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Abstract. A two dimensional discrete time prey-predator model with Holling-Tanner functional
response is considered. The local behavior of all its equilibria are investigated. An optimal control
problem with this model is proposed, which aims to increase the number of the prey density to
prevent the risk of extinction. The Pontryagin’s maximum principle for discrete system is applied to
achieve the optimality. The necessary conditions and the characterization for the optimal solutions
of this system is derived. Finally, we present some numerical simulations to support the theoretical
conclusions.
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1. Introduction
One of the fundamental population models is Lotka-Volterra, which it is introduced in an
autonomous system to explain how the predator and prey population fluctuate. For more
realistic model Holling [8] suggested three types of functional response to depict the predation
among various species. All these types have been extensively considered in many mathematical
models as well as many authors studied in details the dynamical behavior of such systems in
continuous time and discrete time see [3, 6, 8, 10–12, 16]. We also refer to an excellent books
reference are written by Turchin, Murray and Hasting [9, 14, 19]. On the other hand, other
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types of functional response are used in the literature for example Beddington-De Angelis
and Crowley-Martin functional response, [2, 5, 12]. In [18] Tanner investigated a model of
prey-predator system and he gave a rich numerical simulations. His results end in that the
behavior of the two basic models implies to that either a stable prey-predator holds strong
self-limitation or the growth rate of the predator is more than that of its prey. In [15] Rai et
al. studied a prey-predator model in which the Volterra predator-prey interaction term was
modified by Holling-Tanner type II functional response.

Discrete time models are commonly applied to model population, in spite of their apparent
simplicity, they are interesting and exhibiting complex dynamic behavior.

The size population of a single species at generation k+1 is generally formulated by a first
order difference equation xk+1 = f (xk), so that the xk+1 is a function of the k-th generation xk.
We refer the reader to the books see [1,7,20] for general theory of discrete dynamical system
and difference equations.

The continuous two dimensional prey-predator system with Holling-Tanner functional
response is governed by the first-order ODE’s

x1

dt1
= rx1(1− x1)− b1x1 y1

x1 +a
y1

dt1
=−r1 y1 + b2x1 y1

x1 +a

 (1.1)

where the parameters r, r1, b1, a, and b2 are constants. The r and r1 are the growth rate of prey
species, and the rate death of the predator, respectively. The parameters b1, b2 and a represent
the maximum per capita killing rate, the conversion rate of predator and the half-saturation
constant, respectively.

One can reduce the number of parameters by a simple transformation t1 = t
r , x1 = x, and

y1 = r
b1

y. The non-dimensional equations are:

x
dt = x(1− x)− xy

x+a
y

dt =−by+ exy
x+a

 (1.2)

where b = r1
r and e = b2

r . Applying the Euler scheme to system (1.2), we obtain the following
discrete system

xk+1 = xk +hxk(1− xk)− hxk yk

xk +a

yk+1 = yk −hbyk +
hexk yk

xk +a

 (1.3)

In this paper, we will investigate the system (1.3) in case a = 1, and we will also give
conditions for the existence and the local stability of all its equilibira. This model also extend to
an optimal control problem, which aims to increase the number of the prey density to prevent
the risk of extinction. We will use the Pontryagin’s maximum principle for discrete system
to achieve the optimality as well as the necessary conditions and the characterization for
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the optimal solutions of this system will be derived. Finally, a numerical analysis presents to
support the theoretical findings.

2. Stability of Equilibria of the System
In order to get the equilirbia of system (1.3), we have to solve the following algebraic equations:

x = x+hx(1− x)− hxy
x+1

y= y−hby+ hexy
x+1

 (2.1)

After simple calculations we get the following theorem:

Theorem 1. (1) e0 = (0,0), the trivial equilibrium is always exist.

(2) e1 = (1,0), the boundary equilibria is always exist.

