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1. Introduction
As we know, without any doubt the Banach contraction principle is considered as the most
fundamental entity in the metric fixed point theory and by research point of view, it won’t be
false to state that its inception has opened many closed doors. Experts in the relevant field have
been continuously extending this famous contraction condition which is quite promising. For
example Frigon [10], and Chis and Precup [7] generalized the Banach contraction principle
on gauge spaces. One can characterize gauge spaces by the fact that the distance between
two distinct points in a space may be zero, which has attracted researchers to gain interest in
this field of metric fixed point theory. To go with this we also suggest some interesting results
obtained by different authors in [1,4–6,9,11,13].

Wardowski [21] introduced a new family of mappings called F or F family. Using the
mappings from F family he introduced a new contraction condition called F-contraction. This
F-contraction nicely generalize the most famous Banach contraction condition. Later on, many
researchers worldwide generalized this result (for example, see [2,3,8,12,14–20]).

The purpose of this paper is to introduce some F-type-contraction in the setting of gauge
spaces and obtain some fixed point theorems for such mappings in gauge spaces. As an
application of our result we establish an existence theorem for integral equations.

Wardowski [21] introduced the F family in the way that: F is the class of all functions
F : (0,∞)→R satisfying the following three assumptions:

(F1) F is strictly increasing, that is, for each a1,a2 ∈ (0,∞) with a1 < a2, we have F(a1)< F(a2).

(F2) For each sequence {dn} of positive real numbers we have lim
n→∞dn = 0 if and only if

lim
n→∞F(dn)=−∞.

(F3) There exists k ∈ (0,1) such that lim
d→0+d

kF(d)= 0.

Following are some examples of such functions.

• Fa = ln x for each x ∈ (0,∞).

• Fb = x+ ln x for each x ∈ (0,∞).

• Fc =− 1p
x for each x ∈ (0,∞).

Further, Wardowski [21] introduced F-contraction and related fixed point theorem in the
following way:

Theorem 1.1 ([21]). Let (X ,d) be a complete metric space and let T : X → X is F-contraction,
that is, there exist F ∈F and τ> 0 such that for each x, y ∈ X with d(Tx,T y)> 0, we have

τ+F(d(Tx,T y))≤ F(d(x, y)).

Then T has a unique fixed point.

This theorem reduces to Banach contraction principle if T is F-contraction with F(x)= ln x.
Minak et al. [14] generalized this result as follows:
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Theorem 1.2 ([14]). Let (X ,d) be a complete metric space and let T : X → X . Assume that there
exist F ∈F and τ> 0 such that

τ+F(d(Tx,T y))≤ F
(
max

{
d(x, y),d(x,Tx),d(y,T y),

d(x,T y)+d(y,Tx)
2

})
,

for each x, y ∈ X with d(Tx,T y)> 0. If T or F is continuous, then T has a unique fixed point.

Now, we explain the gauge spaces and its terminologies due to [9].

Definition 1.3 ([9]). Let X be a nonempty set. A function d : X × X → [0,∞) is called pseudo
metric on X if for each x, y, z ∈ X , we have

(i) d(x, x)= 0 for each x ∈ X ;

(ii) d(x, y)= d(y, x);

(iii) d(x, z)≤ d(x, y)+d(y, x).

Let X be a nonempty set endowed with the pseudo metric d. The d-ball of radius ε > 0
centered at x ∈ X is the set

B(x,d,ε)= {y ∈ X : d(x, y)< ε}.

Definition 1.4 ([9]). A family F= {dν : ν ∈A} of pseudo metrics is said to be separating if for
each pair (x, y) with x 6= y, there exists dν ∈F with dν(x, y) 6= 0.

Definition 1.5 ([9]). Let X be a nonempty set and F= {dν : ν ∈A} be a family of pseudo metrics
on X . The topology T(F) having subbases the family

B(F)= {
B(x,dν,ε) : x ∈ X ,dν ∈F and ε> 0

}
of balls is called topology induced by the family F of pseudo metrics. The pair (X ,T(F)) is called
a gauge space.

Definition 1.6 ([9]). Let (X ,T(F)) be a gauge space with respect to the family F= {dν : ν ∈A} of
pseudo metrics on X . Let {xn} is a sequence in X and x ∈ X . Then:

(i) The sequence {xn} converges to x if for each ν ∈A and ε> 0, there exists N0 ∈N such that
dν(xn, x)< ε for each n ≥ N0.

