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1. Introduction
The most well known and fundamental result in the theory of fixed points is the Banach’s
contraction principle [5], which was published in 1922. It states that every self mapping T
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defined on a complete metric space (X ,d) satisfying

∀ x, y ∈ X [d (Tx,T y)≤ kd (x, y) ; k ∈ (0,1)]

has a unique fixed point. Because of its importance, this result has been extended and
generalized in many directions (see [1,6–9,16–19]) and the references therein.

The concept of measure of non-compactness was first introduced by Kuratowski [15] in 1930.
Darbo [10] in 1955 used this measure to generalize Banach’s contraction mapping principle.
Another measure of non-compactness is so-called Hausdorff measure. The Hausdorff measure
of non-compactness κ was introduced by Goldenstein et al. [12] in 1957. It was further studied
by Goldenstein and Markus [11] in 1964, and the measure of non-compactness β by Istratescu
[13] in 1972.

Measure of non-compactness is very useful tool used in fixed point theory, to study the
existence of solutions of differential, integral, integro-differential equations and optimization
problems.

For instance, Aghajani et al. [3], extended Darbo’s fixed point theorem and used it to study
the problem of existence of solutions for a general system of nonlinear integral equations.

One of the most interesting generalization of Banach contraction principle was given by
Wardowski [20] in 2012. In which author introduced a new concept of contraction on a complete
metric space and proved a new fixed point theorem concerning F -contractions, which generalizes
Banach contraction principle in a different way.

Inspired by the work mentioned above, in this article we intoduce a new contraction mapping,
called DF -contraction. A fixed point theorem and a common fixed point theorem concerning
DF -contraction is proved. Furthermore, we study the existence of solutions for a system of an
infinite fractional order differential equations as an application of our results.

The rest of paper is organized as follows. In section 2, we give some preliminary material
which will be used to establish our main results. We give our main results in Section 3. Section 4
is concerned about the solution of a system of an infinite fractional differential equations of
order 0<α≤ 1, in the space c of real sequences having the finite limits.

2. Preliminaries
Throughout this paper, we assume E be the Banach space with a norm ‖·‖ and 0 be the zero
element of E. If Y ⊂ E, then we denote Y , conv(Y ) and co(Y ), the closure, closed convex hull
and the convex hull of Y , respectively. Moreover, ME denotes the family of all non-empty and
bounded subsets of E.

2.1 Definition ([4]). A mapping µ : ME →+ ∪ {0} is called measure of non-compactness in E if
it satisfies:

(i) The subfamily kerµ= {
Y ∈ME : µ (Y )= 0

}
is a non-empty and kerµ⊂ME;

(ii) Z ⊂Y implies µ (Z)≤µ (Y );

(iii) µ
(
Y

)=µ (Y );
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(iv) µ (co(Y ))=µ (Y ) ;

(v) µ (λY + (1−λ) Z)≤λµ (Y )+ (1−λ)µ (Z) for λ ∈ [0,1];

(vi) if {Yn} is a sequence of closed sets from ME such that Yn+1 ⊂Yn, (for n = 1,2,3, · · · ), and

lim
n→∞µ (Yn)= 0, then the intersection set Y∞ =

∞⋂
n=1

Yn is non-empty. As

µ (Y∞)=µ

( ∞⋂
n=1

Yn

)
≤µ (Yn) for all n

which implies that

µ

( ∞⋂
n=1

Yn

)
= 0.

Therefore, Y∞ ∈ kerµ.

2.2 Lemma ([4]). If (Yn) is a decreasing sequence of non-empty, closed and bounded subsets of a
complete metric space X such that lim

n→∞µ(Yn)→ 0 then Y∞ ⊂Y is non-empty and compact.

2.3 Theorem (Schauder’s [2]). Let Y ⊂ E be a non-empty, bounded, closed and convex set. Then
each continuous and compact mapping T : Y →Y has a fixed point in Y .

2.4 Theorem (Darbo’s [10]). Let Y ⊂ E be a non-empty, bounded, closed, and T : Y → Y be a
continuous function. If there exists k ∈ [0,1) such that

µ (T (A))≤ kµ (A)

for any non-empty A ⊂Y . Then T has a fixed point in Y .

3. Main Results
In this section, we give our main results. We introduce the following definition of DF -contraction
inspired by the concept of F-contraction given in Wardowski [20]

3.1 Definition. Let Γ denotes the family of all functions F : R+ → R satisfying the following
conditions:

(DF1) F is strictly increasing;

(DF2) for each sequence
{
βn

}
n∈N ⊂R+, lim

n→∞F
(
βn

)=−∞ implies lim
n→∞βn = 0.

