\frac{2}{s^{5}}+\frac{2}{s^{2}(s-1)^{3}}+\frac{1}{s^{2}(s-2)}\right)-\frac{1}{s^{2}(s-1)} \mathscr{L}\left\{A_{n}(x)\right\} .
$$

The m-th order deformation equation is written as

$$
u_{m}(x)=\mathscr{X}_{m} u_{m-1}(x)+\hbar H(x) \mathscr{L}^{-1} R_{m}\left(u_{m-1}(x)\right),
$$

for which $\hbar=-1, H(x)=1$,

$$
\begin{aligned}
R_{m}\left(u_{m-1}(x)\right)= & \mathscr{L}\left[u_{m-1}\right]-\left(\frac{1}{s}+\frac{2}{s}+\frac{2}{s^{3}}+\frac{2}{s^{4}}+\frac{2}{s^{5}}-\frac{2}{s^{2}(s-1)^{3}}-\frac{1}{s^{2}(s-2)}\right)\left(1-\mathscr{X}_{m}\right) \\
& -\frac{1}{s^{2}(s-1)} \mathscr{L}\left\{A_{n}(x)\right\}, \quad n=0,1,2 \cdots,
\end{aligned}
$$

where $A_{n}, n \geq 0$, we consider

$$
u_{0}(x)=1+2 x+\frac{x^{2}}{2}-\frac{x^{4}}{6}-\frac{7}{60} x^{5}+\cdots
$$

$$
\xrightarrow{m=1} u_{1}(x)=\mathscr{L}^{-1}\left[\frac{1}{s^{2}(s-1)} \mathscr{L}\left\{A_{0}\right\}\right], \text { where } A_{0}=F\left(u_{0}\right)=u_{0}^{2}(x),
$$

$$
\left.\xrightarrow{m=2} u_{2}(x)=\mathscr{L}^{-1}\left[\frac{1}{s^{2}(s-1)}\right] \mathscr{L}\left\{A_{1}\right\}\right], \text { where } A_{1}=u_{1} F^{\prime}\left(u_{0}\right)=2 u_{0}(x) u_{1}(x),
$$

$$
\xrightarrow{m=3} u_{3}(x)=\mathscr{L}^{-1}\left[\frac{1}{s^{2}(s-1)} \mathscr{L}\left\{A_{2}\right\}\right], \text { where } A_{2}=u_{2} F^{\prime \prime}\left(u_{0}\right)+\frac{1}{2!} u_{1}^{2} F^{\prime \prime}\left(u_{0}\right)=2 u_{0}(x) u_{2}(x)+u_{1}^{2}(x),
$$

$$
\xrightarrow{m=4} u_{4}(x)=\mathscr{L}^{-1}\left[\frac{1}{s^{2}(s-1)} \mathscr{L}\left\{A_{3}\right\}\right], \text { where }
$$

$$
A_{3}=u_{3} F^{\prime}\left(u_{0}\right)+u_{1} u_{2} F^{\prime \prime}\left(u_{0}\right)+\frac{1}{3!} u_{1}^{3} F^{\prime \prime \prime}\left(u_{0}\right)=2 u_{0}(x) u_{3}(x)+2 u_{1}(x) u_{2}(x),
$$

Using the Mathematica package, we obtain

$$
\begin{aligned}
& u_{1}(x)=\frac{1}{6} x^{3}+\frac{5}{24} x^{4}+\frac{1}{8} x^{5}+\frac{3}{80} x^{6}+\cdots, \\
& u_{2}(x)=\frac{1}{360} x^{6}+\cdots
\end{aligned}
$$

The solution is given by

$$
\begin{aligned}
& \varphi_{m}(x)=u_{0}(x)+\sum_{i=1}^{m} u_{i}(x), \quad m=1,2, \cdots \\
& u(x)=\lim _{m \rightarrow \infty} \varphi_{m}(x)=\lim _{m \rightarrow \infty} u_{0}(x)+\sum_{i=1}^{m} u_{i}(x)=x+e^{x} .
\end{aligned}
$$

Some numerical results of this solution are presented in Table 2 and Figure 2.

