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Abstract. In the paper, we prove Jensen’s inequality for Jackson Norlund integrals, and by using
Jensen’s inequality, Hardy type inequalities with general kernels as well as choosing special kernels
are proved. In seek of applications to these inequalities we give Hilbert-Hardy inequality and Polya-
Knop type inequalities.
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1. Introduction

The progress of the Hardy inequality for both discrete and continuous cases during the period
1906-1928 has its own prehistory. Mathematicians other than G.H. Hardy, such as E. Landau,
G. Pélya, I. Schur, and M. Riesz have been contributed in prehistory [8-10]. There is vast area of
research to investigate the Hardy type inequalities, its applications, extensions, generalizations
and variants [[1,3,/11,/14].
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In the theory of time scales, [5] authors gave the following variant of Hardy inequality.

Let 11,15 be two time scales and ® be a convex function, then

1
f n(x)q)(— f Mx, y)f (y)Ay)Ax = f EO(f(y)Ay
I A(x) I Iy
holds, where A, A, f, ¢ are defind in [5].
Further g-analogs of Hardy-type inequalities are given in [3]], one of which is as follows:

Let 0 <r, p <oo, then the following inequality hold:

r % o0 1%
(f (u(x)f v(t)gl(t)dqt) dqx) < C(f fp(x)dqx) .
0 0 0

It is noted that Hilger time scales theory [4] which unifies continuous and discrete calculus could
not cover Hahn quantum calculus [12]. In order to overcome this difficulty Hahn introduce q,w
difference operator denoted by D ,, [2], where g € (0,1) and w > 0 are fixed. It combines the two
most well known difference operators namely, the Jackson g-difference derivative D, [7], where
q €(0,1); and the forward difference A, [7], where w > 0. In this paper we prove Hardy-type
inequalities for Jackson-Norlund integrals (being anti-derivative of Hahn difference operator)
which generalizes Jackson-integral and Norlund sum (being anti-derivative of g-difference
operator and forward-difference operator).

2. Preliminaries

[3] Jackson Norlund Integration

Let I =[a,b] be a closed interval of R such that wg,a,b €I and for g;:I — R, we define the q,w
integral of g1 from a to b by

b b a
f g1(t)d g (1) lzf g1 g uw(®)— | g1()dg (D),
a wo

wo
where
X o0
f g1()d g0 =x(1-q@)—w) ) q"g10xq"™ + wlklyw),
00 k=0
1— k
[klgw= M, and the series converges at x =a and x = b.

1-¢q

Properties of Jackson Norlund Integration
(a) Let g1,g2:11 — R be q, w integrable on I1,c € R and a,b,c € I, then

. f 21(0)d g0t = 0;
b b
. f cg1(O)dgul®) = ¢ f g1 w(b);

b b
° f gl(t)dq,w(t):_f gl(t)dq,w(t);
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b c b
¢ [ 810 [ g10dqut0+ [ g10dqutey
b b b
s [ @0+ g0 dgu® = | g10d000 [ ga0dquto)
a a a
(b) Every Riemannian Integrable function g on I; is q,w-Integrable on I;.

(c) If g1,89:11 — R are continuous at w, then

b b
fgl(t)Dq,ng(t)dq,w(t):gl(t)g2(t)|2_f D g,81(0)g2(qt +w)d g,1(2).

[13] Convex function
Let I be an interval in R. Then F : I — R is said to be convex if for all x,y € I and all a € [0, 1],
Fax+(1—-a)y)=aF(x)+(1-a)F(y) holds.

Throughout the paper, we assume ¢ € 10,1[, w € ]0,00[, wo = 1w

and I to be an interval in

R containing wy.

3. Jensen’s Inequality

Theorem 3.1. Let I1 =[a,b], Is =[c,d], where I1,Is < R are two intervals. Assume ¥ € C(I9,R)
is convex. Moreover, let hy1 : I1 — R be q,w-integrable such that fab |h1(®)ld () > 0 and
g1:12 — R is q,w-integrable such that g1(I3) €14, then

v S Pa®1g 10 qu(®) _ J3 h1DI¥(g1)dg,u(2)
LoniOldgw® ) [P 1RiOldgw®)
Proof. Since YV is convex, as in [[14]] for x € (¢,d) there exist a, € R, such that
Y(s)—-VY(x)=a(s—x) 3.2)
holds for all s€ (c,d). Let
L @2 Odgu©)
S 1h1(®)ld g u(2)

(3.1) can be rearranged as

(3.1)

