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1. Introduction
One of the most studied dynamical systems is a subshift of finite type (SFT). An SFT is a system
whose set of forbidden blocks is finite [5]. Equivalently, an SFT X is a subshift whose any
block of length greater than a certain number M is synchronizing; that is, if m is any block
with |m| ≥ M and if v1m and mv2 are both blocks of X , then v1mv2 is a block of X . If an
irreducible system has at least one synchronizing block, then it is called a synchronized system
and examples are sofics: factors of SFT’s. Synchronized systems has attracted much attention [1]
and extension of them has been of interest as well; notably half synchronized systems which are
systems having half synchronizing blocks. In fact, if for a left transitive ray (not just a block
as above) such as rm ∈ X− = {. . . x−1x0 : x = . . . x−1x0x1x2 . . . ∈ X } and mv any block in X , one has
again rmv ∈ X , then m is called half synchronizing [2]. Clearly, any synchronized system is half
synchronized. Dyke subshifts and certain β-shifts are non-synchronized but half synchronized
systems [2].

http://doi.org/10.26713/cma.v11i3.883 
https://orcid.org/0000-0002-3129-6145
https://orcid.org/0000-0003-3646-0458


416 Balanced Shifts: D. A. Dastjerdi and M. Shahamat

Balanced blocks was first introduced for Dyke systems [6]. We will extend them to some
certain subshifts and we will show that for these systems, each block is a half synchronizing
block and any subshift with a balanced generator, that is a generator consisting of balanced
blocks, is mixing. If subshift X has a balanced generator, then X is a synchronized system if
and only if X is a full shift.

2. Background and definitions
This section is devoted to the required basic definitions. The notations has been taken from [5]
and [2] for the relevant concepts.

First we present some elementary concept from [5]. Let A be an alphabet, that is a non-
empty finite set of symbols. The full A -shift denoted by A Z, is the collection of all bi-infinite
sequences of symbols in A . Equip A with discrete topology and A Z with product topology.
A block over A is a finite sequence of symbols from A . If x is a point in A Z and i ≤ j, then
we will denote a block of length j− i+1 by x[i, j] = xixi+1. . . x j . If n ≥ 1, then un denotes the
concatenation of n copies of u, and put u0 = ε where ε is the empty block. The shift map σ on
the full shift A Z maps a point x to the point y=σ(x) whose i-th coordinate is yi = xi+1. By our
topology, σ is a homeomorphism. For a full shift A Z, define XF to be the subset of sequences
in A Z not containing any block from a set of blocks F . A shift space or a subshift is a subset
X of a full shift A Z such that X = XF for some collection F called the forbidden blocks. The
complement of F is the set of admissible blocks or just blocks in X . A shift space X is called a
shift of finite type (SFT) if for some finite F , X = XF . A SFT is M-step if it can be described by
a collection of forbidden blocks all of which have length M+1. A shift of sofic is the image of an
SFT by a factor code (an onto sliding block code). Every SFT is sofic [5, Theorem 3.1.5], but the
converse is not true.

Let Wn(X ) denote the set of all admissible n-blocks. The language of X is the collection
W(X )=∪nWn(X ). A shift space X is irreducible if for every ordered pair of blocks u,v ∈W(X )
there is a block w ∈W(X ) so that uwv ∈W(X ). It is mixing if for every ordered pair u,v ∈W(X ),
there is an N ∈N such that for each n ≥ N there is a block w ∈Wn(X ) such that uwv ∈W(X ).

Let G be a graph with edge set E = E (G) and the set of vertices V =V (G). The edge shift
XG is the shift space over the alphabet A = E defined by

XG = {
ξ= (ξi)i∈Z ∈ E Z : t(ξi)= i(ξi+1)

}
.

Each edge e initiates at a vertex denoted by i(e) and terminates at a vertex t(e).
A labeled graph is a pair G = (G,L ), where G is a graph with edge set E , and the labeling

L : E (G)→A assigns to each edge e of G a label L (e) from the finite alphabet A . For a path
π=π0 . . .πk, L (π)=L (π0) . . .L (πk) is the label of π. By πu we mean a path labeled u.

Let L∞(ξ) be the sequence of bi-infinite labels of a bi-infinite path ξ in G and set

XG := {L∞(ξ) : ξ ∈ XG}=L∞(XG).