(3) e2 = (x∗, y∗)=
(

b
(e−b) ,

e(e−2b)
(e−b)2

)
, the unique positive equilibrium exists when e > 2b.

For studying the local stability of each equilibrium one has to find the Jacobian matrix for
the system (1.3). This is given by

J((x, y))=
1+h−2hx− hy

x+1
−hx
x+1

he
x+1 − hexy

(x+1)2 −bh+ hex
x+1

 .

Thus the characteristic polynomial of J can be written as

F(λ)=λ2 + pλ+ q (2.2)

where p = −trac(J), and q = det(J). The next theorem gives the local stability of e0 as well
as e1.

Theorem 2. (1) For the trivial equilibrium, we have

(i) e0 = (0,0) is never to be sink,
(ii) e0 = (0,0) is saddle point if 0< h < 2

b ,
(iii) e0 = (0,0) is source if 2

b < h,
(iv) e0 = (0,0) is non-hyperbolic point if h = 2

b .

(2) For the boundary equilibrium e1, we have

(i) e1 = (1,0) is sink if h ∈ (
0,min

{
2, 4

2b−e
})

and 2b > e,
(ii) e1 = (1,0) is saddle if h ∈ (

min
{
2, 4

2b−e
}
,max

{
2, 4

2b−e
})

,
(iii) e1 = (1,0) is source if h ∈ (

max
{
2, 4

2b−e
}
,∞)

,
(iv) e1 = (1,0) is non-hyperbolic point if h = 2

b .

Proof. (1)(i): It is easy to check that the Jacobian matrix at e0 is

J(E0)=
[
1+h 0

0 1−bh

]
.
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The roots of the equation (2.2) are λ1 = 1+h and λ2 = 1−bh. So that the |λ1|is always greater
than 1 and |λ2| < 1 if and only if 0< h < 2

b . Therefore, all (i), (ii) and (iii) can be directly obtained.

(2)(i): The inequality

J(E1)=
[

1−h −h
2

0 −bh+ he
2

]
,

then the roots of equation (2.2) are λ1 = 1−h and λ2 = 1−bh+ he
2 , therefore, |λ1| < 1 if and only

if −1 < 1−h < 1 this holds if and only if 0 < h < 2 and |λ2| < 1 if and only if 0 < bh− he
2 <2. iff

0< h < 4
2b−e with 2b > e. From the proof (2)(i), the (ii), (iii) and (iv) can directly be obtained.

In order to investigate the local stability of the unique positive equilibrium e2, we need the
following theorem:

Theorem 3. Let F(λ)=λ2 + pλ+ q. Suppose that F(1)> 0, λ1, λ1 are roots of F(λ)= 0, then

(1) |λ1| < 1 and |λ2| < 1 if and only if F(−1)> 0 and q < 1,

(2) |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1) if and only if F(−1)> 0,

(3) |λ1| > 1 and |λ2| > 1 if and only if F(−1)> 0 and q > 1,

(4) λ1 =−1 and |λ2| 6= 1 if and only if F(−1)= 0 and p 6= 0,2.

The characteristic polynomial of J at e2 is given by F(λ)=λ2 + pλ+ q, where p =−2−h+
bh+2hx+ hy

x+1− hxy
(x+1)2 − hex

x+1 and q = 1−bh+ hex
x+1+h−bh2+ h2ex

x+1 −2hx+2bh2x− 2h2ex2

x+1 − hy
x+1+ bh2 y

(x+1)2 .

The next theorem gives the local stability of the positive equilibrium.

Theorem 4. (i) The positive equilibrium point e2 is sink if the following conditions are hold:

(1) e ∈ I1 ∩ I2,
(2) b, h and e that make the value of M is real and M > 0.

(ii) The positive equilibrium point e2 is saddle point if this condition holds:

(1) e ∈ I1 with b, h and e that make the value of M is real and M < 0.

