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1. Introduction

This paper is devoted to the development of some higher order iterative techniques for solving
nonlinear algebraic equations which are of utmost importance in mathematical physics and
engineering sciences. Such equations arise frequently in number of scientific models including
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fluid mechanics, astrophysics, geo physics, solid state physics, plasma physics, chemical
kinematics and optical fiber [1–19] and references therein. Finding the solution of following
nonlinear algebraic equations:

f (x)= 0,

is equivalent to fixed point problems x = g(x), where g(x) is a continuous function under certain
conditions. We can define functions g with a fixed point at p in a number of ways, for example
as g(x)= x− f (x) or g(x)= x+3 f (x). Conversely, if the function g has fixed point at p, then the
function defined by g(x)= x− f (x) has a zero at p.

The through study of literature reveals that many researchers have investigated to find the
root of nonlinear algebraic equations.

The most popular method to find the root of nonlinear algebraic equations is Newton’s
method [13]. Chun [3] improved Newton method by decomposition method. Abbasbandy [1]
has also improved Newton Raphson method by using the Adomian decomposition method.
Halley [6] developed a tremendous higher order iterative technique in the history for solving
nonlinear equations more accurately and in fastest way which open the door for others to think
in this direction. Ezquerro et al. [4,5] developed Halley type iterative scheme free from second
derivative. Noor and Noor [14–16] have suggested and analyzed many efficient techniques of
third, fifth and sixth-order predictor-corrector Halley method for solving the nonlinear equations.
Also, Kou et al. [12,13] have suggested a class of fifth-order iterative methods. Moreover, several
iterative type methods have been developed by using the Taylor series, decomposition and
quadrature formulae [2,18,19] and the references therein.

Homotopy perturbation method was introduced by He [7] in 1999. Since then this technique
has been successfully used by many researchers for solving initial and boundary value problems
of diversified nature. New interpretation and new development of the homotopy perturbation
methods have been given and well addressed by He [8–11]. Afterwards, Sehati et al. [17] has
developed some new iterative schemes of higher order by using HPM for finding real and
complex roots of nonlinear equations.

Inspired and motivated by the ongoing research in this area, we have introduced some
higher order iterative schemes (Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4) to
find the solution of some fixed point problems. We have compared our results with well known
Newton’s method [13], Noor method [14–16], Chun method [3] and Sehati et al. [17] 5th, 7th,
10th and 14th order techniques. Some of the techniques used for the comparison purpose are
given as follows:

Newton’s Method (NM) ([13]).

xn+1 = xn − f (xn)
f ′(xn)

.
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Noor’s Method ([14–16]).

yn = xn − f (xn)
f ′(xn)

,

zn =− (yn − xn)2

2
f ′′(xn)
f ′(xn)

,

xn+1 = yn − (yn + zn − xn)2

2
f ′′(xn)
f ′(xn)

.

Chun’s method ([3]).

yn = xn − f (xn)
f ′(xn)

,

xn+1 = yn −2
f (yn)
f ′(xn)

+ f (yn) f ′(yn)
f ′2(xn)

.

It is worth mentioning that applied scheme is fully compatible with the complexity of
such problems and obtained results are highly accurate. Moreover, it is also observed by
considering Computational Order of Convergence (COC) and number or iterations that the
proposed algorithms are very reliable and may be implemented on other physical problems also.

Definition 1. We choose an initial approximation x0 and generate the sequence {xk}∞k=0, by
letting xn = g(xn−1), for n = 1. If the sequence converges to x and g is continuous then

x = lim
n→∞xn = lim

n→∞ g(xn−1)= g( lim
n→∞xn−1)= g(x),

and solution to x = g(x) is obtained. This technique is called fixed point iteration.

Definition 2. A sequence of iterates {xk}∞k=0, is said to converge to the root α, if lim
k→∞

|xk−α| = 0

or lim
k→∞

xk =α.

Definition 3. Assume that sequence of iterates {xk}∞k=0, is converges to α and ek = xk −α for
k = 0. If two positive constants M 6= 0 and q > 0 exist, and

lim
k→∞

|ek+1|
|ek|q

= M .