We say G is a presentation or cover of X = XG . In particular, X is sofic if and only if X = XG for
a finite graph G [5, Proposition 3.2.10].
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In this part we bring some concepts from [2]. Let X be a subshift and x ∈ X . Then,
x+ = (xi)i∈Z+ (resp. x− = (xi)i≤0) is called right (resp. left) infinite X -ray. Let X+ = {x+ : x ∈ X }.
For a left infinite X -ray, say x−, its follower set is w+(x−) = {x+ ∈ X+ : x−x+ ∈ X } and for
m ∈W(X ) its follower set is w+(m)= {x+ ∈ X+ : mx+ ∈ X+}. Analogously, we define predecessor
sets w−(x+)= {x− ∈ X− : x−x+ ∈ X } and w−(m)= {x− ∈ X− : x−m ∈ X−}. Consider the collection of
all follower sets w+(x−) as the set of vertices of a graph. There is an edge from I1 to I2 labeled a
if and only if there is an X -ray x− such that x−a is an X-ray and I1 = w+(x−), I2 = w+(x−a). This
labeled graph is called the Krieger graph for X . A block m ∈W(X ) is synchronizing if whenever
um and mv are in W(X ), we have umv ∈W(X ). An irreducible shift space X is synchronized
system if it has a synchronizing block. A block m ∈ W(X ) is half synchronizing if there is a
left transitive point x ∈ X such that x[−|m|+1,0] = m and w+(x(−∞,0]) = w+(m) which is called
the magic vertex in the Krieger graph. If X is a half synchronized system and m any half
synchronizing block, the irreducible component of the Krieger graph containing the vertex
w+(m) is denoted by X+

0 and is called the right Fischer cover of X . The left Fischer cover is
defined similarly. We only use right Fischer cover and we call it just Fischer cover.

Let X be a shift space. The entropy of X is defined by

h(X )= lim
n→∞

1
n

log |Wn(X )| .
A shift space that is the closure of the set of sequences obtained by freely concatenating the

blocks in a list of countable blocks, called the set of generators, is a coded system [5].

3. Balanced Generator
Dyke system S2n is a well-known non-synchronized but half synchronized system. Its alphabet
A consists of 2n brackets; for instance A = {(, ), [, ]} for S4. A point x ∈A Z is a point in S2n if
and only if any subblock of x, obeys the standard bracket rules [2]. In a Dyke system, a block
is called balanced if the delimiters appear in a “balanced” form which we will elaborate this
notion by extending the balanced blocks to other subshifts.

Definition 3.1. Let X be a shift space. A block u ∈W(X ) is called balanced whenever

(i) For all x ∈ X and i ∈Z, x(−∞,i)ux[i,+∞) ∈ X .

(ii) If x ∈ X and u = x[i, j], then x(−∞,i)x( j,+∞) ∈ X .

Let X be a coded system generated by a set G whose all elements are balanced. Then, G is
called a balanced generator and X is called a balanced shift.

The set of all balanced blocks for X , including the empty block ε, will be denoted by BW(X ).

Example 3.2. (i) In the full shift A Z, G =A is a balanced generator for A Z.

(ii) The set of all balanced blocks in the Dyke system S4 is a balanced generator for S4. In
fact, if X is a subshift of S4 such that (), [ ] are two balanced blocks for X , then X = S4.

Communications in Mathematics and Applications, Vol. 11, No. 1, pp. 415–424, 2020



418 Balanced Shifts: D. A. Dastjerdi and M. Shahamat

Let u := u1u2 . . .ul , v := v1v2 . . .vk be two balanced blocks for the subshift X . We define
u./ v to be

u./ v = {v1 . . .viuvi+1 . . .vk : 1≤ i < k}∪ {uv,vu},

and we say that u is tied with v. Use the convention that if |v| = 1, then u./ v = {uv,vu}. For
instance in S4 let u = () and v = [ ]. Then, u./ v = {()[ ], [()], [ ]()}.

Let X be a subshift over A . Suppose C0 ⊆BW(X ) and set

C1 := ⋃
u,v∈C0

u./ v, C2 := ⋃
u,v∈C0∪C1

u./ v, . . . , Cn := ⋃
u,v∈C0∪...∪Cn−1

u./ v, . . . . (1)

It is easy to see that all elements of C := ∪i∈N∪{0}Ci are balanced blocks for the subshift
Z := 〈C 〉C0 where 〈C 〉C0 presents the set of all concatenations of the elements of C . We call C0 a
balanced constructor for Z.

Example 3.3. (i) C S4
0 = {(), [ ]} is a balanced constructor for S4.

(ii) C0 may have infinitely many elements. For instance, let Z be a balanced shift over
{(, ), [, ], {, }, 1} with

C0 := {(), [ ]}∪{
vn = a1nb : a = {, b =}, n ∈N}

as its balanced constructor. This Z is not conjugate to any S2n. This is because, it has 7
fixed points while any S2n has 2n fixed points.

