On the Solution of Stochastic Generalized Burgers Equation

Nidal Dib¹, Amar Guesmia¹ and Noureddine Daili²,*

¹Departement of Mathematics, Laboratory LAMAHIS, 20 août, 1955 University, Skikda, Algeria
²Department of mathematics, Cite des 300 Lots Yahiaoui, 51 rue Harrag Senoussi, 19000 Setif, Algeria
*Corresponding author: nourdaeli_dz@yahoo.fr

Abstract. We are interested in one dimensional nonlinear stochastic partial differential equation: the generalized Burgers equation with homogeneous Dirichlet boundary conditions, perturbed by additive space-time white noise. We establish a result of existence and uniqueness of the local solution to the viscous equation using fixed point argument, then if we impose a condition to the viscosity coefficient we can prove that this solution is global.

Keywords. Stochastic Burgers equation; Space-time white noise; Fixed point argument; Viscosity coefficient

MSC. 60H15; 60H40; 47H10

Received: May 24, 2018 Accepted: June 30, 2018

1. Introduction

It is well known that the Burgers equation is not a good model for turbulence. It does not display any chaos; even when a force is added to the right hand side all solutions converge to a unique stationary solution as time goes to infinity.

However the situation is totally different when the force is a random one. Several authors have, indeed, suggested to use the stochastic Burgers equation as a simple model for turbulence ([1], [2], [3], [9]). The equation has also been proposed in ([10]) to study the dynamics of interfaces.
Here we consider the generalized Burgers equation with a random force which is a space-time white noise
\[\frac{\partial u(t,x)}{\partial t} = \rho \frac{\partial^2 u(t,x)}{\partial x^2} - \partial_x f(u(t,x)) + \frac{\partial^2 \tilde{W}}{\partial t \partial x}, \tag{1} \]
where \(\rho \) is the viscosity coefficient and, \(\tilde{W}(t,x), t \geq 0, x \in \mathbb{R} \) is a zero mean Gaussian process whose covariance function is given by
\[E[\tilde{W}(t,x)\tilde{W}(s,y)] = (t \wedge s)(x \wedge y), \quad t, s \geq 0, x, y \in \mathbb{R}. \]
Alternatively, we can consider a cylindrical Wiener process \(W \) by setting
\[W(t) = \frac{\partial \tilde{W}}{\partial x} = \sum_{h=1}^{\infty} \beta_h e_h, \tag{2} \]
where \(\{e_h\} \) is an orthonormal basis of \(L^2(0,2\pi) \) and \(\{\beta_h\} \) is a sequence of mutually independent real Brownian motions in a fixed probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) adapted to a filtration \(\{\mathcal{F}_t\}_{t \geq 0} \). The series (2) defining \(W \) does not converge in \(L^2(0,2\pi) \) but it is convergent in any Hilbert space \(U \) such that the embedding
\[L^2(0,2\pi) \subset U \]
is Hilbert-Schmidt ([5]).

In the following we shall write (1) as follows:
\[du(t,x) = \left(\rho \frac{\partial^2 u(t,x)}{\partial x^2} - \partial_x f(u(t,x)) \right) dt + dW, \quad x \in [0,2\pi], t > 0, \tag{3} \]
where \(W \) is defined by (2). We assume that \(f: \mathbb{R} \rightarrow \mathbb{R} \) is a locally Lipschitz continuous function.

Equation (3) is supplemented with Dirichlet boundary conditions
\[u(0,t) = u(2\pi,t) = 0, \tag{4} \]
and the initial condition
\[u(x,0) = u_0(x), \quad x \in [0,2\pi]. \tag{5} \]
Our aim in this paper is to prove problem (3) with boundary and initial conditions (4), (5) has a unique global solution.

The next section, we set the notations, introduce the stochastic convolution and prove local existence in time.

2. Local Existence in Time

Define the unbounded self-adjoint operator \(A \) on \(L^2(0,2\pi) \) by
\[Au = \rho \frac{\partial^2 u}{\partial x^2}, \]
for \(u \) on the domain
\[D(A) = \{ u \in H^2(0,2\pi) : u(0) = u(2\pi) = 0 \}. \]
Denote \(e^{tA}, t \geq 0 \) the semigroup on \(L^2(0,2\pi) \) generated by \(A \). It is well known that \(e^{tA}, t \geq 0 \), has a natural extension, that we still denote by \(e^{tA}, t \geq 0 \), as a contraction semigroup on \(L^2(0,2\pi) \).
for any $p \geq 1$. Finally, we denote by (e_k) the complete orthonormal system on $L^2(0,2\pi)$ which diagonalizes A and (λ_k) the corresponding eigenvalues. We have

$$e_k(x) = \sqrt{\frac{2}{\pi}} \sin k\pi x, \quad k = 1, 2, \ldots$$

and

$$\lambda_k = -\pi^2 k^2, \quad k = 1, 2, \ldots.$$

Now, we rewrite (3), (4), (5) as the abstract differential stochastic equation

$$\begin{cases}
 du = (Au - \partial_x f(u)) dt + dW, \\
 u(0) = u_0.
\end{cases}$$