(ii) The sequence {xn} is a cauchy sequence if for each ν ∈A and ε > 0, there exists N0 ∈N
such that dν(xn, xm)< ε for each n,m ≥ N0.

(iii) (X ,T(F)) is complete if each Cauchy sequence in (X ,T(F)) is convergent in X .

(iv) A subset of X is said to be closed if it contains the limit of each convergent sequence of its
elements.

2. Main Results
Through out this paper, A is directed set and X is a nonempty set endowed with a separating
complete gauge structure {dν : ν ∈A}.
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Theorem 2.1. Let T : X → X be a mapping for which we have F in F and τ> 0 such that

α(x, y)≥ 1⇒ τ+F(dν(Tx,T y))≤ F(aνdν(x, y)+bνdν(x,Tx)+ cνdν(y,T y)

+ eνdν(x,T y)+Lνdν(y,Tx)) for all ν ∈A (1)

for each x, y ∈ X , whenever dν(Tx,T y) 6= 0, where aν,bν, cν, eν,Lν ≥ 0, and aν+bν+ cν+2eν = 1
for all ν ∈A. Further, assume that the following conditions hold:

(i) there exists x0 ∈ X such that α(x0,Tx0)≥ 1;

(ii) for each x, y ∈ X with α(x, y)≥ 1, we have α(Tx,T y)≥ 1;

(iii) for any sequence {xn} in X such that α(xn, xn+1)≥ 1 for each n ∈N and xn → x as n →∞,
then α(xn, x)≥ 1 for each n ∈N.

Then T has a fixed point.

Proof. By hypothesis (i), there exists x0 ∈ X with α(x0, x1)≥ 1. Take x1 = Tx0. From (1), we have

τ+F(dν(x1, x2))= τ+F(dν(Tx0,Tx1))

≤ F
(
aνdν(x0, x1)+bνdν(x0,Tx0)+ cνdν(x1,Tx1), eνdν(x0,Tx1)+Lνdν(x1,Tx0)

)
= F

(
aνdν(x0, x1)+bνdν(x0, x1)+ cνdν(x1, x2), eνdν(x0, x2)+Lν.0

)
≤ F

(
aνdν(x0, x1)+bνdν(x0, x1)+ cνdν(x1, x2), eν(dν(x0, x1)+dν(x1, x2)

)
= F

(
(aν+bν+ eν)dν(x0, x1)+ (cν+ eν)dν(x1, x2)

)
for all ν ∈A. (2)

Since F is strictly increasing, we get from above that

dν(x1, x2)< (aν+bν+ eν)dν(x0, x1)+ (cν+ eν)dν(x1, x2) for all ν ∈A.

That is,

(1− cν− eν)dν(x1, x2)< (aν+bν+ eν)dν(x0, x1) for all ν ∈A.

As aν+bν+ cν+2eν = 1, thus we have

dν(x1, x2)< dν(x0, x1) for all ν ∈A.

Now, from (2), we have

τ+F(dν(x1, x2))≤ F(dν(x0, x1)), for all ν ∈A.

By hypothesis (ii), we have α(Tx0,Tx1)=α(x1, x2)≥ 1. From (1), we have

τ+F(dν(x2, x3))= τ+F(dν(Tx1,Tx2))

≤ F
(
aνdν(x1, x2)+bνdν(x1,Tx1)+ cνdν(x2,Tx2), eνdν(x1,Tx2)+Lνdν(x2,Tx1)

)
= F

(
aνdν(x1, x2)+bνdν(x1, x2)+ cνdν(x2, x3), eνdν(x1, x3)+Lν.0

)
≤ F

(
aνdν(x1, x2)+bνdν(x1, x2)+ cνdν(x2, x3), eν(dν(x1, x2)+dν(x2, x3)

)
= F

(
(aν+bν+ eν)dν(x1, x2)+ (cν+ eν)dν(x2, x3)

)
for all ν ∈A. (3)

Since F is strictly increasing, we get from above that

dν(x2, x3)< (aν+bν+ eν)dν(x1, x2)+ (cν+ eν)dν(x2, x3) for all ν ∈A.
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That is,

(1− cν− eν)dν(x2, x3)< (aν+bν+ eν)dν(x1, x2) for all ν ∈A.

