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1. Introduction
Markowitz [9] was the first who introduced the modern portfolio selection theory. The first
measure to study the returns of the investment considered by Markowitz was variance, relying
on this logic that the bigger the variance, the higher is the risk. He also introduced the concept
of portfolio efficient frontier as a way to determine the whole possible portfolios in which the
expected returns are maximized while minimizing the variance. Since then, the Markowitz
mean-variance and the mean-semi variance models have been used to obtain the effective
frontier. Many researchers such as Merton [10] and Green and Hollifield [5] used these models
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in portfolio optimization problems.

Shannon [13] introduced the quantitative and qualitative communications model, involving
H(X ) as the entropy of the random variable X , as a statistical process, which led to the
foundation of the information theory. Since then, the risk is related to uncertainty; the concept
of entropy should be applicable in calculating the optimum portfolio and the efficient frontier.
Entropy was first used by Philippatos and Wilson [11] in portfolio selection. Ke and Zhang
[7] used the Shannon entropy to modify the mean-variance model. Then, Bugar and Uzsoki
[2] examined the portfolio diversification methodology. Besides, Bera and Park [1] argued that
although the Markowitz mean-semi variance method is being a most commonly applicable
approach in solving portfolio diversification problems, comparing to the mean variance method,
it sometimes results in highly limiting the variety of assets in the portfolio. Usta and Kantar
[15] also used the Mean-Variance-Skewness-Entropy model for portfolio diversification. They
relied on multi-objective approach in selecting portfolio. Xu [16] compared the mean-variance
efficiency of the models incorporating different entropy measures by applying multiple criteria
method and Yari et al. [17] employed entropy optimization measures to determine weights of
each criterion of growth and reduction to better predict the future worth of each share.

This paper tries to improve portfolio selection models using Renyi entropy measures. We
used Shannon entropy [13] and Renyi entropy [12] as the objective functions and we also
compare them with each other. Adopting a penalty function approach, we convert the objective
functions with side conditions into single-objective functions without side conditions. In the
other words, the entropy measures were added to the traditional portfolio optimizations models.
Then, the outcome is suggested as a way for developing investment strategies. Our empirical
work is running the models and determining the profit and loss of investment which are tested
with original data of six big companies, using the PSO [8] intelligent optimization algorithm.

The paper is organized as follows: In Section 2, we provide the definitions used in the study
and describe the traditional models for portfolio optimization. Section 3 describes the proposed
models for portfolio optimization and diversification, incorporating Shannon and Renyi entropy.
Section 4 is dedicated to our empirical work, which helps in comparing the performance of these
models. We have the conclusions in the last chapter.

2. Traditional portfolio selection models

Portfolio theory deals with selecting the optimum way of investing in a given set of assets [4].
Each possible strategy is considered as a portfolio selection model. In this section, we present a
major traditional portfolio selection model (the mean-semi variance model). Before presenting
the models, the definitions used in the study are provided as follow:
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2.1 Preliminaries
Definition 2.1. Assume Pi(t) be the ith price of the stock in time t, where t = 1,2, . . . ,T and
i = 1,2, . . . ,n. Then the return of ith stock is calculated as:

r i(t)= Pi(t+1)−Pi(t)
Pi(t)

= Pi(t+1)
Pi(t)

−1 . (1)

If xi is considered as the capital needed to buy ith stock, then the proportion of the capital to be
invested in stock i, shown as wi , will be defined as:

wi = xi∑n
i=1 xi

, 0≤ wi ≤ 1,
n∑

i=1
wi = 1 . (2)

Definition 2.2. The weighted average of stock returns in time t, called the portfolio returns, is
defined as:

Rp(t)=
n∑

i=1
wir i(t). (3)

Definition 2.3. The average portfolio returns, called the expected returns, is defined as:

µp = E{Rp(t)}= 1
T

T∑
t=1

Rp(t)= 1
T

T∑
t=1

n∑
i=1

wir i(t)=
n∑

i=1
wiµi = wT ·µ, (4)

where

µi = E{r i(t)}= 1
T

T∑
t=1

r i(t).