J21h1®lg1(t)d g, (2)
IR

b b
f B (g1(0)d g.u(t) f |h1<t)|dq,w(t>(t)\11(

b b
- f (O (g 1(E)d g 10 (0) — f (O () (D)
b
= [ IOI¥@10) - ¥@Ndgu®) by using B2
b
> a, f B O(g1(0) - xld g 0 (®)

:ax

b b
[ |h1(D)1g1(t)d ¢, (2) —xf Ihl(t)dq,w(t)] (substitute the value of x)
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b 21RO 0®)) [
= ay f |h1(t)|g1(t)dq,w<t)—(f“ l', 1DI(0dy, ) f Ihl(t)ldq,w(t)]
a fa |h1(t)|dq,w(t) a

b b
=0y (f |h1(t)|g1(t)dq,w(t)—f |h1(t)lg1(t)dq,w(t))
= ax(o) =0. L]

In the sequel, we use the following notations: I1 =[a,b] and I3 =[c,d], ap = aqk’ +wlk'lqw,
by =bg* +wlk g w, ci = cq" +wlklgw, dr = dg" + wiklyw, (@(l-g)-w)=a, b1-q)-w)=b,
(cl-q@)-w)=c,(d1-q)—w)=d

3.1 Inequalities with General Kernels

Theorem 3.2. Let
I1=la,bland Is =[c,d] be two interval on R, (3.3)
A:Iy x Iy — R is such that Ax) = [* Ax,y)dg.(y) <o, x € I, (3.4)
n:11— R is such that &(y) = [0 252194, (x) < oo, y € L. (3.5)

If Y € C(I11,R) is convex,where 11 c R is an interval, then

b 1 rd d
fﬂ(x)‘lf(@f A(x,y)g1(y)dq,w(y))q,w(x)5f Y (g1(¥))dgw(y) (3.6)

holds for all q,w-integrable g1 :1s — R such that g1(I2) c I;.

Proof. Consider the left hand side of (3.6) and use Jensen’s inequality (3.1)

b bn(x) d
fa n(x)‘P( o f Als, y)gl(y)dqw(y)) dg () < f m( f A(x,ymgl(y))dq,w(y))dq,w(x)

apply definition of Jackson Norlund Integrals

1 d c
fn(x)( G ){ A, 9)W(g1(0)d g () — A(x,yﬂlf(gl(y))dq,w(y)})dq,w(x)

wo

1 ~ o0
b, >{d2 Mbysda) ¥lgrdi) =23 q" A by, cx) V(f ‘Ck)})

k=0

Zq nby)

o0 k/
-ay. q n(a,)
E'=0

1 - o0 o0
dY q"Alay,dr) P(gi(dr)—E Y. q* A(ay,cr) W(f (ch)
Aay) | i

k=0
switch the sums to get

Lo [BY FWb,dont,) @Y ¢ May,dpn,)
:quk{ kgq x> QRN akéoq ap,ar)a, }‘I’(gl(dk))

A(bkl) A(ak,)

o [BY ¢¥Ab. b)) @S ¢" Ma,,cp)nia,)
—zy qk{ kéoq x»CRINO, akéoq ap,Crinlay, }‘I’(gl(ck))
= A(bk/) A(ak,)
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L8 A, yIN)d g ()
= f { f A }(‘P(gl(y))dq,w(y)

d
_ f E(P(g1(0))dg.00(y).

Corollary 3.3. Assume (3.3), (3.4) and (3.5 - If p>1, then

b

holds for all q,w-mtegrable g1:1Is—R.

Proof. Use ¥(x)=xP in Theorem

Corollary 3.4. Assume (3.3), (3.4) and (3.5). If p > 1, then

b . d
f n(x)e%fc A(x,y)lngg(y)dq,w(y)dqyw(y) S[ f(y)(gz(y))pdq,w(y)
a c

holds for all q,w-integrable g : 15 — (0,00).

Proof. Use W(r)=e" and g1 = ln(g ) in Theorem.
Corollary 3.5. Assume (3.3), (3.4) and (3.5). Then

b L ed d
f e e AN &danig | (y) < f £(g2(y)dg,u(y)
a c

holds for all q,w-integrable g : 15 — (0,00).

Proof. Use p =1 in the above corollary.
Theorem 3.6. Let
O<sa<b<oo,I=I1=1Is=Ia,b] be an interval on R,

b yAlx, y)u(x)

Ii—R, i h that = - d Is.
u:lq + is suc at v(y) Tt )M qwx)<oo, yely

a (q
If ¥ € C(I,R) is convex, then

dgw(y)

b dq w(x) b
f ()P (Apg1)(a) 2™ f V()P (g1(y))
a (gx+w) a

holds for all q,w-integrable g1:1 — R such that g1(I) <1, where

Arg)) = 7= f A, 7)1 d g0 ().