Figure 2

Table 2. Numerical results of Example 5.2

x	$u_{\text {exc }}(x)$	$u_{\text {app }}(x)$	$\left\|u_{\text {exc }}(x)-u_{\text {app }}(x)\right\|$
0.00	1.00000	1.00000	0.00000
0.02	1.0402	1.04042	$2.16577 \mathrm{E}-4$
0.04	1.08081	1.08175	$9.37538 \mathrm{E}-4$
0.06	1.12184	1.12412	$2.28194 \mathrm{E}-3$
0.08	1.16329	1.16767	$4.38752 \mathrm{E}-3$
0.10	1.20517	1.21259	$7.41437 \mathrm{E}-3$
0.12	1.24750	1.25905	$1.15497 \mathrm{E}-3$
0.14	1.29027	1.30729	$1.70138 \mathrm{E}-2$
0.16	1.33351	1.35758	$2.40683 \mathrm{E}-2$
0.18	1.37722	1.41024	$3.30265 \mathrm{E}-2$
0.20	1.42140	1.46567	$4.42678 \mathrm{E}-2$

Example 5.3. We used the proposed method to find the approximate solution of the following nonlinear integro-differential equation

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(x)=-\frac{2}{3}-\frac{5}{3} \cos x+\frac{4}{3} \cos ^{2} x+\int_{0}^{x} \cos (x-t) u^{2}(t) d t, \\
u(0)=u^{\prime}(0)=1, \quad u^{\prime \prime}(0)=-1,
\end{array}\right.
$$

which has the exact solution $u(x)=\sin x+\cos x$. The nonlinear term $F(u(x))=u^{2}(x)$, can be expressed by Adomian polynomials A_{n}, where

$$
A_{n}=\frac{1}{n!} \frac{d^{n}}{d \lambda^{n}}\left[F\left(\sum_{i=0}^{n} \lambda^{2} u_{i}\right)\right]_{\lambda=0}, \quad n=0,1,2, \cdots
$$

Applying Laplace transform, we have

$$
u(s)=\frac{1}{s}+\frac{1}{s^{2}}-\frac{1}{s^{3}}-\frac{2}{3 s^{4}}-\frac{5}{3 s^{2}\left(1+s^{2}\right)}+\frac{4\left(2+s^{2}\right)}{3 s^{4}\left(4+s^{2}\right)}+\frac{1}{s^{2}\left(1+s^{2}\right)} \mathscr{L}\left\{A_{n}(x)\right\}, \quad n=0,1,2, \cdots .
$$

A nonlinear operator can be defined as:

$$
\begin{aligned}
N[\varphi(x ; q)]= & \mathscr{L}[\varphi(x ; q)]+\left(-\frac{1}{s}-\frac{1}{s^{2}}+\frac{1}{s^{3}}+\frac{2}{3 s^{4}}+\frac{5}{3 s^{2}\left(1+s^{2}\right)}-\frac{4\left(2+s^{2}\right)}{3 s^{4}\left(4+s^{2}\right)}\right) \\
& -\frac{1}{s^{2}\left(1+s^{2}\right)} \mathscr{L}\left\{A_{n}(x)\right\}, \quad n=0,1,2, \cdots .
\end{aligned}
$$

The m-th order deformation equation is:

$$
u_{m}(x)=\chi_{m} u_{m-1}(x)+h H(x) \mathscr{L}^{-1} R_{m}\left(u_{m-1}(x)\right),
$$

in which $h=-1, H(x)=1$,

$$
\begin{aligned}
R_{m}\left(u_{m-1}(x)\right)= & \mathscr{L}\left[u_{m-1}\right]-\left(\frac{1}{s}+\frac{1}{s^{2}}-\frac{1}{s^{3}}-\frac{2}{3 s^{4}}-\frac{5}{3 s^{2}\left(1+s^{2}\right)}+\frac{4\left(2+s^{2}\right)}{3 s^{4}\left(4+s^{2}\right)}\right)\left(1-\mathscr{X}_{m}\right) \\
& -\frac{1}{s^{2}\left(1+s^{2}\right)} \mathscr{L}\left\{A_{n}(x)\right\}, \quad n=0,1,2 \cdots
\end{aligned}
$$

where $n, A_{n} \geq 0$ we consider $u_{0}(x)=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{6}-\frac{x^{5}}{120}+\cdots$,