(6)

Recall that the solution to the linear problem

$$\begin{cases}
 du = Au dt + dW, \\
 u(0) = u_0
\end{cases}$$

(7)

is unique and given by the so-called stochastic convolution

$$W_A(t) = \int_0^t e^{(t-s)A} dW(s).$$

(8)

It can be shown that W_A is a Gaussian process and it is mean square continuous with values in $L^2(0,2\pi)$. Moreover, W_A has a version which is, a.s. for $\omega \in \Omega$, α-Hölder continuous with respect to (t,x) for any $\alpha \in [0,1/4]$. We set

$$v(t) = u(t) - W_A(t), \quad t \geq 0,$$

then u satisfies (6) if and only if v is a solution of

$$\begin{cases}
 \frac{dv}{dt} = Av - \partial_x f(v + W_A), \\
 v(0) = u_0.
\end{cases}$$

(9)

From now we will study equation (9) a.s. $\omega \in \Omega$ and consider for the moment that W_A is an α-Hölder continuous function with respect to (t,x) for any $\alpha \in [0,1/4]$. We will return to the stochastic point of view (and to equation (6)) at the end of § 3.

Let us write (9) as

$$v(t) = e^{tA}u_0 - \int_0^t e^{(t-s)A} \partial_x f(v + W_A) ds;$$

(10)

then if v satisfies (10) we say that it is a mild solution of (9).

We are going to solve equation (10) by a fixed point argument in the space $C([0,T^*];L^p(0,2\pi))$ for $p > 1$ and for some $T^* > 0$. We set

$$\Sigma_p(m,T^*) = \{ v \in C([0,T^*];L^p(0,2\pi)) : |v(t)|_{L^p(0,2\pi)} \leq m, \text{ for all } t \in [0,T^*] \},$$

and consider an initial datum u_0 \mathcal{F}_0-measurable and belonging to $L^p(0,2\pi)$, $\omega \in \Omega$ a.s. We will see, in the proof of the Lemma 2.1 below that if $z(t)$ is, a bounded function from $[0,T]$ into $L^p(0,2\pi)$, then, for $t > 0$, the function $e^{tA} \frac{\partial}{\partial x} f(z)$ is also in $L^p(0,2\pi)$. Hence the integral in (10) is convergent in $L^p(0,2\pi)$ a.s. Thus (10) has a meaning as an equality in $L^p(0,2\pi)$.
Lemma 2.1. For any $p \geq 2$ and $m > |u_0|_{L^p(0,2\pi)}$, there exists a stopping time $T^* > 0$ such that (10) has a unique solution in $\Sigma_p(m, T^*)$.

Proof. Take any v in $\Sigma_p(m, T^*)$ and define $z = Gv$ by

$$z(t) = e^{tA}u_0 - \int_0^t e^{(t-s)A}\partial_x f(v + W_A)ds,$$

where $G : C([0,T^*]; L^p(0,2\pi)) \to C([0,T^*]; L^p(0,2\pi))$ is a non-linear operator. Then

$$|z(t)|_{L^p(0,2\pi)} \leq |e^{tA}u_0|_{L^p(0,2\pi)} + \int_0^t |e^{(t-s)A}\partial_x f(v + W_A)|_{L^p(0,2\pi)}ds.$$

As we noticed before, e^{tA}, $t \geq 0$ is a contraction semigroup on $L^p(0,2\pi)$ which has a regularizing effect and, for any $s_1 \leq s_2$ in \mathbb{R}, and $r \geq 1$, e^{tA} maps $W^{s_1,r}(0,2\pi)$ into $W^{s_2,r}(0,2\pi)$, for all $t > 0$. Moreover, the following estimate holds

$$|e^{tA}z|_{W^{s_2,r}(0,2\pi)} \leq C_1(t^{1-s_2} + 1)|z|_{W^{s_1,r}(0,2\pi)}$$

for all $z \in W^{s_1,r}(0,2\pi)$. The constant C_1 depends only on s_1, s_2 and r, see for instance (11).