(iii) Any Cn in (1) is a constructor for a balanced subsystem of the associated balanced shift.

Definition 3.4. Let X be a shift space. A block u ∈ W(X ) is called right balanced (resp. left
balanced) whenever for each x ∈ X , ux+ ∈ X+ (resp. x−u ∈ X−) where x+ = x(0,+∞) (resp.
x− = x(−∞,0]).

So u is right balanced (resp. left balanced) if and only if w+(u)= X+ (resp. w−(u)= X−).
Let X be a coded system generated by G. If for all u ∈G, u is a right (resp. left) balanced

block, then G is called the right balanced (resp. left balanced) generator and X is called a right
balanced shift (resp. left balanced shift).

The balanced system in the part (ii) of Example 3.3, unlike Dyke systems, has characters
which are neither right nor left balanced. Here, 1 is not right nor left balanced; for 1] and [1 are
not allowed.

Proposition 3.5. A balanced block is both right and left balanced.

The converse of the above proposition is not necessarily true. For instance, for the even shift
a sofic shift on A = {0,1} with F = {102n+11 : n ∈N∪ {0}}, the block 0n is right and left balanced
but 02n+1 is not balanced. Also, no other right balanced block exist which means that even shift
does not have right balanced generator.

Lemma 3.6. Let X be a subshift. If u = a0 · · ·ak−1 is a right balanced block for X , then all
blocks in

{ai · · ·ak−1 : 0≤ i < k}∪ {un : n ≥ 1}
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are right balanced blocks. In particular, if X has a right balanced block, then for any N ∈N there
is a right balanced block v with |v| = N .

Proposition 3.7. Any edge shift with a right balanced block is a full shift.

Proof. Let u be a right balanced block for an edge shift XG . Then, there is only one path πu

in G labeled u. But uu ∈W(XG) and so πu must be a cycle. Set I := i(πu) = t(πu) and let J be
any other vertex of G. Let πv be a path with i(πv)= J and t(πv)= I . Since XG is an edge shift,
πv is unique, that is, other paths between these two vertices must have different labels. Since
u is right balanced, uv ∈W(XG) and so i(πv) = I or V (G) = {I} which means XG represents a
full shift.

This proposition can be used to show that having a right balanced block is not a property
preserved by conjugacy. For instance, the golden shift, that is the shift X{11}, has 0n as its right
balanced block for n ∈N. Also, the golden shift as an SFT is conjugate to an edge shift say XH

and h(X{11})= h(XH)= log 1+p5
2 . So the golden shift as well as its edge shift are not conjugate to

any full shift. Now, Proposition 3.7 shows that XH (conjugate to X{11}) does not have any right
balanced block.

The point in Proposition 3.7 is that u is both right balanced and synchronizing. In fact,
more restrictions arise if u is balanced and synchronizing (see Proposition 3.11). Here, we give
an example of a synchronized system which is not a full shift and has a block which is both
synchronized and right balanced.

Example 3.8. Add a new symbol ∗ to the set of four delimiters of S4. Let X be the subshift
consisting of all bi-infinite sequences of these five symbols such that any finite subblock which
does not contain a ∗ is a block in S4 [2]. Then, ∗ is both right balanced and synchronizing.

In full shifts any block is synchronizing. A similar terminology will be used for half
synchronizing.

Definition 3.9. The shift space X is called full half whenever each block in W(X ) is a half
synchronizing block.

Dyke system and β-shifts are full half [2, Example 0.10]. (See [4] for the definition of
β-shifts).

Proposition 3.10. Every shift space with a right balanced generator G is a full half.

Proof. Pick a ∈ W(X ) and let G∗ = {v1,v2, . . .} be the set of all finite concatenation of G. Set
x− := ·· ·vlvl−1 . . .v2v1a. Note that x− is left transitive and consider ay+ ∈ X+. Since each vi

is right balanced, so v1ay+ ∈ X+ and consequently v2v1ay+ ∈ X+. Hence y+ ∈ w+(x−) and so
w+(x−)= w+(a). This means a is a half synchronizing block for X and as a result X is a full half
system.
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Note that any edge shift XG is full half and if XG is not a full shift, by Proposition 3.7 XG

cannot have a right balanced block. This shows that the converse of the above proposition is not
necessarily true.

Proposition 3.11. Every synchronized system X with a balanced synchronizing block u, is a
full shift.

Proof. Let a,b ∈W(X ). Then, au,ub ∈W(X ) and so aub ∈W(X ). Since u is a balanced block, so
ab ∈W(X ). Thus X is a full shift.

Corollary 3.12. Let G be a balanced generator for X . Then, X is a synchronized system if and
only if X is the full shift.