Then the sequence is said to converge to α with order of convergence q. The number M is called
asymptotic error constant.

2. Methodology

Consider the nonlinear algebraic equation

f (x)= 0, (2.1)

which is equivalent to fixed point problem, i.e., f (x)= 0⇐⇒ x = g(x), under certain conditions.

We assume that α is a simple root of (2.1) and λ an initial guess sufficiently close to it.
Equation (2.1) can be rewrite as

f (λ)+ (x−λ) f ′(λ)+ 1
2!

(x−λ)2 f ′′(λ)≈ 0. (2.2)
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According to Homotopy perturbation method [1], construct the homotopy H : R × [0,1] → R
which satisfied

H(x, p)= p [ f (x)]+ (1− p)
[

f (λ)+ (x−λ) f ′(λ)+ 1
2!

(x−λ)2 f ′′(λ)
]

, (2.3)

where p is an embedding parameter. Hence, it is obvious that

H(x,0)= f (λ)+ (x−λ) f ′(λ)+ 1
2!

(x−λ)2 f ′′(λ)≈ 0 (2.4)

and

H(x,1)= f (x)= 0, (2.5)

and the changing process of p form 0 to 1, refers to H(x, p) form H(x,0) to H(x,1). According to
the Homotopy perturbation method consider the solution in series form as

x = x0 + px1 + p2x2 + p3x3 + . . . , (2.6)

when p → 1, (2.3) corresponding to (2.1) and (2.6) becomes the approximate solution of (2.1),
that is

x̃ = lim
p→1

x = x0 + x1 + x2 + x3 + . . . . (2.7)

To apply Homotopy perturbation method to (2.1). The (2.3) can be rewrite as

H(x, p)= p
[

f (x0)+ (x− x0) f ′(x0)+ 1
2!

(x− x0)2 f ′′(x0)+ . . .
]

+ (1− p)
[

f (λ)+ (x−λ) f ′(λ)+ 1
2!

(x−λ)2 f ′′(λ)
]
. (2.8)

Substituting eq. (2.6) into eq. (2.8), we get

H(x, p)= p
[

f (x0)+ (
px1 + p2x2 + p3x3 + . . .

)
f ′(x0)+ 1

2!
(
px1 + p2x2 + p3x3 + . . .

)2 f ′′(x0)+ . . .
]

+ (1− p)
[

f (λ)+ (x0 + px1 + p2x2 + p3x3 +·· ·−λ) f ′(λ)

+ 1
2!

(x0 + px1 + p2x2 + p3x3 +·· ·−λ)
2 f ′′(λ)

]
= 0 . (2.9)

Comparing the coefficient of like powers of p, we have following system of equations

p0 : f (λ)+ (x0 −λ) f ′(λ)+ 1
2!

(x0 −λ)2 f ′′(λ)= 0,

p1 : f (x0)+ x1 f ′(λ)+ x1(x0 −λ) f ′′(λ)− f (λ)− (x0 −λ) f ′(λ)− 1
2!

(x0 −λ)2 f ′′(λ)= 0,

p2 : x1 f ′(x0)+ x2 f ′(λ)+ 1
2

x2
1 f ′′(λ)+ x2(x0 −λ) f

′′′
(λ)− x1 f ′(λ)− x1(x0 −λ) f

′′′
(λ)= 0,

p3 : f ′′(λ)x0x3 + f ′′(λ)x1x2 − f ′′(λ)x3λ− f ′′(λ)x0x2 + f ′′(λ)x2λ+ f ′(λ)x3 + 1
2

f ′′(x0)x2
1

+ f ′(x0)x2 − f ′(λ)x2 − 1
2

f ′′(λ)x2
1 = 0.
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After solving the system we get

x0 =λ+
− f ′(λ)+σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

f ′′(λ)
,

where σ=±1.

x1 = − f (x0)

σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

,

x2 =
x1

{
f ′(λ)− f ′(x0)+ (

x0 −λ− 1
2 x1

)
f ′′(λ)

}
σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

,

x3 = 1
2

(−2 f ′′(λ)x1x2 +2 f ′′(λ)x0x2 −2 f ′′(λ)λx2 − f ′′(x0)x2
1 −2 f ′(x0)x2

+2 f ′(λ)x2 + f ′′(λ)x2
1

)

σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

.