Proof. Replace n(x) by u®)
gx+w
An application of Theorem [3.2] completes the proof.
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Corollary 3.7. Assume (3.7) and (3.8). If p > 1, then

b o . 0.
f u(0)(Arg 1)) —2 ) Sf v(y)(g1(y)P == W
a (gx+w) ~ Jao

holds for all q,w-integrable g1:1 — R such that g:(I)c 1.

Proof. Use ¥(r)=r? in the Theorem O

3.2 Inequalities with Special Kernels
Corollary 3.8. Assume (3.7) and with the kernel A such that

Mx,y)=0 ifa<y<(gx+w)<b. (3.9)
If ¥ € C(I,R) is convex, then
dgw(y)

b dq w (%) b
f (@) P(Apg1)(x) < f V()P (g1(y))
a QX'+U) a

where

b
A(JC) = ‘/(. A(xyy)dq,w(y)’

gx+w)

Y M, y)u(x)
o (qx+w)A(x) dg,

1 b
(Arg1)(x)= —— A, y)g1(¥)d g (¥).
k81X A Jgzsw X, ¥)81\Y)aq Yy
Proof. Use (3.9) in Theorem 3.6 O

Theorem 3.9. Assume 3.7) and n: I — R is such that

v(y)=y w(%),

n(x)
f(q w0 -a dgw(x)<oo, yel.

If Y € C(I,R) is convex, then

b N b_
f N(x)¥ (Ag1)(x)) dguw(x) < f S(NP(g1(yNdguw(y)

holds for all q,w-integrable g1:1 — R such that g1(I) <1, where

1

- (qx+w)
e = f 213 ().

Proof. Let A and Apg; be defined as in the statement of Theorem and Theorem

respectively. The statement follows from Theorem [3.2| by using
1 ifasy<gx+w=<bh,
AMa,3) = { v

0 otherwise.

Since in this case we have
gx+w
A(x):f dew(y)=qgx+w-a
a

and thus A, =A and & =¢. O
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3.3 Hardy-Hilbert-type Inequality
Theorem 3.10. Assume with a =0 and b = co. If we define

A()—foo(%ﬁd )
lx—o ity qw\Y

and

00 (2)_71
As(y) = fo Edyul)

then

00 o0 p 00
f <A1<x»1-p( f gl(”dq,wmp) < f As @1y 0(y)
0 0 x+y 0

holds for all q,w-integrable g1:1 — R.,.

Proof. Use n(x) = K1)

and

)7
A,(.’)C, y) = x+y
0 otherwise.

in Corollary [3.3]to obtain

Y P
0o oo (L) p d w o
f (K1 (x))l—p (f (x) dq,wy) qw¥ Sf g(y)(gl(y))pdq,wya
0 0 X 0

ifx=0,y=0,x+y=0,

xX+y

where

[ M, y)n(x)
= [ T e

Sy}
:[ (x’y)dq,wx
0

X

Y

1)
= _fo = dgwx

Yy xt+y
Aa(y)
Yy

. O]

3.4 Polya-Knopp type Inequalities
Corollary 3.11. Assume (3.7) with a =0, b =co. If ¥ € C(I,R) is convex, then

P ¥ [ e w\dowr < [ ([T 100N )
fa e ((qx+w)—afa E1L q,wy) q,wx_fa (fy (qx+w)—a) E1YNCqwly
(3.10)

holds for all q,w-integrable g1:1 — R.

Proof. The statement follows from Theorem O
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Example 3.12. Use Y(x) =x”, p > 1 in (3.10), to get the following inequality
oo 1 (qx+w) p 00 (o0 n(x)d g 1 (x)
f n) f gl(y)dq,w(y)) () < f ( M)g’;(y)dq,w(y»
a a a Yy

(gx+w)—a (gx+w)—a
Example 3.13. Use Y(r)=¢" and g1 = ln(gg) for p =1 in (3.10), to get the following inequality

o (qx+w) o o) d
f n(x)e—wxﬁv)—a Jla 1n(g2(y))dq,w(y)dq’w(x) Sf (f M)gg(y)dq,w(y)-
a a y (gx+w)-a

Remark 3.14. By taking w = 0 or ¢ = 1 in the above inequalities, one can deduce inequalities for
Jackson integrals [7]] or for Norlund sums [6] respectively, which are also new upto knowledge
of authors.
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