$$
\begin{aligned}
& \xrightarrow{m=1} u_{1}(x)=\mathscr{L}^{-1}\left[\frac{1}{s^{2}\left(1+s^{2}\right)} \times \mathscr{L}\left\{A_{0}\right\}\right], \text { where } A_{0}=F\left(u_{0}\right)=u_{0}^{2}(x), \\
& \Rightarrow \quad u_{1}(x)=\frac{x^{3}}{6}+\frac{x^{4}}{3}-\frac{x^{5}}{120}-\frac{43 x^{6}}{180}-\frac{23 x^{7}}{1680}+\cdots,
\end{aligned}
$$

and for $m=2,3,4, \cdots$

$$
u_{2}(x)=\frac{x^{6}}{18}+\frac{x^{3}}{6}+\frac{7 x^{8}}{90}-\cdots,
$$

using the Mathematica package, the solution is given by

$$
\begin{aligned}
& \varphi_{m}(x)=u_{0}(x)+\sum_{i=1}^{m} u_{i}(x), \quad m=1,2,3, \cdots \\
& u(x)=\lim _{m \rightarrow \infty} \varphi_{m}(x)=\lim _{m \rightarrow \infty} u_{0}(x)+\sum_{i=1}^{m} u_{i}(x)=\sin x+\cos x .
\end{aligned}
$$

Some numerical results of this solution are presented in Table 3 and Figure 3 .

Figure 3

Table 3. Numerical results of Example 5.3

x	$u_{\text {exc }}(x)$	$u_{\text {app }}(x)$	$\left\|u_{\text {exc }}(x)-u_{\text {app }}(x)\right\|$
0.00	1.00000	1.00000	0.00000
0.02	1.0198	1.01980	$1.37991 \mathrm{E}-6$
0.04	1.03919	1.03920	$1.14101 \mathrm{E}-5$
0.06	1.05816	1.05820	$3.97525 \mathrm{E}-5$
0.08	1.07672	1.07681	$9.71538 \mathrm{E}-5$
0.10	1.09484	1.09503	$1.95418 \mathrm{E}-4$
0.12	1.11252	1.11287	$3.47374 \mathrm{E}-4$
0.14	1.12976	1.13033	$5.66843 \mathrm{E}-4$
0.16	1.14655	1.14741	$8.68596 \mathrm{E}-4$
0.18	1.16287	1.16414	$1.26832 \mathrm{E}-3$
0.20	1.17874	1.18052	$1.78257 \mathrm{E}-3$

6. Conclusion

The homotopy analysis transform with Adomian polynomials is applied to solve nonlinear integro-differential equations. This method is clearly a very powerful and efficient technique to find the analytical solutions for the wide class of differential and integro-differential equations. In this way, we have great freedom to choose the auxiliary linear operator \mathscr{L}, and the auxiliary function $H(x)$ and initial function $u_{0}(x)$, but in other methods we do n't have this advantages. The convergence accuracy of this method was examined in several numerical examples.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] S.H. Behiry, Nonlinear Integro-differential equations by differential transform method with Adomian polynomials, Mathematical Science Letters an International Journal 3 (2013), 209 221.
[2] S.J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Studies in Applied Mathematics 119 (2007), $297-355$.
[3] S.J. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation 147 (2004), 499-513.
[4] S.J. Liao, Notes on the homotopy analysis method: Some Definitions and theorems, Communications in Nonlinear Science and Numerical Simulation 14(4) (2008), 983 - 997.
[5] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman \& Hall/CRC Press, Boca Raton (2003).
[6] S.J. Liao, The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, PhD thesis, Shanghai Jiao Tong University (1992).
[7] S.J. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commu. Nonlinear Sci. Numer. Simulation 2 (1997), 95 - 100.
[8] A.M. Wazwaz, The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations, Applied Mathematics Computation 216 (2010), 1304-1309.
[9] Sh.S. Behzadi, Solving nonlinear Volterra-Fredholm integro-differential equations using the modified Adomian decomposition method, International Journal of Computer Mathematics 9 (2009), 321 - 331.
[10] Y. Cherruault and G. Adomian, Decomposition methods: A new proof of convergence, Mathl. Comput. Modeling 18(12) (1993), 103 - 106.
[11] N. Bildik and A. Konuralp, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, International Journal of Nonlinear Sciences and Numerical Simulation 7(1) (2006), 65 70.
[12] F. Awawdeh and A. Adawi, A numerical method for solving nonlinear integral equations, International Mathematical Forum 4(17) (2009), 805 - 817.
[13] A.A. Kilbas and M. Saigo, On solution of nonlinear Abel Volterra integral equation, Journal of Mathematical Analysis and Application 229 (1999), 41 - 60.
[14] S. Abbasbandy, Numerical solution of integral equation: Homotopy perturbation method and Adomian's decomposition method, Applied Mathematics and Computation 173 (2006), 493 - 500.
[15] D. Bugajewski, On BV-Solutions of some nonlinear integral equations, Integral Equations and Operator Theory 46 (2003), $387-398$.
[16] M. El-Shahed, Application of He's homotopy perturbation method to Volterra's integro-differential equation, International Journal of Nonlinear Sciences and Numerical Simulation 6 (2005), 163 168.
[17] H. Brunner, M.R. Crisci, E. Russo and A. Recchio, A family of methods for Abel integrals for equations of the second kind, Journal of Computational and Applied Mathematics 34 (1991), 211 219.
[18] A. Golbabai and B. Keramati, Modified homotopy perturbation method for solving Fredholm integral equations, Chaos Solitons \& Fractals 37(5) (2008), 1528 - 1537.
[19] S. Yalcina, Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations, Applied Mathematics and Computation 127 (2002), 195 - 206.
[20] A. Borhanifar and R. Abazari, Differential transform method for a class of nonlinear integrodifferential equations with derivative type kernel, Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicine 3 (2012), 1-6.
[21] Y. Khan, An efficient modification of the Laplace decomposition method for nonlinear equations, International Journal of Nonlinear Sciences and Numerical Simulation 10 (2009), 1373-1376.
[22] A. Golbabai and B. Keramati, Modified homotopy perturbation method for solving Fredholm integral equations, Chaos Solitons \& Fractals 37(5) (2008), 1528 - 1537.
[23] Y. Khani and N. Faraz, A new approach to differential-difference equations, Journal of Advanced Research in Differential Equations 2 (2010), 1-12.