Substituting the values of x0, x1, x2 and x3 in (2.7), we get

x̃ =λ+
− f ′(λ)+σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

f ′′(λ)
+ − f (x0)

σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

+ x1
{
f ′(λ)− f ′(x0)+ (

x0 −λ− 1
2 x1

)
f ′′(λ)

}
σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

+ 1
2

(−2 f ′′(λ)x1x2 +2 f ′′(λ)x0x2 −2 f ′′(λ)λx2 − f ′′(x0)x2
1 −2 f ′(x0)x2

+2 f ′(λ)x2 + f ′′(λ)x2
1

)

σ

√
f ′2(λ)−2 f (λ) f ′′(λ)

+ . . . .

(2.10)
Now by substituting σ= 1, these formulation allow us to suggest the following iterative methods
for solving the nonlinear algebraic equation (2.1).

Algorithm 1. For a given x0, calculate the approximate solution xn+1 by the iterative scheme:

yn = xn +
− f ′(xn)+

√
f ′2(xn)−2 f (xn) f ′′(xn)

f ′′(xn)
,

zn = − f (yn)√
f ′2(xn)−2 f (xn) f ′′(xn)

,

wn = zn
{
f ′(xn)− f ′(yn)+ (yn − xn − 1

2 zn) f ′′(xn)
}√

f ′2(xn)−2 f (xn) f ′′(xn)
,

xn+1 = yn + zn +wn + 1
2

(−2 f ′′(xn)znwn +2 f ′′(xn)ynwn −2 f ′′(xn)xnwn − f ′′(yn)z2
n −2 f ′(yn)wn

+2 f ′(xn)wn + f ′′(xn)z2
n

)
√

f ′2(xn)−2 f (xn) f ′′(xn)
.
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Algorithm 2. For a given x0, calculate the approximate solution xn+1 by the iterative scheme:

yn = xn +
− f ′(xn)+

√
f ′2(xn)−2 f (xn) f ′′(xn)

f ′′(xn)
,

zn = − f (yn)√
f ′2(xn)−2 f (xn) f ′′(xn)

,

wn = zn
{
f ′(xn)− f ′(yn)+ (yn − xn − 1

2 zn) f ′′(xn)
}√

f ′2(xn)−2 f (xn) f ′′(xn)
,

hn = yn + zn +wn + 1
2

(−2 f ′′(xn)znwn +2 f ′′(xn)ynwn −2 f ′′(xn)xnwn − f ′′(yn)z2
n −2 f ′(yn)wn

+2 f ′(xn)wn + f ′′(xn)z2
n

)
√

f ′2(xn)−2 f (xn) f ′′(xn)
,

xn+1 = hn − f (hn)
f ′(hn)

.

Algorithm 3. For a given x0, calculate the approximate solution xn+1 by the iterative scheme:

yn = xn +
− f ′(xn)+

√
f ′2(xn)−2 f (xn) f ′′(xn)

f ′′(xn)
,

zn = − f (yn)√
f ′2(xn)−2 f (xn) f ′′(xn)

,

wn = zn
{
f ′(xn)− f ′(yn)+ (yn − xn − 1

2 zn) f ′′(xn)
}√

f ′2(xn)−2 f (xn) f ′′(xn)
,

hn = yn + zn +wn + 1
2

(−2 f ′′(xn)znwn +2 f ′′(xn)ynwn −2 f ′′(xn)xnwn − f ′′(yn)z2
n −2 f ′(yn)wn

+2 f ′(xn)wn + f ′′(xn)z2
n

)
√

f ′2(xn)−2 f (xn) f ′′(xn)
,

xn+1 = hn − 2 f (hn) f ′(hn)
2 f ′2(hn)− f (hn) f ′′(hn)

.