(iii) The positive equilibrium point e2 is source if one of the following condition holds:

(1) e ∈ I1 ∩ I3 with b, h and e that make the value of M is real and M > 0,
(2) e ∈ I1 ∩ I4 with b, h and e that make the value of M is real and M > 0.

(iv) The positive equilibrium e2 is hyperbolic point if the following conditions are hold:

(1) b, h and e that make the value of M = 0,
(2) b, h and e that make the value of M1 > 0 or M1 < 0 or M1 < 2(e2 − eb) or

M1 > 2(e2 − eb).

where I1 = (2b,∞), I2 = (max{0,E2},E1), I3 = (max{E1,E2},∞), I4 = (0,E2), E1 = 3bh+
p

b2h2+8bh
2h ,

E2= 3bh−
p

b2h2+8bh
2h and M=k1e2+k2e+k3, k1=4+bh2, k2=2hb−4b−3b2h2, k3=−4hb2+2b3h

and M1 = (2+h)e2 + (2b−bh)e+2b2h−hb.
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Proof. For (i)(1), since e ∈ I1 then F(1) > 0 and if e ∈ I2, then by after some simple steps one
can get that q < 1. It is clear that F(−1) > 0 if and only if M > 0 therefore by applying the
last theorem one can get that |λ1| < 1 and |λ2| < 1. Hence, the e2 is sink. From (i) and the last
theorem one can get the (ii), (iii) and (iv).

3. An Optimal Control

This section deals with an optimal control problem to the system (1.3), which is given by

xk+1 = xk +hxk(1− xk)− hxk yk
xk+a

yk+1 = yk −hbyk + hexk yk
xk+a −uk yk

 . (3.1)

Here xk and yk are the state variables. They represent the prey population density, and the
predator population density, respectively. All parameters h, b, a and e are constants as mention
before. The variable uk ≤ M is our control variable, which represents the harvesting amount
and M is the maximum harvesting amount. The aim of this problem is to minimize the number
of predators in order to increase the prey densities at some interval of time. This problem is also
to reduce the risk of extincting of prey population. The existences of such control is guarantee
due to the finite dimensional structure of the problem. We will use quadratic term of control
in the objective functional to penalize the amount of harvesting [13]. Therefore, the objective
functional will be as follows:

J(u)=max
u

T∑
k

c1 yk +
c2

2
u2

k . (3.2)

The optimal control problem is to search for uk which minimizes the objective functional J(u),
over u ∈U , where U is the set of all controls. Here, both c1 and c2 are constants. The extension
version of Pontryagin’s maximum principle for discrete system will be used. So that the adjoint
variables will be introduced, they are commonly called the shadow prices [4], as well as the
Hamiltonian which is defined as follows:

Hk = c1 yk +
c2

2
uk +λ1,k+1

(
xk +hxk(1− xk)− hxk yk

xk +a

)
+λ2,k+1

(
yk −hbyk +

hexk yk

xk +a
−uk yk

)
. (3.3)

The necessary conditions for the optimality is given by the following theorem:

Theorem 5. Given an optimal control u∗ with corresponding states solutions x∗, y∗ that
minimizes the J(u), over u ∈U , then there exists adjoint variables λ1 and λ2 satisfy:

λ1,k =λ1,k+1

(
1+h−2hx− hy

x+1

)
+λ2,k+1

(
he

x+1 − hexy
(x+1)2

)
λ2,k =λ2,k = c1 +λ1,k+1

(−hx
x+1

)+λ2,k+1
(−bh+ hex

x+1

)
λ1,T =λ2,T = 0. (Transversality conditions).