Let Y ⊂ E be a non-empty, bounded, closed and convex set, and T : Y → Y be a continuous
mapping. Then T is said to be DF -contraction if there exists τ> 0 such that µ (A)> 0 implies

τ+F
(
µ (T (A))

)≤ F
(
µ (A)

)
for any non-empty A ⊂Y , where µ is a measure of non-compactness defined on E and F ∈Γ.

Now we prove our first main results which states that every DF contraction has a fixed
point, this theorem generalize the Theorem 2.4.

3.2 Theorem. Let Y ⊂ E be a non-empty, bounded, closed and convex set, and T : Y →Y be a
DF -contraction. Then T has a fixed point in Y .
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Proof. Define a sequence Yn of subsets of Y as:

Y0 =Y , Y1 = conv(T (Y0)) ,Y2 = conv(T (Y1)) , · · · ,Yn+1 = conv(T (Yn)) .

Consider

µ (Yn)=µ (conv(T (Yn−1)))=µ (T (Yn−1)) .

Therefore

F
(
µ (Yn)

)≤ F
(
µ (Yn−1)

)−τ≤ F
(
µ (Yn−2)

)−2τ≤ ·· · ≤ F
(
µ (Y0)

)−nτ.

Thus, we have

lim
n→∞F

(
µ (Yn)

)=−∞. (1)

Eq. (1) together with (DF2) gives

lim
n→∞µ (Yn)= 0.

Clearly,

Y1 = conv(T (Y0))⊂Y0.

Suppose Yn ⊂Yn−1 holds.
Consider

Yn+1 = conv(T (Yn))⊂Yn.

Thus by using Principle of Mathematical Induction, we have

Yn+1 ⊂Yn, for n = 1,2,3, · · · .

As T : Yn →Yn (n = 0,1,2, . . .) , thus by Lemma 2.2, we conclude

Y∞ =
∞⋂

n=1
Yn.

is a non-empty and compact subset of E. Consequently, using Theorem 2.3, T has a fixed point

in Y∞ =
∞⋂

n=1
Yn ⊂Y .

Clearly for F (t)= ln t, the main result of Darbo will be obtained.
Now we present a common fixed point theorem in which common fixed point of a self mapping

with a sequence of self mappings on a closed and convex subset of a Hilbert space is proved.

3.3 Theorem. Let Y ⊂ E, be a non-empty, bounded, closed and convex set, and S, Ti : Y →Y be
continuous mappings for each i ∈N such that ;

(i) STi = TiS for each i ∈N.

(ii) Ti (conv (A))⊂ conv (Ti (A)) for each i ∈N and any A ⊂Y .

(iii) There exists F ∈Γ and τ> 0 such that

τ+F
(
µ (S (A))

)≤ F
(
µ (Ti (A))

)
, for any A ⊂Y ..

Then the following hold:

(a) Sfix = {x ∈Y : S (x)= x} is non-empty and compact.
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(b) For any i ∈N, Ti has a fixed point and the set {x ∈Y : Ti (x)= x} is closed and invariant
by S.

(c) If Ti is affine and commuting family, then S and the family Ti have a common fixed point
and the set {x ∈Y : Ti (x)= S (x)= x} is compact.

Proof. (a): Define a sequence Yn of subsets of Y

Y0 =Y , Y1 = conv(S (Y0)) , Y2 = conv(S (Y1)) , · · · , Yn+1 = conv(S (Yn)) .

Obviously

Y1 = conv(S (Y0))⊂Y0.

Suppose Yn ⊂Yn−1 holds.
Consider

Yn+1 = conv(S (Yn))⊂Yn.

Thus by using Mathematical Induction, we have

Yn+1 ⊂Yn, for n = 1,2,3, · · · .

Now for any i ∈N,

Ti (Y1)= Ti (conv(S (Y0)))⊂ conv(Ti (S (Y0)))⊂ conv(S (Y0))=Y1.

Next assume that

Ti (Yn)⊂Yn

holds and consider

Ti (Yn+1)= Ti (conv(S (Yn)))⊂ conv(Ti (S (Yn)))⊂ conv(S (Yn))=Yn+1.

We get

Ti (Yn+1)⊂Yn+1 .

Thus by Mathematical Induction

Ti (Yn+1)⊂Yn+1, for n = 1,2,3, · · · .

Consider

µ (Yn)=µ (conv(S (Yn−1)))=µ (S (Yn−1)) .

Therefore

F
(
µ (Yn)

)= F
(
µ (Ti (Yn−1))

)−τ≤ F
(
µ (Ti (Yn−2))

)−2τ≤ ·· · ≤ F
(
µ (Ti (Y0))

)−nτ,

which implies

lim
n→∞F

(
µ (Yn)

)=−∞. (2)

From eq. (2) and (DF2), we conclude

lim
n→∞µ (Yn)= 0.