Algorithm 4. For a given x0, calculate the approximate solution xn+1 by the iterative scheme:

yn = xn +
− f ′(xn)+

√
f ′2(xn)−2 f (xn) f ′′(xn)

f ′′(xn)
,

zn = − f (yn)√
f ′2(xn)−2 f (xn) f ′′(xn)

,

wn = zn
{
f ′(xn)− f ′(yn)+ (yn − xn − 1

2 zn) f ′′(xn)
}√

f ′2(xn)−2 f (xn) f ′′(xn)
,
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hn = yn + zn +wn + 1
2

(−2 f ′′(xn)znwn +2 f ′′(xn)ynwn −2 f ′′(xn)xnwn − f ′′(yn)z2
n −2 f ′(yn)wn

+2 f ′(xn)wn + f ′′(xn)z2
n

)
√

f ′2(xn)−2 f (xn) f ′′(xn)
,

xn+1 = hn − f (hn)
f ′(hn)

− 1
2

f 2(hn) f ′′(hn)
f ′3(hn)

.

3. Numerical Examples

In this section, we apply Algorithms 1-4 to solve the following nonlinear algebraic equations

f1(x)= sin2(x) − x2 +1,

f2(x)= ex −3x2,

f3(x)= e−x +cos(x),

f4(x)= e−x2+x+2 −1 .

And compare the result with

Newton’s Method (NM) ([13]).

xn+1 = xn − f (xn)
f ′(xn)

.

Noor’s Method ([14–16]).

yn = xn − f (xn)
f ′(xn)

,

zn =− (yn − xn)2

2
f ′′(xn)
f ′(xn)

,

xn+1 = yn − (yn + zn − xn)2

2
f ′′(xn)
f ′(xn)

.

Chun’s Method ([3]).

yn = xn − f (xn)
f ′(xn)

,

xn+1 = yn −2
f (yn)
f ′(xn)

+ f (yn) f ′(yn)
f ′2(xn)

,

and with some new iterative formulas developed by Sehati et al. [17], by taking 1500 digits
precision. We used ε= 10−25. The following stopping criteria were used in computer program:

(i) |xn+1 − xn| < ε, and

(ii) | f (xn+1)| < ε.
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4. Tables

Table 4.1 shows numerical results for f1(x)= sin2(x) − x2 +1.

Table 4.1

Method x0 Iterations xn |f (xn)| COC

Newton’s Method [13] 2 6 −1.40449164821534122604 2.2600E-32 2.00

Noor Method [14–16] 2 4 −1.40449164821534122604 8.6400E-63 3.00

Chun Method [3] 2 4 −1.40449164821534122604 1.4500E-91 3.99

5th order Method [17] 2 4 −1.40449164821534122604 7.1289E-33 5.05

7th order Method [17] 2 4 −1.40449164821534122604 6.9011E-166 6.99

10th order Method [17] 2 4 −1.40449164821534122604 1.2535E-234 9.99

14th order Method [17] 2 3 −1.40449164821534122604 2.3351E-159 13.90

Algorithm 1 2 3 −1.40449164821534122604 6.7501E-64 9.17

Algorithm 2 2 2 −1.40449164821534122604 2.8880E-27 15.23

Algorithm 3 2 2 −1.40449164821534122604 1.8016E-60 23.46

Algorithm 4 2 2 −1.40449164821534122604 1.5839E-44 27.31

Table 4.2 shows numerical results for f2(x)= ex −3x2.

Table 4.2

Method x0 Iterations xn |f (xn)| COC

Newton’s Method [13] 0.5 6 0.91000757248870906066 1.3153E-29 2.00

Noor Method [14–16] 0.5 4 0.91000757248870906066 6.1201E-26 3.00

Chun Method [3] 0.5 4 0.91000757248870906066 1.6753E-29 3.99

5th order Method [17] 0.5 3 −0.45896226753694851460 2.2472E-66 5.00

7th order Method [17] 0.5 3 −0.45896226753694851460 1.2272E-163 6.99

10th order Method [17] 0.5 2 −0.45896226753694851460 3.3091E-47 10.29

14th order Method [17] 0.5 2 −0.45896226753694851460 1.7178E-86 14.29

Algorithm 1 0.5 2 −0.45896226753694851460 3.4556E-36 9.29

Algorithm 2 0.5 2 −0.45896226753694851460 6.5611E-136 18.28

Algorithm 3 0.5 2 −0.45896226753694851460 2.0723E-300 27.29

Algorithm 4 0.5 2 −0.45896226753694851460 1.1552E-291 27.28
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Table 4.3 shows numerical results for f3(x)= e−x +cos(x).