 (3.4)
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Furthermore, the characterization of the optimal solution u∗
k will be as:

u∗
k =


0 if λ2,k yk

c2
≤ 0

λ2,k yk
c2

if 0< λ2,k yk
c2

< M

M if M < λ2,k yk
c2

Proof. The Hamiltonian function is given by (3.3), for each k = 1,2, . . . ,T −1, then, by using the
Pontryagin’s maximum principle [13,17]. Hence, the necessary conditions for k = 1,2, . . . ,T −1
are

λ1,k =
∂H

∂xk
=λ1,k+1

(
1+h−2hx− hy

x+1

)
+λ2,k+1

(
he

x+1
− hexy

(x+1)2

)
,

λ2,k =
∂H

∂yk
= c1 +λ1,k+1

−hx
x+1

+λ2,k+1

(
−bh+ hex

x+1

)
and the optimality condition is ∂H

∂xk
= c2uk−λ2,k+1 yk and ∂H

∂xk
= 0 at u∗

k gives the characterization
of the optimal control as

u∗
k =


0 if λ2,k yk

c2
≤ 0

λ2,k yk
c2

if 0< λ2,k yk
c2

< M

M if M < λ2,k yk
c2

4. Numerical Results
This section presents the numerical results that confirms the above theoretical analysis.
At different set of parameters the local stability of the boundary equilibrium and the positive
equilibrium are investigated numerically. For the optimal problem numerical method is used
which is introduced in [13]. It is outlined as the following: First, all parameters should be defined
and an initial control is guessed, namely uin = 0. Secondly, the state system is solved forward
with uin, and an initial conditions x0, y0, thereafter the adjoint system is solved backward with
transversality conditions. The next step we use a convex combination to update the controls
in the previous iteration. Finally, this strategy will be repeated until the values at the last
iteration are very close to the ones at current iterations.

To conform the local stability of the boundary point the following parameters are chosen
x0 = 0.45, y0 = 0.93, h = 0.1, e = 0.1 and b = 0.5 so that the condition (2)(i) in theorem is satisfied.
Figure 1 illustrates the local stability of e1.

For the positive equilibrium we choose the following values x0 = 0.45, y0 = 0.93, h = 0.4,
e = 0.2, and b = 0.065 then e2 = (4815,7682), E1 = 0.6685, E2 = −.4735, M = 0.1119 and
2b = .13 so that I1 = (0,0.6685) and I1 = (0.13,∞). Hence, according to Theorem 4 the positive
equilibrium is locally stable. Figure 2 shows that the local stability of e2. In Figure 3 the
trajectories of the prey population and the predator population are also illustrated as a function
of time.
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Figure 1. This figure illustrates that e1 with all parameters above is local stability according to the
condition (i) in Theorem 1

Figure 2. The plot shows the local stability of e2

Figure 3. Time series of prey species and predator of system (2.1). Parameters are x0 = 0.45, y0 = 0.93,
h = 0.4, e = 0.2 and b = 0.065

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. 197–206, 2018



204 An Optimal Control Policy for A Discrete Model with Holling-Tanner Functional Response: S. Al-Nassir

Figure 4. This plot shows the prey density with control (solid line) and without control (dotted line)

Figure 5. This plot shows the predator density with control (solid line) and without control (dotted line)

Figure 6. This plot shows the control variable as a function of time
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For the optimal control approach we use the following values x0 = 0.52, y(0)= 0.5, h = 0.4,
e = 0.2 and b = 0.065, and Figures 4 and 5 show the effect of the harvesting on the prey
density and the predator density with control and without control respectively. Finally, Figure 6
represents the control variable as a function of time.

5. Conclusions
In this paper a two dimensional discrete time prey-predator model with Holling-Tanner
functional response has been investigated. This model has three equilibrium points. The
trivial equilibrium point and the boundary equilibrium point are always exist, while the unique
positive equilibrium is exists for some values of parameters. An optimal control theory is
applied to the model. The necessary condition for optimality as been founded for linear and
nonlinear objective functionals. The Ponryagins Maximum Principle is applied to determine the
optimal strategy. The aim of this optimal control problem is to minimize the density of predator
population. Finally, a numerical analysis shows and confirms the theoretical results for various
parameters.
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