We conclude that

Y∞ ⊂Y .
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is a non-empty, compact and invariant under S. Thus S has a fixed point. The set

Sfix = {x ∈Y : S (x)= x} .

is closed, as S is continuous.
Now for any x ∈ Sfix, Ti (x) is a fixed point of S

S (Ti (x))= Ti (Sx)= Ti (x) .

Thus Ti (Sfix)⊂ Sfix.
Clearly,

µ (Sfix) 6= 0.

Now consider

τ+F
(
µ (Sfix)

)= τ+F
(
µ (S (Sfix))

)≤ F
(
µ (Ti (Sfix))

)
. (3)

From (DF1) and (3)

µ (Sfix)<µ (Ti (Sfix)) . (4)

But

µ (Ti (Sfix))≤µ (Sfix) . (5)

From eqs. (4) and (5)

µ (Sfix)<µ (Ti (Sfix))≤µ (Sfix) .

A contradiction, thus

µ (Sfix)= 0.

Therefore, Sfix is compact.
(b): As Y∞ is compact and invariant under Ti , so Ti has a fixed point and by continuity of Ti

the set

Tfix = {x ∈Y : Ti (x)= x} ,

is closed. Note that Sx is a fixed point of Ti therefore Tfix is invariant by S.
(c): As Ti is affine for each i, then Tfix is convex. Note that S (Tfix)⊂ Tfix and Ti (Tfix)⊂ Tfix. By
similar argument as we used in part (a), we conclude that Tfix is compact. Thus S has a fixed
point in Tfix. Which means S and Ti have a common fixed point. Consequently, the set

Scom = {x ∈Y : Ti (x)= S (x)= x} ,

is compact.

4. Applications
Recently, a new definition of fractional derivative has been defined by Khalil et al. [14], we
consider a system of an infinite conformable fractional order differential equations:

y(αi)
i = e−τ

b (t)
bi (t) yi + f i (t, y1, y2, · · · ) ; αi ∈ (0,1) (6)
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with the initial conditions

yi (0)= y0
i . (7)

Where t ∈ J = [0, I], J is fixed real interval, i = 1,2, · · · , and τ> 0.
First assume that the following hypothesis hold:

(i) y0 = y0
i ∈ c.

(ii) A mapping f = ( f1, f2, ...) : J× c → c is uniformly continuous.

(iii) There exists a sequence (di) such that (di)→ 0 and

| f i (t, y1, y2, · · · )| ≤ di

for any t ∈ J = [0, I] and y= (yi) ∈ c.

(iv) bi (t) denotes the functions, which are continuous on J. Moreover the sequence (bi (t))
converges uniformly on J = [0, I] .
Denote by

B = sup {b (t) : t ∈ J}

and

b (t)= sup {bi (t) : i = 1,2, . . .} .

4.1 Theorem. Suppose (i)-(iv) assumptions are satisfied. If I < 1
B , then the system (6) together

with the initial conditions (7) has a solution y (t)= (yi (t)) on [0, I] such that y (t) ∈ c for any t ∈ J.

Proof. First, for t ∈ J = [0, I] and y= (yi) ∈ c, we denote here

hi (t, y)= e−τ

b (t)
bi (t) yi + f i (t, y)

and

h (t, y)= (h1 (t, y) ,h2 (t, y) , . . .)= (hi (t, y)) .

For arbitrary fixed natural numbers p and q∣∣hp (t, y)−hq (t, y)
∣∣= ∣∣∣∣ e−τ

b (t)
bp (t) yp + fp (t, y)− e−τ

b (t)
bq (t) yq − fq (t, y)

∣∣∣∣
≤

∣∣∣∣ e−τ

b (t)

∣∣∣∣ · [∣∣bp (t) yp −bq (t) yq
∣∣]+ ∣∣ fp (t, y)− fq (t, y)

∣∣
=

∣∣∣∣ e−τ

b (t)

∣∣∣∣ · [∣∣bp (t) yp −bp (t) yq +bp (t) yq −bq (t) yq
∣∣]+ ∣∣ fp (t, y)

∣∣+ ∣∣ fq (t, y)
∣∣

≤
∣∣∣∣ e−τ

b (t)

∣∣∣∣ · [∣∣bp (t)
∣∣ · ∣∣yp − yq

∣∣+‖y‖ · ∣∣bp (t)−bq (t)
∣∣]+dp +dq .

From the assumptions (iii) and (iv), (hi (t, y)) is a real Cauchy sequence. Therefore, (hi) (t, y) ∈ c.
Next

|hi (t, y)| =
∣∣∣∣ e−τ

b (t)
bi (t) yi + f i (t, y)

∣∣∣∣
≤ e−τ

b (t)
·b (t) · |yi|+di
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≤ e−τ |yi|+di

≤ e−τ ‖y‖+D,

where D = sup {di : i = 1,2, ·}. Hence

‖h (t, y)‖ ≤ e−τ ‖y‖+D.