As aν+bν+ cν+2eν = 1, thus we have

dν(x2, x3)< dν(x1, x2) for all ν ∈A.

Now from (3), we have

τ+F(dν(x2, x3))≤ F(dν(x1, x2)) for all ν ∈A.

So we have

F(dν(x2, x3))≤ F(dν(x1, x2))−τ≤ F(dν(x0, x1))−2τ for all ν ∈A.

Continuing in the same way, we get a sequence {xn}⊂ X such that

xn ∈ Txn−1, xn−1 6= xn and α(xn−1, xn)≥ 1 for each n ∈N.

Furthermore,

F(dν(xn, xn+1))≤ F(dν(x0, x1))−nτ for each n ∈N and ν ∈A. (4)

Letting n →∞ in (4), we get lim
n→∞F(dν(xn, xn+1))=−∞ for all ν ∈A. Thus, by property (F2), we

have lim
n→∞dν(xn, xn+1)= 0. Let (dν)n = dν(xn, xn+1) for all ν ∈A for each n ∈N. From (F3) there

exists k ∈ (0,1) such that

lim
n→∞(dν)k

nF((dν)n)= 0 for all ν ∈A.

From (4) we have

(dν)k
nF((dν)n)− (dν)k

nF((dν)0)≤−(dν)k
nnτ≤ 0 for each n ∈N and ν ∈A. (5)

Letting n →∞ in (5), we get

lim
n→∞n(dν)k

n = 0 for all ν ∈A. (6)

This implies that there exists n1 ∈N such that n(dν)k
n ≤ 1 for each n ≥ n1 and ν ∈A. Thus, we

have

(dν)n ≤ 1
n1/k , for each n ≥ n1 and ν ∈A. (7)

To prove that {xn} is a Cauchy sequence. Consider m,n ∈ N with m > n > n1. By using the
triangular inequality and (7), we have

dν(xn, xm)≤ dν(xn, xn+1)+dν(xn+1, xn+2)+·· ·+dν(xm−1, xm)

=
m−1∑
i=n

(dν)i ≤
∞∑

i=n
(dν)i ≤

∞∑
i=n

1
i1/k for all ν ∈A.

Since
∞∑

i=1

1
i1/k is convergent series. Thus, lim

n→∞dν(xn, xm) = 0 for all ν ∈ A. Which implies that

{xn} is a Cauchy sequence. By completeness of X , there exists x∗ ∈ X such that xn → x∗ as
n →∞. By condition (iii), we have α(xn, x∗)≥ 1 for each n ∈N. We claim that dν(x∗,Tx∗)= 0 for
all ν ∈A. On contrary suppose that dν(x∗,Tx∗) > 0 for some ν, there exists n0 ∈N such that
dν(xn,Tx∗)> 0 for each n ≥ n0. Thus for each n ≥ n0 by using triangular property and (1), we
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have

dν(x∗,Tx∗)≤ dν(x∗, xn+1)+dν(xn+1,Tx∗)

= dν(x∗, xn+1)+dν(Txn,Tx∗)

< dν(x∗, xn+1)+aνdν(xn, x∗)+bνdν(xn, xn+1)+ cνdν(x∗,Tx∗),

+ eνdν(xn,Tx∗)+Lνdν(x∗, xn+1). (8)

Letting n →∞ in (8), we have

dν(x∗,Tx∗)≤ (cν+ eν)dν(x∗,Tx∗)< dν(x∗,Tx∗).

Which is a contradiction. Thus dν(x∗,Tx∗) = 0 for each ν ∈ A. As X is separating we have
x∗ = Tx∗.

Theorem 2.2. Let T : X → X be a mapping for which we have continuous F in F and τ> 0 such
that

α(x, y)≥ 1⇒ τ+F(dν(Tx,T y))≤ F
(
max

{
dν(x, y),dν(x,Tx),dν(y,T y),

dν(x,T y)+dν(y,Tx)
2

}
+Ldν(y,Tx)

)
for all ν ∈A (9)

for each x, y ∈ X , whenever dν(Tx,T y) 6= 0, where L ≥ 0. Further assume that the following
conditions hold:

(i) there exists x0 ∈ X with α(x0,Tx0)≥ 1;

(ii) for x, y ∈ X with α(x, y)≥ 1 we have α(Tx,T y)≥ 1;

(iii) for any sequence {xn}⊆ X such that xn → x as n →∞ and α(xn, xn+1)≥ 1 for each n ∈N, we
have α(xn, x)≥ 1 for each n ∈N.

