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1. Introduction
In the existence of the solutions of various problems in the field of mathematics, medicines
engineering and social sciences fixed point theory plays a fundamental role. After the first
publication of Zadeh [13] about fuzzy sets a lot of work has been conducted on the generalizations
of the concept of a fuzzy set. The idea about fuzzy mappings was investigated by Weiss [12] and
Butnariu [2]. Later on Heilpern [4] proved a fixed point theorem for fuzzy mapping which was
the generalization of Nadler’s result [6]. Afterwards in 1967 Goguen [3] generalized the idea of
fuzzy sets in form of another notion of L-fuzzy sets. The concept of fuzzy sets is a special case
of L-fuzzy sets when L = [0,1]. Then, the several results were achieved by various authors for
L-fuzzy mappings [7–9].
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In this paper we obtained fixed point results for L-fuzzy mappings via a rational inequality.
An example is also given which supports the proved result.

2. Preliminaries
Let (X ,d) be a metric space and denote

P(X )= {A : A is a subset of X }

C(X )= {A ∈ 2X : A is nonempty and compact}

CB(X )= {A ∈ 2X : A is nonempty closed and bounded}.

For A,B ∈ CB(X )

d(x, A)= inf
y∈A

d(x, y)

d(A,B)= inf
x∈A, y∈B

d(x, y)

Definition 2.1 ([9]). A partially ordered set (L,¹L) is called :

(i) a lattice, if a∨b ∈ L, a∧b ∈ L, for any a,b ∈ L ;

(ii) a complete lattice, if ∨A ∈ L, and ∧A ∈ L, for any A ⊆ L ;

(iii) distributive if a∨ (b∧ c)= (a∨b)∧ (a∨ c), a∧ (b∨ c)= (a∧b)∨ (a∧ c), for any a,b, c ∈ L.

Definition 2.2 ([9]). Let L be a lattice with top element 1L and bottom element 0L for a,b ∈ L.
Then, b is called a complement of a, if a∨ b = 1L, and a∧ b ∈ 0L. If a ∈ L, has a complement
element then it is unique. It is denoted by a′.

Definition 2.3 ([9]). An L-fuzzy set A on a nonempty set X is a function A : X → L, where L is
complete distributive lattice with 1L and 0L.

Remark 2.4 ([9]). The class of L-fuzzy sets is larger than the class of fuzzy set. An L-fuzzy set
is a fuzzy set if L = [0,1], LX is collection of all L-fuzzy sets in X . The αL-level set of L-fuzzy
set A is denoted and defined as

AαL = {x :αL ¹L A(x)} if αL ∈ L\{0L}

A0L = cl({x : 0L ¹L A(x)}).

Here, cl(B) denotes the closure of the set B.

Definition 2.5 ([9]). Let X be an arbitrary set and Y be a metric space. A mapping T is called
L-fuzzy mapping if T is a mapping from X into LY . An L-fuzzy mapping T is an L-fuzzy subset
on X ×Y with membership function T(x)(y). The function T(x)(y) is the grade of membership of
y in T(x).

Definition 2.6 ([7]). Let (X ,d) be a metric space and A, B be any two nonempty subsets of X .
Then the Hausdorff distance between the subsets A and B is defined as

H(A,B)=max
{

sup
a∈A

d(a,B),sup
b∈B

d(b, A)
}

.
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Definition 2.7 ([7]). Let (X ,d) be a metric space and S,T be L-fuzzy mappings from X into
LX . A point x ∈ X is called as an L-fuzzy fixed point of T if x ∈ [Tx]αLT (x) where αLT (x) ∈ L\{0L}.
The point x is called as common L-fuzzy fixed point of S and T if x ∈ [Sx]αLS (x) ∩ [Tx]αLT (x).

Lemma 2.8 ([7]). Let A and B be nonempty closed and bounded subsets of a metric space (X ,d).
If a ∈ A, then

d(a,B)≤ H(A,B).

Lemma 2.9 ([7]). Let A and B be nonempty closed and bounded subsets of a metric space (X ,d)
and 0< ε ∈R. Then, for a ∈ A, there exists b ∈ B such that

d(a,b)≤ H(A,B)+ε.