Proof. Let m be a synchronizing block for X . Choose {u1, . . . ,un}⊆G, such that m ⊆ u := u1 . . .un.
This u is a balanced synchronizing block. Thus by Proposition 3.11, X is a full shift.

By applying Corollary 3.12, one can give examples of half synchronized but not synchronized
systems. Clearly, generator of such examples must have infinitely many elements; because, for
any system with finite generator is SFT and in fact by Proposition 3.11, must be a full shift.

The conclusion of Corollary 3.12 is not true when one is dealing with right balanced
generators.

Example 3.13. Let X be a subshift of S4 generated by

G = {u ∈W(S4) : u is a right balanced block for S4 and [ 6∈ u} .

Then, ] is a synchronizing block for X and G is a right balanced generator for X . This shows
that the hypothesis of Corollary 3.12 cannot be weakened to right balanced generator.

Proposition 3.14. Any subshift with a balanced generator is mixing.

Proof. Let X be a subshift with a balanced generator G and let u,v ∈ W(X ). Then, a finite
concatenation of elements of G such as u′ and v′ exist where u ⊆ u′ and v ⊆ v′. Write u′ and
v′ as u1uu2 and v1vv2, respectively. Let |u2v1| = N . Now, let n ≥ N and w ∈ W(X ) such that
|w| = n−N . Since uu2wv1v ∈W(X ) and |u2wv1| = n, so X is mixing.

3.1 Components of the Krieger graphs of balanced shifts
Whenever the Fischer cover exists, it is useful for visualizing some dynamics of a subshift and
always exists for a half synchronized system [2]. For depicting the Fischer cover of a balanced
shift, it is very helpful to start from w+(u∞) where u is a right balanced block. Then, for any
right balanced block v, w+(u∞) = w+(u∞v) = X+ and in particular, w+(u∞) will be a magic
vertex and so a vertex in the Fischer cover. Below we will give an example of a balanced shift,
starting at some w+(x−) and not of the above form which ends up to a cover of the system which
is not Fischer.

Due to the popularity of Dyke systems, we have shown the Fischer cover of S4 in Figure 1
and such covers for other S2n ’s has the same pattern. For S4, we start at w+(u∞) where u =) is
a right balanced for S4.
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Figure 1. The Fischer cover (S4)+0 . If J = v 6= ε = w+()∞), then v is left balanced and J is the initial
and terminal of 3 cycles {π[ ], π(), π][} or {π[ ], π(), π)(} .

Let X be a subshift. The subgraph H of the Krieger graph X is called an irreducible
component of the Krieger graph X , whenever H is an irreducible and if H′ is any irreducible
subgraph of the Krieger graph X such that H is a subgraph of H′, then H = H′ [2]. An irreducible
component of the Krieger is called a component cover if it is a cover for the system.

The next example shows that a half synchronized system may have infinitely many
component covers.

Example 3.15. Let S4 be the Dyke system and H0 the irreducible component cover in the
Krieger graph of S4 containing the vertex I0 := w+([∞) (Figure 2). This is in fact a cover, for it
has all the balanced blocks as labels of some paths. Also, note that u = [ is not right balanced
and so one cannot guarantee that this cover is Fischer. Indeed it is not, for it is easy to see that
there is no path in the Krieger graph of S4 from I0 to I := w+ ()∞) ∈V ((S4)+0 ) and so H0 6= (S4)+0 .

Figure 2. An irreducible component cover of the Krieger graph S4 containing the vertex w+([∞).
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One can do the same routine and find infinitely many such irreducible component covers. In
fact, let Hi be the irreducible component cover in the Krieger graph S4 containing the vertex
I i := w+

(· · · ([i([i). Then, it is not hard to see that if i, j ≥ 1 and i 6= j, then Hi 6= H j .

Next proposition shows that for synchronized systems there is a unique irreducible
component cover in the Krieger graph.

Proposition 3.16. Let X be a synchronized system and let H be a cover for X which is an
irreducible component in the Krieger graph of X . Then, H = X+

0 .

Proof. Let m be a synchronizing block of X . Since H is a cover for X and m ∈W(X ), so there
is a finite path πm in H labeled m. Thus there is y ∈ X such that w+(y−) = i(πm) ∈ V (H) and
so w+(y−m)= t(πm) ∈V (H). Also, m is a synchronizing block of X , so there is x ∈ X such that
x[−|m|+1,0] = m and w+(x−)= w+(m).

But w+(x−) = w+(y−m). Hence H is an irreducible component of the Krieger graph X
containing w+(m) and so H = X+

0 [2, p. 146].