Table 4.3

Method x0 Iterations xn |f (xn)| COC

Newton’s Method [13] 2.5 6 1.74613953040801241765 1.3724E-47 2.00

Noor Method [14–16] 2.5 4 1.74613953040801241765 3.9410E-30 3.00

Chun Method [3] 2.5 4 1.74613953040801241765 7.7501E-90 3.99

5th order Method [17] 2.5 3 4.70332375945224380651 3.2258E-53 4.99

7th order Method [17] 2.5 3 4.70332375945224380651 4.8969E-135 6.99

10th order Method [17] 2.5 2 4.70332375945224380651 1.8709E-65 9.17

14th order Method [17] 2.5 2 4.70332375945224380651 1.4130E-105 13.00

Algorithm 1 2.5 2 4.70332375945224380651 8.2551E-133 7.63

Algorithm 2 2.5 2 4.70332375945224380651 3.1749E-165 16.88

Algorithm 3 2.5 2 4.70332375945224380651 5.4067E-303 25.64

Algorithm 4 2.5 2 4.70332375945224380651 5.4787E-303 25.64

Table 4.4 shows numerical results for f4(x)= e−x2+x+2 −1.

Table 4.4

Method x0 Iterations xn |f (xn)| COC

Newton’s Method [13] 0.5 1 Fail —

Noor Method [14–16] 0.5 1 Fail —

Chun Method [3] 0.5 1 Fail —

5th order Method [17] 0.5 3 −1.00000000000000000000 1.6955E-117 4.99

7th order Method [17] 0.5 3 −1.00000000000000000000 5.0264E-35 6.65

10th order Method [17] 0.5 3 −1.00000000000000000000 1.5124E-103 9.97

14th order Method [17] 0.5 2 −1.00000000000000000000 1.0709E-219 13.99

Algorithm 1 0.5 3 −1.00000000000000000000 1.8608E-152 8.79

Algorithm 2 0.5 3 −1.00000000000000000000 4.0495E-391 17.99

Algorithm 3 0.5 2 −1.00000000000000000000 3.6553E-51 23.15

Algorithm 4 0.5 2 −1.00000000000000000000 3.7313E-45 27.65

The test results in Table 4.1-4.4 show that for most of the function we tested. The
proposed algorithms highly effective and have better performance compared with other methods.
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Form Table 4.1, we see that Algorithms 1-4 have better approximation as compared with
Sehati et al. [17] formulas, Newton method [13], Noor method [14–16] and Chun method [3]. In
Table 4.2, we see that Algorithms 1-4 have different roots from Newton method, Noor method
and Chun method with same initial approximation. In Table 4.3, with the same approximation
Algorithms 1-4 have different roots from Newton method, Noor method and Chun method.
In Table 4.4, Newton method, Noor method and Chum method fails to calculate the root but
Algorithms 1-4 are successively applied to find the root and have better results as compare to
new iterative schemes.

5. Figures

Figure 5.1 depicts graphical comparison between methods and number of iterations.
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Figures 5.1 and 5.2 elaborate the efficiency, accuracy and reliability of the proposed
algorithms to find the root of the problems 1-4. It is observed that the proposed algorithms
have large computational order of convergence (COC) than the existing methods [3, 14–17]
which evidence that our newly proposed methods are well-matched to investigate the roots.
Moreover, for same initial guess our proposed algorithms are faster convergent because just in
two iterations we achieved our required root. This figure witnesses that the Algorithms 1-4 are
rapid convergent and more accurate and can be extend to find the root of nonlinear diversify
problems.

6. Conclusions

New iterative schemes have been developed by using HPM. The comparison with other methods
including Newton’s method, Noor method, Chun method and Sehati et al. [17] shows the
efficiency and reliability of the proposed techniques. The proposed algorithms are complicated
and a lot of computation work, but with the aid of MAPLE 13, this deficiency have been removed.
It is concluded that proposed algorithm can be extended to other nonlinear problems of physical
nature too.
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