Using the Sobolev embedding theorem we have

$$|e^{(t-s)A}\partial_x f(v + W_A)|_{L^p(0,2\pi)} \leq C_2|e^{(t-s)A}\partial_x f(v + W_A)|_{W^{1,p}(0,2\pi)}$$

and, thanks to (11) with $s_1 = -1, s_2 = 1/p, r = p/2$

$$|e^{(t-s)A}\partial_x f(v + W_A)|_{L^p(0,2\pi)} \leq C_1 C_2((t-s)^{-\frac{1}{2} - \frac{1}{p}} + 1)|\partial_x f(v + W_A)|_{W^{1,p}(0,2\pi)} \leq C_1 C_2((t-s)^{-\frac{1}{2} - \frac{1}{p}} + 1)|f(v + W_A)|_{L^p(0,2\pi)}.$$

Therefore,

$$|z(t)|_{L^p(0,2\pi)} \leq |u_0|_{L^p(0,2\pi)} + C_1 C_2 \int_0^t ((t-s)^{-\frac{1}{2} - \frac{1}{p}} + 1)|f(v + W_A)|_{L^p(0,2\pi)} ds$$

$$\leq |u_0|_{L^p(0,2\pi)} + C_1 C_2 Lip_1 \int_0^t ((t-s)^{-\frac{1}{2} - \frac{1}{p}} + 1)(1 + |v + W_A|_{L^p(0,2\pi)}) ds$$

$$\leq |u_0|_{L^p(0,2\pi)} + C_1 C_2 Lip_2 \int_0^t ((t-s)^{-\frac{1}{2} - \frac{1}{p}} + 1)(1 + |v|_{L^p(0,2\pi)} + |W_A|_{L^p(0,2\pi)}) ds$$

$$\leq |u_0|_{L^p(0,2\pi)} + C_1 C_2 Lip_1 (1 + (2\pi)\frac{1}{p} m + \mu_1) \int_0^t ((t-s)^{-\frac{1}{2} - \frac{1}{p}} + 1) ds$$

$$\leq |u_0|_{L^p(0,2\pi)} + C_1 C_2 Lip_1 (1 + (2\pi)\frac{1}{p} m + \mu_1) \left(\frac{2p}{p - 1}(T^*)^{-\frac{1}{2} - \frac{1}{p}} + T^*\right) \leq m.$$

where Lip_1 is the Lipschitz constant of f which depend on $m + \mu_1$, and

$$\mu_1 = \sup_{t \in [0, T^*]} |W_A(t)|_{L^p(0,2\pi)}.$$

Hence $|z(t)|_{L^p(0,2\pi)} \leq m$ for all $t \in [0, T^*]$ provided

$$|u_0|_{L^p(0,2\pi)} + C_1 C_2 Lip_1 (1 + (2\pi)\frac{1}{p} m + \mu_1) \left(\frac{2p}{p - 1}(T^*)^{-\frac{1}{2} - \frac{1}{p}} + T^*\right) \leq m. \tag{12}$$

It is clear that for any $m > |u_0|_{L^p(0,2\pi)}$ there exists a T^* satisfying (12). Now consider $v_1, v_2 \in \Sigma_p(m, T^*)$ and set $z_i = Gv_i, i = 1, 2$ and $z = z_1 - z_2$.
Then
\[
z(t) = \int_0^t e^{(t-s)A} \frac{\partial}{\partial x} [f(u_1 + W_A) - f(u_2 + W_A)] ds,
\]
and we derive as above
\[
|z(t)|_{L^p(0, 2\pi)} \leq C_1 C_2 \int_0^t ((t-s)^{-\frac{1}{2} - \frac{1}{2p}} + 1)|f(u_1 + W_A) - f(u_2 + W_A)|_{L^p(0, 2\pi)} ds.
\]
According to the hypothesis on \(f\), we have
\[
|f(u_1 + W_A) - f(u_2 + W_A)|_{L^p(0, 2\pi)} \leq Lip_2 |u_1 - u_2|_{L^p(0, 2\pi)} \leq Lip_2(2\pi)^{\frac{1}{p}} |u_1 - u_2|_{L^p(0, 2\pi)} = C_3 |u_1 - u_2|_{L^p(0, 2\pi)},
\]
where \(Lip_2\) is the Lipschitz constant of \(f\) which depend on \(m + \mu_p\), and \(C_3 = Lip_2(2\pi)^{\frac{1}{p}}\), hence
\[
|z(t)|_{L^p(0, 2\pi)} \leq C_1 C_2 C_3 \int_0^t ((t-s)^{-\frac{1}{2} - \frac{1}{2p}} + 1)|u_1 - u_2|_{L^p(0, 2\pi)} ds
\]
\[
\leq C \max_{0 \leq s \leq t} |u_1(s) - u_2(s)|_{L^p(0, 2\pi)} \int_0^t ((t-s)^{-\frac{1}{2} - \frac{1}{2p}} + 1) ds
\]
\[
\leq C \left(\frac{2p}{p-1} (T^*)^{\frac{1}{2} - \frac{1}{2p}} + T^* \right) |u_1 - u_2|_{C([0, T^*]; L^p(0, 2\pi))}
\]
for all \(t \in [0, T^*]\) provided
\[
|Gv_1 - Gv_2|_{C([0, T^*]; L^p(0, 2\pi))} \leq C \left(\frac{2p}{p-1} (T^*)^{\frac{1}{2} - \frac{1}{2p}} + T^* \right) |u_1 - u_2|_{C([0, T^*]; L^p(0, 2\pi))}.
\]
We take \(T^*\) such that
\[
C \left(\frac{2p}{p-1} (T^*)^{\frac{1}{2} - \frac{1}{2p}} + T^* \right) < 1
\]
and (12) holds so that \(G\) is a strict contraction on \(\Sigma_p(m, T^*)\). \(\square\)