Definition 2.4. The variance of the average expected returns, called the portfolio variance, is
defined as:

σ2
p = var(Rp(t))=

n∑
i=1

n∑
j=1

wiw jσi j, σi j = cov(r i(t), r j(t))= ρ i jσiσ j, (5)

where ρ i j shows the correlation between two stocks. The portfolio variance may be defined as:

σ2
p = wTΣw, (6)

where S is the variance-covariance matrix and w = (w1,w2, . . . ,wn).

Definition 2.5. The portfolio variance for returns below the expected value, called the portfolio
semi-variance, is defined as:

σ2
p− = E{(Rp(t)−µp)2|(Rp(t)−µp)2Rp(t)<µp}=∑

i

∑
j

wiw jσi−σ j−ρ i j = wT ∑
−

w, (7)

where σ2
i− = E{(r i(t)−µi)2|r i(t)<µi}.

But since, many researchers believe that in variance calculation, the positive distances of
values from the average, not only is not bad, but it shows a better yield of a share, they use
semi-variance instead of variance in their calculation. The definition of mean-semi variance
model is as follows:
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2.2 Mean-semi Variance Model
The basic assumption of the Markowitz’s Mean-semi Variance is that higher expected returns
can be obtained by taking more risk. Thus the optimum portfolio can be selected by choosing
wis in a way that the following equation is minimized against wis:

Minσ2
p = wTS−w,

s.t. Maxµp =
n∑

i=1
wiµi ≥µ0, i = 1,2,3, . . . ,n, (8)

n∑
i=1

wi = 1.

where µ0 is the pre-determined expected return for the portfolio.

Definition 2.6. The violation function for the above problem’s side condition is as:

V (w)=
{

0 µp ≥µ0

1− µp
µ0

µp <µ0
(9)

Using Definition 2.6, the problem can be converted into a single-objective problem, without any
constraint. This problem adopts the multiplicative penalty function [3,14]:

MinwTΣ−w+Penalty, (10)

Min(wTΣ−w)(1+λV (w))= (wTΣ−w)
(
1+λMax

(
0,1− µp

µ0

))
where µ0 is the pre-determined expected return for the portfolio, and λ a positive real number.

3. Entropy Models for Portfolio Selection

In this section, an overview of the Shannon entropy and Renyi entropy is provided.

3.1 Shannon Entropy-mean-semi Variance Model
It is accepted that our understanding of a signal (i.e. a variant or quantified information)
depends on its logarithm [13]. In the other words:

log(signal)∼Perception(or understanding).

Given this fact, the state can be summarized as follows:

= log
(

1
wi

)
∼ uncertainty in decisions related to Stock i

Since we are dealing with n number of stocks, the empiric quantities 1
n

∑− log
(

1
wi

)
are

interesting for us. However, it would be more realistic to consider weighted mean H(w) =
−∑n

i=1 wi logwi . This formula can be defined as the portfolio entropy where wi is the proportion
of capital investment in stock i, and n is the number of stocks [6]. In entropy, we have also these
conditions that H is maximum when wi = 1

n ; and if wi = 1 (for one i) and wi = 0 (for the rest),
H = 0.
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Given the entropy measure as the objective function, we have:

MinH(w)=−
n∑

i=1
wi logwi,

s.t. Maxµp =
n∑

i=1
wiµi ≥µ0, i = 1,2,3, . . . ,n, (11)

Minσ2
p = var(Rp(t))= wTΣ−w =σ2

0,
n∑

i=1
wi = 1.

This can also be dealt with in the following way:

MinH(w)=−
n∑

i=1
wi logwi,

s.t. Min−µp ≤−µ0, i = 1,2,3, . . . ,n, (12)

Minσ2
p = var(Rp(t))= wTΣ−w =σ2

0,
n∑

i=1
wi = 1 .