3. Main Results
Theorem 3.1. Let S,T → LX be two L-fuzzy mappings and for x ∈ X , there exists αLS (x),αLT (x) ∈
L\{0L} such that [Sx]αLS (x), [Tx]αLT (x) ∈ CB(2X ). If for all x, y ∈ X

H([Sx]αLS (x), [T y]αLT (y))≤αd(x, y)+βd(x, [Sx]αLS (x))+γd(y, [T y]αLT (y))

+
δd(x, [Sx]αLS (x))d(y, [T y]αLT (y))

1+d(x, y)
(3.1)

and

γ+
δd(x, [Sx]αLS (x))

1+d(x, y)
< 1 , β+

δd(y, [T y]αLT (y))

1+d(x, y)
< 1 (3.2)

where α, β, γ and δ are non negative real numbers with α+β+γ+δ< 1. Then, there exists u ∈ X
such that u ∈ [Su]αLS (u) ∩ [Tu]αLT (u).

Proof. We prove this theorem by considering the following three possible cases:

(i) α+β= 0

(ii) α+γ= 0

(iii) α+β 6= 0, α+γ 6= 0

Case I: If α+β = 0. Then for any x ∈ X , there exists αLS (x) ∈ L\{0} such that [Sx]αLS (x) is a
nonempty closed and bounded subset of X . Take y ∈ [Sx]αLS (x)and in the same way z ∈ [T y]αLT (y).
Then by above Lemma 2.8, we have

d(y, [T y]αLT (y))≤ H([Sx]αLS (x), [T y]αLT (y)).

Now by (3.1), we have

d(y, [T y]αLT (y))≤αd(x, y)+βd(x, [Sx]αLS (x))+γd(y, [T y]αLT (y))

+
δd(x, [Sx]αLS (x))d(y, [T y]αLT (y))

1+d(x, y)
using α+β= 0, we have[

1−γ−
δd(x, [Sx]αLS (x))

1+d(x, y)

]
d(y, [T y]αLT (y))≤ 0.
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Then by one of (3.2) yields

d(y, [T y]αLT (y))≤ 0

it follows that

y ∈ [T y]αLT (y).

Again by (3.1), we have

(1−β)d(y, [Sy]αLS (y))≤ γd(y, [T y]αLT (y))+
δd(y, [Sy]αLS (x))d(y, [T y]αLT (y))

1+d(y, y)

(1−β)d(y, [Sy]αLS (y))≤ 0

(1−β)d(y, [Sy]αLS (y))= 0

which implies that

y ∈ [Sy]αLS (y)).

So, we get

y ∈ [Sy]αLS (y) ∩ [T y]αLT (y) .

Case II: If α+γ= 0. Then for any x ∈ X , as in case (i), take y ∈ [Sx]αLS (x) and z ∈ [T y]αLT (y).
Then by above Lemma 2.8, we have

d(z, [Sz]αLT (z))= H([T y]αLT (y), [Sz]αLT (z)) .

Now by (3.1), we have

d(z, [Sz]αLT (z))≤αd(z, y)+βd(z, [Sz]αLS (z))+γd(y, [T y]αLT (y))

+
δd(z, [Sz]αLS (z))d(y, [T y]αLT (y))

1+d(z, y)
using α+γ= 0, we have[

1−β−
δd(y, [T y]αLT (y))

1+d(x, y)

]
d(z, [Sz]αLS (z))≤ 0.

Then one of (3.2) yields

d(z, [Sz]αLS (z))≤ 0

it follows that

z ∈ [Sz]αLS (z).

Again by (3.1), we have

(1−γ)d(z, [Tz]αLT (z))≤βd(z, [Sz]αLS (z))+
δd(z, [Sz]αLS (z))d(z, [Tz]αLT (z))

1+d(z, z)

(1−γ)d(z, [Tz]αLT (z))≤ 0

(1−γ)d(z, [Tz]αLT (z))= 0

which implies that

z ∈ [Tz]αLT (z).
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So, we get that

z ∈ [Sz]αLS (z) ∩ [Tz]αLT (z) .

Case III: Let

max
{(

α+γ
1−β−δ

)
,
(
α+β

1−γ−δ
)}

=λ.