Then T has a fixed point.

Proof. By hypothesis (i), there exists x0 ∈ X with α(x0,Tx0) ≥ 1. Take x1 = Tx0. From (9), we
have

τ+F(dν(x1, x2))= τ+F(dν(Tx0,Tx1))

≤ F
(
max

{
dν(x0, x1),dν(x0,Tx0),dν(x1,Tx1),

dν(x1,Tx0)+dν(x0,Tx1)
2

}
+Ldν(x1,Tx0)

)
= F

(
max{dν(x0, x1),dν(x1, x2)}

)
for all ν ∈A. (10)

If we assume that max{dν(x0, x1),dν(x1, x2)} = dν(x1, x2), then we have a contradiction to (10).
Thus, max{dν(x0, x1),dν(x1, x2)}= dν(x0, x1) for all ν ∈A. From (10), we have

τ+F(dν(x1, x2))≤ F(dν(x0, x1)) for all ν ∈A. (11)

As α(x0, x1)≥ 1, then we have α(Tx0,Tx1)=α(x1, x2)≥ 1. From (9), we have

τ+F(dν(x2, x3))= τ+F(dν(Tx1,Tx2))

≤ F
(
max

{
dν(x1, x2),dν(x1,Tx1),dν(x2,Tx2),
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dν(x2,Tx1)+dν(x1,Tx2)
2

}
+Ldν(x2,Tx1)

)
= F

(
max{dν(x1, x2),dν(x2, x3)}

)
for all ν ∈A. (12)

If we assume that max{dν(x1, x2),dν(x2, x3)} = dν(x2, x3), then we have a contradiction to (12).
Thus, max{dν(x1, x2),dν(x2, x3)}= dν(x1, x2) for all ν ∈A. From (12), we have

τ+F(dν(x2, x3))≤ F(dν(x1, x2)) for all ν ∈A. (13)

From (11) and (13), we have

F(dν(x2, x3))≤ F(dν(x0, x1))−2τ for all ν ∈A. (14)

Continuing in the same way, we get a sequence {xn}⊂ X such that

xn ∈ Txn−1, xn−1 6= xn and α(xn−1, xn)> 1 for each n ∈N.

Moreover,

F(dν(xn, xn+1))≤ F(dν(x0, x1))−nτ for each n ∈N and ν ∈A. (15)

Letting n →∞ in (15), we get lim
n→∞F(dν(xn, xn+1))=−∞ for all ν ∈A. Thus, by property (F2), we

have lim
n→∞dν(xn, xn+1) = 0 ∀ν ∈A. Let (dν)n = dν(xn, xn+1) for each n ∈N and ν ∈A. From (F3)

there exists k ∈ (0,1) such that

lim
n→∞(dν)k

nF((dν)n)= 0 for all ν ∈A.

From (15) we have

(dν)k
nF((dν)n)− (dν)k

nF((dν)0)≤−(dν)k
nnτ≤ 0 for each n ∈N and ν ∈A. (16)

Letting n →∞ in (16), we get

lim
n→∞n(dν)k

n = 0 for all ν ∈A. (17)

This implies that there exists n1 ∈N such that n(dν)k
n ≤ 1 for each n ≥ n1 and ν ∈A. Thus, we

have

(dν)n ≤ 1
n1/k , for each n ≥ n1 and ν ∈A. (18)

To prove that {xn} is a Cauchy sequence. Consider m,n ∈ N with m > n > n1. By using the
triangular inequality and (18), we have

dν(xn, xm)≤ dν(xn, xn+1)+dν(xn+1, xn+2)+·· ·+dν(xm−1, xm)

=
m−1∑
i=n

(dν)i ≤
∞∑

i=n
(dν)i ≤

∞∑
i=n

1
i1/k for all ν ∈A.