Remark 2.1 ([4]). As mentioned before all the previous results are valid a.s. for \(\omega \in \Omega\); in particular \(\mu_p\) and \(T^*\) depend on \(\omega\). In the next section we will show that \(T^* = T\) a.s. for \(\omega \in \Omega\) and hence remove the dependence on \(\omega\) for the time interval on which the solution exists.

3. Global Existence

We are still considering equation (10) as a deterministic one, working a.s. for \(\omega \in \Omega\).

Theorem 3.1 (Global existence). Let \(u_0\) be given which is \(\mathcal{F}_0\)-measurable and such that for some \(p \geq 2\), \(u_0 \in L^p(0, 2\pi)\) a.s. If \(\rho \geq \frac{Lip_1 c}{2}\) then there exists a unique mild solution of equation (6), which belongs a.s. to \(C([0, T]; L^p(0, 2\pi))\).

In the following lemma, we derive a priori estimate which yields global existence.

Lemma 3.1. If \(v \in C([0, T]; L^p(0, 2\pi))\) satisfies (10) and \(\rho \geq \frac{Lip_1 c}{2}\), then
\[
|v(t)|_{L^p(0, 2\pi)} \leq e^{T Lip_1 e^{\frac{\rho - 1}{2} \mu_0^2}} |u_0|_{L^p(0, 2\pi)},
\]
where \(c = (2\pi)^{\frac{1}{p} - \frac{1}{2p}}\) and \(\mu_\infty = \sup_{t \in [0, T]} |W_A(t)|_{L^\infty(0, 2\pi)}\).
We integrate by parts the last integral
\[u^n_0 \rightarrow u_0, \text{ in } L^p(0,2\pi), \]
and let \(\{W^n\} \) be a sequence of regular processes such that
\[W^n_A(t) = \int_0^t e^{(t-s)A} dW^n(s) \rightarrow W_A(t) \]
in \(C([0,T] \times [0,2\pi]) \) a.s. for \(\omega \in \Omega \).

Let \(v^n \) be the solution of
\[v^n(t) = e^{tA}u^n_0 - \int_0^t e^{(t-s)A} \partial_x f(v^n + W^n_A) \, ds \]
given by Lemma 2.1. It is easy to see that \(v^n \) does exist on an interval of time \([0,T_n]\) such that \(T_n \rightarrow T^* \) a.s. and that \(v^n \) converges to \(v \) in \(C([0,T^*];L^p(0,2\pi)) \) a.s. Moreover, \(v^n \) is regular a.s. and satisfies
\[\frac{\partial v^n}{\partial t} - \rho \frac{\partial^2 v^n}{\partial x^2} + \partial_x f(v^n + W^n_A) = 0. \]
(13)

Multiplying (13) by \(|v^n|^{p-2} v^n\) and integrating over \([0,2\pi]\), we find
\[\frac{1}{p} \frac{\partial}{\partial t} |v^n|_{L^p(0,2\pi)}^p + \rho(p-1) \int_0^{2\pi} |v^n|^{p-2} \left| \frac{\partial v^n}{\partial x} \right|^2 \, dx + \int_0^{2\pi} \frac{\partial}{\partial x} f(v^n + W^n_A) |v^n|^{p-2} v^n \, dx = 0. \]
(14)