Definition 3.1. The violation functions for side conditions are as follows:

Vret(w)=
{

0 µp ≥µ0

1− µp
µ0

µp <µ0
(13)

Vrisk(w)=
0 σ2

p <σ2
0

σ2
p

σ2
0
−1 σ2

p ≥σ2
0

(14)

Using (13) and (14), the equation (12) can be rewritten as a single-objective function without
any constraints, using a multiplicative penalty function approach.

Min
n∑

i=1
wi logwi +Penalty, (15)

Min

(
−

n∑
i=1

wi logwi

)
(1+λ1 Vret(w)+λ2 Vrisk(w))

=
(

n∑
i=1

wi logwi

)(
1+λ1 Max

(
0,1− µp

µ0

)
+λ2 Max

(
0,
σ2

p

σ2
0
−1

))
,

where µ0 is the pre-determined expected return and σ2
0 is the pre-determined risk for the

portfolio and λ1, λ2 are positive real numbers.

3.2 Renyi Entropy-mean-semi Variance Model
In information theory, the Renyi entropy is characterized by determining different quantities of
uncertainty and irregularity in a system:

Hα(X )= 1
1−α

log
n∑

i=1
wα

i , α> 0(6= 1 ).
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The Renyi entropy is a generalized form of the Shannon entropy

lim
α→1

Hα(x)= H(x).

Taking the Renyi entropy as objective function, we have:

MinH(w)= 1
1−α

log
n∑

i=1
wα

i ,

s.t. Maxµp =
n∑

i=1
wiµi ≥µ0, i = 1,2,3, . . . ,n, (16)

Minσ2
p = var(Rp(t))= wTS−w =σ2

0.

By defining violation functions, and converting (16) into a single-objective function, we have

Min

(
1

1−α
log

n∑
i=1

wα
i

)
(1+λ1 Vret(w)+λ2 Vrisk(w))

=
(

1
1−α

log
n∑

i=1
wα

i

)(
1+λ1 Max

(
0,1− µp

µ0

)
+λ2 Max

(
0,
σ2

p

σ2
0
−1

))
. (17)

4. Measure of Risk using Renyi Entropy

Suppose that u(w) is a utility function; then if an individual be risk-averse, we have u′′(w)< 0
and u(w) as a concave function; and if an individual be risk-prone, then we have u′′(w)> 0 and
u(w) as a convex function.

In our method, the renyi measure is proposed as the alternative to variance to measure the
risk in portfolio optimization. If we use renyi measure with α variety, we get several measures
for risk; then we have to run our program with a simulation program to see the outcomes for
different αs. Considering the use of renyi measure for risk, we get the measure discussed below:

F = 1
1−α

log
n∑

i=1
wα

i = 1
1−α

log
n∑

i=1

(
xi∑n

i=1 xi

)α
= 1

1−α
log

1
Aα

n∑
i=1

xi
α

= α

α−1
log A+ 1

1−α
log

n∑
i=1

xi
α

= α

α−1
log A+ 1

1−α
logn+ 1

1−α
logE(Xα) . (18)

Analysis
For α< 1, maximization of the measure means the minimization of the expected utility of a
person whose utility function is given by u(w)= wα. In this case the person is risk-averse.

For α> 1, maximization of the measure means the maximization of the expected utility of a
person whose utility function is given by u(w)= wα. In this case the person is risk-prone.
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Therefore, maximization of this measure also implies minimization of the expected utility of a
risk-averse person and maximization of the expected utility of a risk-prone person. In this case
as α→ 1, this again implies maximizing of the expected utility of a risk-prone person.

The steps of the proposed method are as follows:

(1) In the first step, daily, weekly or monthly T stock returns of the selected companies
must be considered. For better accuracy, daily data are preferred; however in long term
investments, weekly and monthly data can be used, if we have enough data.
Daily Profit/Loss is calculated by the following formula.

Profit/Loss= CT+ j+1 ×ST+ j −CT+ j×ST+ j, j = 0,1,2, . . . ,m

Ca =Optimum capital allocation until the time a

Sa =The stock price at the time a

(2) The values, µ0 (pre-determined expected return) and σ2
0 (pre-determined risk) are

determined to minimize the objective function. These values can be chosen by many
statistical methods.