Suppose a mapping h (t, y) on [0, I]×B (y0, r), we choose

r = DI1 +BI1 ‖y0‖
1−BI1

.

Now x, y ∈ B (y0, r) and for fixed but arbitrary t, s from [0, I] . Consider for any i

|hi (t, y)−hi (s, x)| =
∣∣∣∣ e−τ

b (t)
bi (t) yi + f i (t, y)− e−τ

b (s)
bi (s) xi + f i (s, x)

∣∣∣∣
≤

∣∣∣∣ e−τ

b (t)
bi (t) yi − e−τ

b (s)
bi (s) xi

∣∣∣∣+| f i (t, y)− f i (s, x)|

≤
∣∣∣∣ e−τ

b (t)
bi (t) yi + e−τ

b (t)
bi (s) yi − e−τ

b (t)
bi (s) yi − e−τ

b (s)
bi (s) xi

∣∣∣∣+| f i (t, y)− f i (s, x)|

≤
∣∣∣∣ e−τ

b (t)

∣∣∣∣ · [(r+‖y0‖) · |bi (t)−bi (s)|+B‖y− x‖]+‖ f i (t, y)− f i (s, x)‖ .

Thus, we can write

‖h (t, y)−h (s, y)‖ = sup {|hi (t, y)−hi (t, x)| : i ∈N}

≤
∣∣∣∣ e−τ

b (t)

∣∣∣∣ · (r+‖y0‖)sup {bi (t)−bi (s) : i ∈N}+B‖y− x‖+‖ f (t, y)− f (s, x)‖ .

As the sequence (bi (t)) is equi-continuous on [0, I] and f is uniformly continuous on [0, I]× c.
Therefore, we obtain that h (t, y) is uniformly continuous on J ×B (y0, r). Moreover, take a
non-empty Y ⊂ B (y0, r). Here we fix t ∈ J, y ∈Y . Then for arbitrary fixed natural numbers p
and q, we write∣∣hp (t, y)−hq (t, y)

∣∣= ∣∣∣∣ e−τ

b (t)
bp (t) yp + fp (t, y)− e−τ

b (t)
bq (t) yq − fq (t, y)

∣∣∣∣
≤

∣∣∣∣ e−τ

b (t)
bp (t) yp − e−τ

b (t)
bq (t) yq

∣∣∣∣+ ∣∣ fp (t, y)− fq (t, y)
∣∣

≤
∣∣∣∣ e−τ

b (t)

∣∣∣∣ · [∣∣bp (t) yp −bp (t) yq +bp (t) yq −bq (t) yq
∣∣]+ ∣∣ fp (t, y)

∣∣+ ∣∣ fq (t, y)
∣∣

≤
∣∣∣∣ e−τ

b (t)

∣∣∣∣ ·
[

sup
t∈[0,I]

∣∣bp (t)
∣∣ · ∣∣yp − yq

∣∣+‖y‖ · ∣∣bp (t)−bq (t)
∣∣]+dp +dq

≤
∣∣∣∣ e−τ

b (t)

∣∣∣∣ · [b (t) ·
∣∣yp − yq

∣∣+ (r+‖y0‖) ·
∣∣bp (t)−bq (t)

∣∣]+dp +dq

From the above inequality, we get

µ (h (t,Y ))= lim
k→∞

{
sup

y=(yi)∈Y

{
sup
p,q≥k

∣∣hp (t, y)−hq (t, y)
∣∣}}

≤ e−τ

b (t)
·b (t)

[
lim
k→∞

{
sup

y=(yi)∈Y

{
sup
p,q≥k

{∣∣yp − yq
∣∣}}}]
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= e−τµ (Y ) .

Therefore

ln
(
µ (h (t,Y ))

)≤ ln
(
e−τµ (Y )

)
,

or

τ+ ln
(
µ (h (t,Y ))

)≤ ln
(
µ (Y )

)
.

For F (y) := ln(y) , we get

τ+F
(
µ (h (t,Y ))

)≤ F
(
µ (Y )

)
.

From our fixed point theorem (Theorem 3.2), we conclude that system (6)-(7) has a solution in
the space c.

5. Conclusion
A new contractive condition has been introduced by relaxing the conditions of Wardowski’s
conditions on F-contractions. Fixed point theorem is presented to genralize many results present
in the literature. The common fixed point theorem also generalize and extended many results.
The application in Section 4, provides a usefulness of our main result to existence of solutions
to a infinite system of fractional differential equations. This article would constitute a base for
analysis of nonlinear operators.
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