Then by α+γ, α+β 6= 0 and α+β+γ+δ < 1, it follows that 0 < λ < 1. Take xo ∈ X . Then
by hypotheses, there exists αLS (xo) ∈ L\{0L} such that [Sxo]αLS (xo) is a nonempty closed and
bounded subset of X . For convenience, we denote αLS (xo) by αL1 . Let, x1 ∈ [Sxo]αL1

, for this x1

there exists αLT (x1) ∈ L\{0L} such that [Tx1]αLT (x1) ∈ CB(X ). Denote αLT (x1) by αL2 . By above
Lemma 2.9, there exists x2 ∈ [Tx1]αL2

such that

d(x1, x2)≤ H([Sxo]αL1
, [Tx1]αL2

)+λ(1−γ−δ). (3.3)

By the same argument, we can find αL3 ∈ L\{0L} and x3 ∈ [Sx2]αL3
such that

d(x2, x3)≤ H([Sx2]αL3
, [Tx1]αL2

)+λ2(1−β−δ). (3.4)

By induction we can get a sequence {xn} of points of X ,

x2k+1 ∈ [Sx2k]αL2k+1

x2k+2 ∈ [Tx2k+1]αL2k+2
where k = 0,1,2, . . . ,

such as

d(x2k+1, x2k+2)≤ H([Sx2k]αL2k+1
, [Tx2k+1]αL2k+2

)+λ2k+1(1−γ−δ)

d(x2k+2, x2k+3)≤ H([Sx2k+2]αL2k+3
, [Tx2k+1]αL2k+2

)+λ2k+2(1−β−δ)

By (3.1) and (3.3), we get

d(x1, x2)≤αd(xo, x1)+βd(xo, [Sxo]αL1
)+γd(x1, [Tx1]αL2

)

+
δd(xo, [Sxo]αL1

)d(x1, [Tx1]αL2
)

1+d(xo, x1)
+λ(1−γ−δ)

the above inequality implies that

d(x1, x2)≤
(
α+β

1−γ−δ
)

d(xo, x1)+λ.

Using inequalities (3.1) and (3.4), we get

d(x2, x3)≤αd(x2, x1)+βd(x2, [Sx2]αL3
)+γd(x1, [Tx1]αL2

)

+
δd(x2, [Sx2]αL3

)d(x1, [Tx1]αL2
)

1+d(x2, x1)
+λ2(1−β−δ)

thus,

d(x2, x3)≤
(

α+γ
1−β−δ

)
d(x1, x2)+λ2

d(x2, x3)≤λd(x1, x2)+λ2.

This implies that

d(xn, xn+1)≤λd(xn−1, xn)+λn
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≤λ[λd(xn−2, xn−1)+λn−1]+λn

≤λ2d(xn−2, xn−1)+2λn

d(xn, xn+1)≤λ3d(xn−3, xn−2)+3λn.

It follows that for each n = 1,2,3, . . .

d(xn, xn+1)≤λnd(xo, x1)+nλn.

Now, for each positive integer m,n with n > m, we have

d(xm, xn)≤ d(xm, xm+1)+d(xm+1, xm+2)+ ...d(xn−1, xn)

≤λmd(xo, x1)+mλm +λm+1d(xo, x1)+ (m+1)λm+1

+ . . .+λn−1d(xo, x1)+ (n−1)λn−1

≤
n−1∑
i=m

λid(xo, x1)+
n−1∑
i=m

iλi

≤ λm

1−λd(xo, x1)+Sn−1 −Sm−1, where Sn =
n∑

i=1
iλi.

Since, λ < 1 it follows from Cauchy’s root test that
∑

iλi is convergent and hence {xn} is a
Cauchy sequence in X . As X is complete, there exists u ∈ X such that xn → u. Now by above
lemma implies that

d(u, [Su]αLS (u))≤ d(u, x2n)+d(x2n, [Su]αLS (u))

d(u, [Su]αLS (u))≤ d(u, x2n)+H([Tx2n−1]αL2n
, [Su]αLS (u)).

So, the above inequality implies that

d(u, [Su]αLS (u))≤
(
1−β−δ d(x2n−1, x2n)

1+d(u, x2n−1)

)−1 (
d(u, x2n)+αd(u, x2n−1)+γd(x2n−1, x2n)

)
Letting n →∞, we have

d(u, [Su]αLS (u))≤ 0

d(u, [Su]αLS (u))= 0.

This implies that

u ∈ [Su]αLS (u).