(3) The PSO algorithm is run for the mentioned T returns. The output will constitute the
appropriate capital allocation strategy for investment in these n companies and again T+s
(stock returns of the next time unit for the same n companies) are selected.

(4) In a simulation method, all the procedure is performed by the entire positive αs less than
5. We know that when α is equal to 1, we have Shannon entropy.

5. The Empirical Work

In order to test the applications of the models presented in Section 2 and 3, the one-year span
(1st January-31th December 2016) daily data on the stocks of six companies, namely IBM,
Google, Microsoft, John Wiley & Sons, Yahoo, and Facebook was inserted to models. Then the
problems were converted into a single-objective one and were solved using a tailor-made PSO
optimization algorithm in MATLAB.

We performed the program introduced in section 4 for 50 different α from 0.1 to 5 and the
results for three of them (α= 1 which is Shannon entropy, one bigger and one less than it) is
shown in the following figures.

Tables 1, 2 and 3 are obtained with setting the α level at 5, 0.05 and 1, respectively. Selection
using the Shanon Mean-Semi variance leads to a more diverse and decentralized portfolio for a
limited amount of assets in comparison to the Renyi’s (α= 5,0.05) Mean-Semi variance models.
Also, when α is equal to 0.05, the portfolio is more centralized on a limited number of assets in
comparison to other models.

We calculate the daily profit and loss using formula, based on the optimum capital allocated
weights, given in Tables 1, 2 and 3.
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Table 1. Optimum capital allocation from the beginning of the year 2016 until the T time, based on
Renyi(α= 5)-Mean-Semi variance

Date Investment strategy
JW-A FB YHOO MSFT IBM GOOGLE

10/17/2016 0 0.165151 0.550741 0.059251 0.172978 0.051879
10/18/2016 0 0.191775 0.550813 0.067032 0.184277 0.006103
10/19/2016 0 0.188117 0.556622 0.060725 0.159961 0.034575
10/20/2016 0 0.181256 0.557172 0.063223 0.156716 0.041633
10/21/2016 0 0.214508 0.558453 0.060608 0.166432 0
10/24/2016 0 0.193232 0.565918 0.055238 0.139183 0.046429
10/25/2016 0 0.194385 0.57481 0.086357 0.132561 0.011887
10/26/2016 0 0.194346 0.580781 0.064692 0.127793 0.032388
10/27/2016 0.001533 0.19734 0.58589 0.063339 0.130645 0.021253
10/28/2016 0 0.187774 0.591915 0.061311 0.148938 0.010061
10/31/2016 0 0.148296 0.597922 0.05091 0.146295 0.056577
11/1/2016 0.592338 0.250372 0.154994 0 0.001826 0.00047