3.2 Gurevic entropy
Let H = (V ,E ) be a connected graph. For each pair of vertices I, J ∈V , let rn(I, J) denote the
number of paths of length n starting at I and terminating at J . Then,

h(H)= limsup
n→∞

1
n

log rn(I, J)

is independent of I, J , and it is called the Gurevic entropy of H [7].
For any synchronized system X , the synchronized entropy hsyn of X is defined as

hsyn(X )= limsup
n

1
n

log(cardinal {a ∈Wn(X ) : mam ∈W(X )}) , (2)

where m ∈W(X ) is an arbitrary synchronizing block [8].
Let m be a half synchronizing block for X . Fix m and x provided by the definition of half

synchronizing. Notice that x− terminates at m and set

h(m, X ) := limsup
n→∞

1
n

log |{a ∈Wn(X ) : w+(x−am)= w+(m)}| . (3)

Proposition 3.17. Let X be a right balanced shift and fix m and x as in (3). Then,

h(m, X )= limsup
n→∞

1
n

log |{v ∈Wn(X ) : v is a right balanced block}| . (4)

Proof. Let G be a right balanced generator for X and choose {u1, . . . ,un} ⊆ G such that
m ⊆ u1 · · ·un. So there are a,b ∈ W(X ) such that amb = u1 · · ·un. Then, by Lemma 3.6, mb
is a right balanced block. Since m is half synchronizing, mb is half synchronizing as well. Set

t := limsup
n→∞

1
n

log |{v ∈Wn(X ) : v is a right balanced}|
and let

v0 ∈ {a ∈Wn(X ) : w+(x−am)= w+(m)} .

Communications in Mathematics and Applications, Vol. 11, No. 1, pp. 415–424, 2020



Balanced Shifts: D. A. Dastjerdi and M. Shahamat 423

This implies mv0m = x[−|mv0m|+1,0] and w+(x−) = w+(m) where x− = x−v0m. By definition of a
right balanced block, for any y+ ∈ X+, mby+ ∈ X+. Hence x−by+ ∈ X and so v0mby+ ∈ X+. This
means that v0mb ∈Wn+|m|+|b|(X ) is right balanced block. Thus

v0mb ∈ {
v ∈Wn+|m|+|b|(X ) : v is a right balanced block

}
and so

h(m, X )≤ limsup
1
n

log
∣∣{v ∈Wn+|m|+|b|(X ) : v is a right balanced block

}∣∣= t.

Conversely, let v′ ∈ Wn(X ) be right balanced. Similar to the proof of Proposition 3.10,
z− = ·· ·v2v1mbv′m is left transitive and w+(z−)= w+(m). Also, w+(x−bv′m)= w+(m). Hence

bv′ ∈ {v ∈Wn+|b|(X ) : w+(x−am)= w+(m)}.

Thus t ≤ h(m, X ) and we are done.

The right statement in (4) is independent of m and so is the left and comparing (2),
it is plausible to denote it by hhsyn(X ). Recall that for the synchronized systems, we have
h(X+

0 )= hsyn(X ) [3]. Similarly, we have:

Corollary 3.18. Let X be a right balanced shift. Then, h(X+
0 )= hhsyn(X ).

Proof. Let u be a right balanced block and note that then w+(u∞) ∈V (X+
0 ). Let (RB)n(X ) denote

the set of right balanced blocks of length n. Set

Cn := {L (C) : C is a cycle in X+
0 starting at w+(u∞), |C| = n}.

By Proposition 3.17, to show that h(X+
0 )= hhsyn(X ), it is enough to prove that (RB)n(X )=Cn.

But v ∈ Wn(X ) is a right balanced if and only if w+(u∞) = w+(u∞v) and this equality is
satisfied if and only if there is a cycle in X+

0 starting at w+(u∞) labeled v and |C| = n.

A rough estimate for hhsyn is:

Example 3.19. hhsyn(S4)≥ 3log2
2 .

Proof. Let RW2n and BW2n be the set of right balanced and balanced blocks of length 2n,
respectively. Then, |RW2n| > |BW2n| and by [6, Lemma 3.6],

|BW2n| =
(2n

n
)
2n

n+1
.

Thus

hhsyn(S4)≥ limsup
1

2n
log

(2n
n

)
2n

n+1
= log8

2
.

4. Conclusion
The well known Dyke system is just a typical example of a subshift which is half synchronized
but not synchronized. Here, by some appropriate conventions, it was shown that a Dyke system
is actually a member of a large family of subshifts sharing some interesting common properties;
in particular, giving a big class of half synchronized but not synchronized systems. All results
achieved are due to the fact that how freely admissible words sit inside the points of subshift.
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