Similarly, by using

d(u, [Tu]αLT (u))≤ d(u, x2n+1)+d(x2n+1, [Tu]αLT (u))

we can prove that

u ∈ [Tu]αLT (u)

which shows that

u ∈ [Su]αLS (u) ∩ [Tu]αLT (u).

Example 3.2. Let X = [0,1] and d(x, y) = |x− y|, whenever x, y ∈ X , then (X ,d) be a complete
metric space. Let L = {η,θ,λ,µ} with η ¹L θ ¹L µ and η ¹L λ ¹L µ, where θ and λ are not
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comparable, then (L,¹L) is a complete distributive lattice. Let S and T be the L-fuzzy mappings
from X to LX defined as:

S(x)(t)=



θ if 0≤ t ≤ x
14

η if x
14 < t ≤ x

10

µ if x
10 < t ≤ x

3

λ if x
3 < t ≤ 1

and

T(x)(t)=



η if 0≤ t ≤ x
12

θ if x
12 < t ≤ x

10

µ if x
10 < t ≤ x

5

λ if x
5 < t ≤ 1

For all x ∈ X , there exist αLS (x)= θ and αLT (x)= η, such that

[Sx]θ =
[
0,

x
14

]
and [Tx]η =

[
0,

x
12

]
.

Moreover for α= 1
5 , β= 1

10 , γ= 1
15 and δ= 1

20 , we have

γ+δ
d(x, [Sx]αLS (x))

1+d(x, y)
≤ 1

15
+ 1

20

∣∣13x
14

∣∣
1+|x− y| < 1 .

Similarly, we have

β+δ
d(y, [T y]αLT (y))

1+d(x, y)
≤ 1

and

H([Sx]αLS (x), [T y]αLT (y))<
1
5
|x− y|+ 1

10

∣∣∣x− x
14

∣∣∣+ 1
15

∣∣∣y− y
12

∣∣∣+ 1
20

[∣∣x− x
14

∣∣ ∣∣y− y
12

∣∣
1+|x− y|

]
.

Since, S and T satisfy all the conditions of Theorem 3.1. So, 0 ∈ X is a common fixed point of S
and T.

Corollary 3.3. Let S,T → F(X ) be two fuzzy mappings and for x ∈ X , there exists αS(x),αT (x) ∈
(0,1] such that [Sx]αS(x), [Tx]αT (x) ∈ CB(2X ). If for all x, y ∈ X

H([Sx]αS(x), [T y]αT (y))≤αd(x, y)+βd(x, [Sx]αS(x))+γd(y, [Tx]αT (x))

+ δd(x, [Sx]αS(x))d(y, [Tx]αT (x))
1+d(x, y)

and

γ+ δd(x, [Sx]αS(x))
1+d(x, y)

< 1, β+ δd(y, [Tx]αT (x))
1+d(x, y)

< 1

where α, β, γ and δ are non negative real numbers with α+β+γ+δ< 1. Then, there exists u ∈ X
such that u ∈ [Sx]αS(x) ∩ [Tx]αT (x).
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Theorem 3.4. Let S,T : X → CB(X ) be multivalued mappings and for all x, y ∈ X ,

H(Sx,T y)≤αd(x, y)+βd(x,Sx)+γd(y,T y)+ δd(x,Sx)d(y,T y)
1+d(x, y)

(3.5)

and

γ+ δd(x,Sx)
1+d(x, y)

< 1, β+ δd(y,T y)
1+d(x, y)

< 1 (3.6)

where α, β, γ and δ are non negative real numbers with α+β+γ+δ< 1. Then, there exists u ∈ X
such that u ∈ Su∩Tu.

Proof. Consider a pair of any mappings A, B : X → L\{0L} and a pair of L-fuzzy mappings G,
H : X → LX as

G(x)(t)=
{

Ax t ∈ Sx
0 t ∉ Sx

and

H(x)(t)=
{

Bx t ∈ Tx
0 t ∉ Tx

Then for x ∈ X , we have

[Gx]αLG (x) = {t : G(x)(t)≥αLG (x)}= Sx

and

[Hx]αLH (x) = {t : H(x)(t)≥αLH (x)}= Tx .

Thus, by applying Theorem 3.1, we get z ∈ X such as

z ∈ [Gx]αLG (x) ∩ [Hx]αLH (x) = Sz∩Tz .
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