11/2/2016 0 0.16803 0.610196 0.053444 0.115214 0.053117
11/3/2016 0.001037 0.19273 0.613254 0.051876 0.132901 0.008203
11/4/2016 0 0.166224 0.608925 0.039707 0.169517 1.56E-02
11/7/2016 0 0.149154 0.616417 0.070499 0.148812 0.015119
11/8/2016 0 0.110307 0.611003 0.08615 0.151632 0.040907
11/9/2016 0 0.127425 0.611477 0.061225 0.148152 0.051721
11/10/2016 0 0.116477 0.617555 0.076205 0.164291 0.025472
11/11/2016 0.000821 0.112653 0.619464 0.04614 0.20033 0.020592
11/14/2016 0 0.137416 0.619075 0.051294 0.192214 0
11/15/2016 0.026403 0.10437 0.600605 0.063746 0.195505 0.00937
11/16/2016 0.631488 0.143907 0.053637 0.028929 0.142039 0
11/17/2016 0.001535 0.112288 0.603211 0.075408 0.185729 0.021829
11/18/2016 0.006604 0.143147 0.600194 0.067582 0.181812 0.00066
11/21/2016 0.002577 0.138539 0.606398 0.061257 0.19123 0
11/22/2016 0 0.121771 0.612549 0.06462 0.201059 0
11/23/2016 0.017045 0.125089 0.618107 0.04518 0.182488 0.01209
11/25/2016 0.006151 0.137671 0.625539 0.062081 0.168558 0
11/28/2016 0 0.102021 0.631012 0.072493 0.177396 0.017078
11/29/2016 0.01094 0.134636 0.629136 0.050151 0.175138 0
11/30/2016 0 0.115759 0.629482 0.074584 0.180174 0
12/1/2016 0 0.098282 0.631985 0.046235 0.190319 0.03318
12/2/2016 0.672906 0.112696 0 0.057409 0.10538 5.16E-02
12/5/2016 0.600749 0.068075 0.203656 0 0.12752 0
12/6/2016 0.007151 0.095367 0.604897 0.057863 0.18897 0.045752
12/7/2016 0.055713 0.119586 0.610271 0.035428 0.179002 0
12/8/2016 0.030715 0.137677 0.61008 0.011629 0.209614 0.000286
12/9/2016 0.657847 0.091135 0 0.049713 0.098567 0.102738
12/12/2016 0.00729 0.107323 0.606237 0.072121 0.207029 0
12/13/2016 0.006005 0.110206 0.601502 0.067994 0.201948 0.012345
12/14/2016 0.019143 0.121248 0.610245 0.061477 0.166694 0.021193
12/15/2016 0 0.102381 0.615503 0.071865 0.197805 0.012445
12/16/2016 0.629078 0.071672 0 0.072359 0.099434 0.127456
12/19/2016 0.633217 0.115386 0 0.073766 0.105541 0.07209
12/20/2016 0.633425 0.085313 0.00083 0.063929 0.112852 0.103651
12/21/2016 0.022534 0.119251 0.535429 0.078119 0.203431 0.041237
12/22/2016 0.014584 0.126087 0.540948 0.065793 0.2179 3.47E-02
12/23/2016 0.03026 0.069774 0.5296 0.047812 0.32161 0.000944
12/27/2016 0.106265 0.068917 0.533644 0.056695 0.234479 0
12/28/2016 0.626108 0.110403 0.024559 0.057277 0.181652 0
12/29/2016 0.628028 0.099421 0.027235 0.040424 0.204891 0
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Table 2. Optimum capital allocation from the beginning of the year 2016 until the T time, based on
Renyi(α= 0.05)-Mean-Semi variance