Communications in Mathematics and Applications, Vol. 9, No. 4, pp. 637 650, 2018
[24] S. Islam, Y. Khani and N. Faraz, Numerical solution of logistic differential equations by using the Laplace decomposition method, World Applied Sciences Journal 8(39) (2010), 1100-1105.
[25] K. Maleknejad, B. Basirat and E. Hashemizadeh, Hybrid Legendre polynomials and Block-Pulse functions approach for nonlinear Volterra-Fredholm integro-differential equations, Computers and Mathematics with Applications 61(9) (2011), 2821 - 2828.
[26] M. Hashmi, N. Khan and S. Iqbal, Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind, Applied Mathematics and Computation 218 (2012), 10982 - 10989.
[27] A.M. Wazwaz, A comparison study between the modified decomposition method and traditional method, Applied Mathematics and Computation 181 (2006), 1703-1712.
[28] B. Ghanbari, The convergence study of the homotopy analysis method for solving nonlinear Volterra-Fredholm Integro-differential equations, The Scientific World Journal 2014 (2014), 1-7.
[29] M. Mohamed, K. Gepreel, M. Alharthi and R. Alotabi, Homotopy analysis transform method for Integro-differential equations, General Mathematics Notes 32(1) (2016), 32-48.
[30] S. Kumar, J. Singh, D. Kumar and S. Kapoor, New homotopy analysis transform algorithm to solve Volterra integral equation, Ain Shams Engineering 5 (2014), 243-246.
[31] S. Noeiaghdam, Ei. Zarei and H. Barzegar, Homotopy analysis transform method for solving Abel's integral equations of the first kind, Ain Shams Engineering 7 (2016), 483-495.
[32] S. Abbasbandy, T. Hayat, A. Alsaedi and M.M. Rashidi, Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid, International Journal of Numerical Methods Heat Fluid Flow 24(2) (2014), 390 - 401.
[33] K. Hemida and M.S. Mohamed, Numerical simulation of the generalized Huxley equation by homotopy analysis method, Journal of Applied Functional Analysis 5(4) (2010), 344 - 350.
[34] S. Abbasbandy, R. Naz, T. Hayat and A. Alsaedi, Numerical and analytical solutions for FalknerSkan flow of MHD Maxwell fluid, Applied Mathematics and Computation 242 (2014), 569 - 575.
[35] K.A. Gepreel and M.S. Mohamed, Analytical approximate solution for nonlinear space-time fractional Klein Gordon equation, Chinese Physics B 22(1) (2013), 010201-6.
[36] A.M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied Mathematics and Computation 111 (2000), 53-69.