We integrate by parts the last integral
\[\int_0^{2\pi} \frac{\partial}{\partial x} f(v^n + W^n_A) |v^n|^{p-2} v^n \, dx = - \int_0^{2\pi} f(v^n + W^n_A) |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx, \]
then
\[\left| \int_0^{2\pi} \frac{\partial}{\partial x} f(v^n + W^n_A) |v^n|^{p-2} v^n \, dx \right| = (p-1) \left| \int_0^{2\pi} f(v^n + W^n_A) |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx \right| \]
\[\leq (p-1) \int_0^{2\pi} \left| f(v^n + W^n_A) |v^n|^{p-2} \frac{\partial}{\partial x} v^n \right| \, dx \]
\[\leq (p-1) \int_0^{2\pi} \text{Lip}_1(1 + |v^n + W^n_A|) |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx \]
\[\leq (p-1) \int_0^{2\pi} \text{Lip}_1 |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx \]
\[+ (p-1) \int_0^{2\pi} \text{Lip}_1 |W^n_A| |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx \].

The first term is zero, indeed
\[\int_0^{2\pi} |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx = - \int_0^{2\pi} (p-2) |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx. \]
Hence
\[(p-1) \int_0^{2\pi} |v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx = 0. \]
In the same way, we can prove that the second term is also zero.
According to the Hölder’s and Cauchy’s inequalities we bound the third term as follows

\[Lip_1(p-1) \int_0^{2\pi} |W_A^n|v^n|^{p-2} \frac{\partial}{\partial x} v^n \, dx \]

\[\leq Lip_1(p-1)|W_A^n|L^{\infty}(0,2\pi)|v^n|^{p-2}L^{p-2}(0,2\pi) \left(\int_0^{2\pi} |v^n|^{p-2} \left(\frac{\partial}{\partial x} v^n \right)^2 \, dx \right)^{\frac{1}{2}} \]

\[\leq Lip_1 c (p-1) \mu_{n,\infty} |v^n|^{p-2}L^{p}(0,2\pi) + Lip_1 c (p-1) \frac{1}{2} \int_0^{2\pi} |v^n|^{p-2} \left(\frac{\partial}{\partial x} v^n \right)^2 \, dx, \]

where \(c = (2\pi)^{\frac{2}{p-2}} \) and \(\mu_{n,\infty} = \sup_{t \in [0,T]} |W_A^n(t)|L^{\infty}(0,2\pi) \) for a.s. \(\omega \in \Omega \).

Going back to (14) we obtain

\[\frac{1}{p} \frac{\partial}{\partial t} |v^n|^p_{L^p(0,2\pi)} + \rho (p-1) \int_0^{2\pi} |v^n|^{p-2} \left(\frac{\partial v^n}{\partial x} \right)^2 \, dx \]

\[\leq Lip_1 c (p-1) \mu_{n,\infty} |v^n|^{p-2}L^{p}(0,2\pi) + Lip_1 c (p-1) \frac{1}{2} \int_0^{2\pi} |v^n|^{p-2} \left(\frac{\partial v^n}{\partial x} \right)^2 \, dx. \]

It follows

\[\frac{1}{p} \frac{\partial}{\partial t} |v^n|^p_{L^p(0,2\pi)} + (p-1) \left(\rho - \frac{Lip_1 c}{2} \right) \int_0^{2\pi} |v^n|^{p-2} \left(\frac{\partial v^n}{\partial x} \right)^2 \, dx \leq Lip_1 c (p-1) \frac{1}{2} \mu_{n,\infty} |v^n|^{p-2}L^{p}(0,2\pi). \]

If we take \(\rho \) and \(Lip_1 \) such that

\[\rho \geq \frac{Lip_1 c}{2}. \]

We obtain

\[\frac{\partial}{\partial t} |v^n|^p_{L^p(0,2\pi)} \leq Lip_1 c \frac{p(p-1)}{2} \mu_{n,\infty} |v^n|^p_{L^p(0,2\pi)} \]

and, according to Gronwall’s lemma

\[|v^n|^p_{L^p(0,2\pi)} \leq e^{t Lip_1 c \frac{p(p-1)}{2} \mu_{n,\infty}} |u_0|^p_{L^p(0,2\pi)}. \]

Taking the limit as \(n \to \infty \), we see that a.s.

\[|v|^p_{L^p(0,2\pi)} \leq e^{t Lip_1 c \frac{p(p-1)}{2} \mu_{\infty}} |u_0|^p_{L^p(0,2\pi)}. \]

It follows

\[|v|^p_{L^p(0,2\pi)} \leq e^{t Lip_1 c \frac{p(p-1)}{2} \mu_{\infty}} |u_0|^p_{L^p(0,2\pi)}. \]

and the assertion of the lemma follows.

Proof of Theorem 3.1 It is easily deduced from Lemma 2.1 and Lemma 3.1.

Acknowledgement

We would like to thank the referees of this paper.
Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