Date Investment strategy
JW-A FB YHOO MSFT IBM GOOGLE

10/17/2016 0.359441 0.239498 0.401061 0 0 0
10/18/2016 0.258381 0.275491 0.466129 0 0 0
10/19/2016 0 0.315366 0.54132 0 0.143314 0
10/20/2016 0.375695 0.229595 0.39471 0 0 0
10/21/2016 0.101315 0.386277 0.512408 0 0 0
10/24/2016 0.268943 0 0.492735 0.238323 0 0
10/25/2016 0.237646 0.255313 0.507041 0 0 0
10/26/2016 0 0.168186 0.575026 0 0.256788 0
10/27/2016 0 0.222719 0.566205 0.211076 0 0
10/28/2016 0.483309 0.176953 0.339739 0 0 0
10/31/2016 0.407008 0.168917 0.424075 0 0 0
11/1/2016 0 0.174843 0.582454 0.242703 0 0
11/2/2016 0.328494 0.18463 0.486876 0 0 0
11/3/2016 0.097938 0.369887 0.532174 0 0 0
11/4/2016 0 0.144536 0.607741 0 0.247723 0
11/7/2016 0.085454 0.396674 0.517872 0 0 0
11/8/2016 0 0.363653 0.561331 0 0.075016 0
11/9/2016 0 0.144213 0.607465 0 0.248322 0
11/10/2016 0.269182 0 0.514462 0 0.216356 0
11/11/2016 0.427499 0.171207 0.401294 0 0 0
11/14/2016 0.423506 0 0.38236 0.194134 0 0
11/15/2016 0.428791 0 0.397638 0 0.173571 0
11/16/2016 0.139075 0 0.553707 0 0.307218 0
11/17/2016 0.437548 0 0.388327 0 0.174124 0
11/18/2016 0.22624 0.239162 0.534597 0 0 0
11/21/2016 0.225306 0 0.541162 0 0.233531 0
11/22/2016 0.382808 0.151841 0.465351 0 0 0
11/23/2016 0.325109 0.163216 0.511676 0 0 0
11/25/2016 0.428277 0 0.427498 0 0.144225 0
11/28/2016 0.440615 0 0.414609 0.144776 0 0
11/29/2016 0.34433 0 0.490241 0.165429 0 0
11/30/2016 0.364408 0 0.491822 0 0.14377 0
12/1/2016 0.094977 0 0.521201 0.383822 0 0
12/2/2016 0.496768 0 0.345375 0.157857 0 0
12/5/2016 0 0.391519 0.530533 0 0.077947 0
12/6/2016 0.089799 0 0.571606 0 0.338595 0
12/7/2016 0.42346 0 0.423237 0.153303 0 0
12/8/2016 0.191482 0 0.554516 0 0.254002 0
12/9/2016 0.511446 0 0.320115 0 0.168439 0
12/12/2016 0.108641 0 0.507192 0.384167 0 0
12/13/2016 0.441228 0 0.409169 0 0.149603 0
12/14/2016 0.366955 0 0.473858 0.159187 0 0
12/15/2016 0.322837 0 0.394263 0.282901 0 0
12/16/2016 0.336637 0 0.3974 0.265963 0 0
12/19/2016 0.249477 0.310611 0.439912 0 0 0
12/20/2016 0 0 0.475363 0.352644 0.171993 0
12/21/2016 0.20095 0 0.432903 0.366147 0 0
12/22/2016 0.219603 0 0.468379 0 0.312018 0
12/23/2016 0.449357 0.179983 0.346953 0 0.023707 0
12/27/2016 0.37986 0.224234 0.395906 0 0 0
12/28/2016 0.419925 0 0.355637 0.224438 0 0
12/29/2016 0.359441 0.239498 0.401061 0 0 0
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Table 3. Optimum capital allocation from the beginning of the year 2016 until the T time, based on
Shannon-Mean-Semi variance

Date Investment strategy
JW-A FB YHOO MSFT IBM GOOGLE

10/17/2016 0.356338 0.244115 0.398773 0.000181 0.000186 0.000407
10/18/2016 0.216722 0.298072 0.48216 0.000627 0.002275 0.000144
10/19/2016 0.000788 0.043266 0.533739 0.001211 0.16556 0.255437
10/20/2016 0.000652 0.283338 0.52885 0.185669 0.000417 0.001075
10/21/2016 0.131398 0.360456 0.507203 0.000145 6.45E-05 7.35E-04
10/24/2016 0.449487 0.200512 0.347385 0.001558 0.000518 0.00054
10/25/2016 0.000285 0.259508 0.557551 0.179778 0.002616 0.000261
10/26/2016 0.000781 0.162266 0.574519 6.63E-04 2.61E-01 0.00081
10/27/2016 0.000628 0.146335 0.547706 0.298222 1.48E-03 0.005633
10/28/2016 0.188317 0.354426 0.453535 0.000139 0.002862 0.000721
10/31/2016 0.149897 0.289734 0.55806 0.000504 0.001647 0.000158
11/1/2016 0.357534 0.175136 0.465659 0.001289 0.00034 4.16E-05
11/2/2016 0.37462 0.165259 0.456359 0.000923 0.002601 2.39E-04
11/3/2016 0.000278 0.350453 0.561552 0.001547 0.079691 0.00648
11/4/2016 0.000842 0.148384 0.608379 0.003253 0.237579 0.001562
11/7/2016 0.003172 0.35154 0.50297 2.20E-06 0.142158 0.000157
11/8/2016 0.002428 0.130526 0.5539 0.311456 0.001652 3.79E-05
11/9/2016 0.218929 0.284519 0.493086 3.03E-04 0.001929 0.001234
11/10/2016 0.208036 0.00526 0.561311 0.001231 0.208669 0.015492
11/11/2016 0.357469 0.164569 0.476921 0.000373 0.00011 0.000557
11/14/2016 0.415901 0.000955 0.39534 5.88E-04 0.186748 0.000469
11/15/2016 0.399177 0.000322 0.359409 0.000574 2.39E-01 0.001723
11/16/2016 0.364839 0.001391 0.448022 0.000312 0.18509 0.000345
11/17/2016 0.373501 0.129187 0.488451 0.004921 0.003925 1.47E-05
11/18/2016 0.003148 0.000875 0.567393 2.23E-05 0.428151 0.00041
11/21/2016 0.4275 2.44E-01 0.326218 0.001412 1.05E-06 0.000618
11/22/2016 0.365697 3.36E-05 0.509093 0.121698 0.003013 0.000466
11/23/2016 0.138282 0.01719 0.558242 0.281726 0.004082 0.000479
11/25/2016 0.712818 0.002769 0.15288 0.001689 0.129816 2.88E-05
11/28/2016 0.359373 1.64E-06 0.518844 0.00068 0.119735 0.001368
11/29/2016 0.318095 0.000422 0.52195 0.071618 0.08755 0.000364
11/30/2016 0.470078 9.62E-05 0.382472 0.145693 0.001421 0.000239
12/1/2016 0.190099 0.314468 0.491785 0.000206 0.002106 0.001337
12/2/2016 0.289824 0.000183 0.39211 0.000926 0.316426 0.000532
12/5/2016 0.479627 0.000239 0.447447 0.068043 9.88E-05 0.004545
12/6/2016 0.604126 2.96E-05 0.33755 0.052564 0.003164 0.002567
12/7/2016 0.535025 0.000168 0.402311 0.002227 0.059699 0.00057
12/8/2016 0.570454 0.000508 0.365418 0.058423 1.58E-03 0.003619
12/9/2016 0.664118 0.000223 0.25957 0.002238 0.00272 0.07113
12/12/2016 0.407638 0.000388 0.480867 0.002489 3.52E-05 0.108583
12/13/2016 0.43702 0.002334 0.480622 0.001631 0.077833 0.00056
12/14/2016 0.364278 0.000158 0.518391 0.108715 0.00814 3.17E-04
12/15/2016 0.548633 0.002657 0.334186 0.110961 0.000814 0.002749
12/16/2016 0.470989 0.001273 0.405941 0.000574 0.119837 0.001386
12/19/2016 0.368244 0.001991 0.46852 0.159062 0.001839 0.000344
12/20/2016 0.000153 0.002061 0.549225 0.201672 0.246119 0.00077
12/21/2016 0.000128 0.138683 0.517013 0.245318 0.098396 0.000463
12/22/2016 0.00057 0.00109 0.521165 0.001764 0.473188 0.002223
12/23/2016 0.729611 0.00518 0.001652 0.177446 0.085853 0.000258
12/27/2016 0.463637 3.82E-03 0.419095 0.001195 0.109711 0.00254
12/28/2016 0.114499 0.177079 0.536517 2.71E-06 1.71E-01 1.06E-03
12/29/2016 0.356338 0.244115 0.398773 0.000181 0.000186 0.000407
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Applying this formula, the trend of daily profit/loss is assessed as shown in Figure 1.
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Figure 1. Daily profit and loss

6. Conclusions
The present study tried to examine the performance of Shannon Renyi entropy in portfolio
analysis. A single-objective function, with penalty function approach, based on entropy-mean-
semi variance models, were developed where for performance some simulation and PSO
algorithms were employed.

We presented a model in which each investor due to his measure of risk, can choose a α

in Renyi entropy and then concluded that despite the previous researches, we don’t have to
determine the measure of risk using other subsidiary tools beside a Shannon entropy, but we
can have only a Renyi entropy and change the measure of Risk only by changing the α. In other
words, one who choose the model Renyi(α> 1)-Mean-Semi variance for selecting his portfolio
is risk-prone person and vice versa a person who choose the model Renyi(α< 1)-Mean-Semi
variance is considered as risk-averse.
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