Since
∞∑

i=1

1
i1/k is convergent series. Thus lim

n→∞dν(xn, xm)= 0 for all ν ∈A. Which implies that {xn}

is a Cauchy sequence. By completeness of X , there is x∗ ∈ X such that xn → x∗ as n →∞. By
condition (iii), we have α(xn, x∗)≥ 1 for each n ∈N. We claim that dν(x∗,Tx∗)= 0 for all ν ∈A. On
contrary suppose that dν(x∗,Tx∗)> 0 for some ν, there exists n0 ∈N such that dν(xn,Tx∗)> 0
for each n ≥ n0. From (9), for each n ≥ n0, we have

τ+F(dν(xn+1,Tx∗))≤ F
(
max

{
dν(xn, x∗),dν(xn,Txn),dν(x∗,Tx∗),
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dν(x∗,Txn)+dν(xn,Tx∗)
2

}
+Ldν(x∗,Txn)

)
for all ν ∈A.

Letting n →∞ in above inequality and by continuity of F , we get

τ+F(dν(x∗,Tx∗))≤ F(dν(x∗,Tx∗)).

This implies τ ≤ 0. Which is a contradiction. Thus dν(x∗,Tx∗) = 0 for each ν ∈ A. As X is
separating we have x∗ = Tx∗.

In the following corollaries we assume that X is a nonempty set endowed with a separating
complete gauge structure, further a directed graph G = (V ,E) is defined on X such that the set
of its vertices V coincides with X (i.e., V = X ) and the set of its edges E is such that E ⊇4,
where 4= {(x, x) : x ∈ X }. Let us also assume that G has no parallel edges.

The following corollaries can be obtained from our results by defining α : X × X → [0,∞) as:

α(x, y)=
{

1 if (x, y) ∈ E
0 otherwise.

Corollary 2.3. Let T : X → X be a mapping for which we have F in F and τ> 0 such that

(x, y) ∈ E ⇒ τ+F(dν(Tx,T y))≤ F(aνdν(x, y)+bνdν(x,Tx)+ cνdν(y,T y)

+ eνdν(x,T y)+Lνdν(y,Tx)) for all ν ∈A (19)

for each x, y ∈ X whenever dν(Tx,T y) 6= 0, where aν,bν, cν, eν,Lν ≥ 0, and aν+bν+ cν+2eν = 1
for all ν ∈A. Further, assume that the following conditions hold:

(i) there exists x0 ∈ X such that (x0,Tx0) ∈ E;

(ii) for each x, y ∈ X with (x, y) ∈ E, we have (Tx,T y) ∈ E;

(iii) for any sequence {xn}⊆ X such that xn → x as n →∞ and (xn, xn+1) ∈ E for each n ∈N, we
have (xn, x) ∈ E for each n ∈N.

Then T has a fixed point.

Corollary 2.4. Let T : X → X be a mapping for which we have continuous F in F and τ> 0 such
that

(x, y) ∈ E ⇒ τ+F(dν(Tx,T y))≤ F
(
max

{
dν(x, y),dν(x,Tx),dν(y,T y),

dν(x,T y)+dν(y,Tx)
2

}
+Ldν(y,Tx)

)
for all ν ∈A (20)

for each x, y ∈ X whenever dν(Tx,T y) 6= 0, where L ≥ 0. Further assume that the following
conditions hold:

(i) there exists x0 ∈ X with (x0,Tx0) ∈ E;

(ii) for each x, y ∈ X with (x, y) ∈ E we have (Tx,T y) ∈ E;

(iii) for any sequence {xn}⊆ X such that xn → x as n →∞ and (xn, xn+1) ∈ E for each n ∈N, we
have (xn, x) ∈ E for each n ∈N.

Then T has a fixed point.
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3. Application

Consider the Volterra integral equation of the form:

x(t)=
∫ f (t)

0
K(t, s, x(s))ds, t ∈ I = [0,∞) (21)

where f : I → R is continuous function with 0 ≤ f (t) for each t ∈ I and K : I × I ×R→ R is
continuous and nondecreasing function. Let X = (C[0,∞),R) be the space of all realvalued
continuous functions. Define the family of pseudonorms by ‖x‖n = max

t∈[0,n]

{|x(t)|e−|τt|}, for each

n ∈N, where τ> 0 is arbitrary. By using this family of pseudonorms we get a family of pseudo
metrics as dn(x, y) = ‖x− y‖n. Clearly, F= {

dn : n ∈N}
defines gauge structure on X , which is

complete and separating. Define the graph as V = X and E = {(x, y) : x(t)≤ y(t) for all t}.

Theorem 3.1. Let X = (C[0,∞),R) and let the operator T : X → X is defined by

Tx(t)=
∫ f (t)

0
K(t, s, x(s))ds, t ∈ I = [0,∞),

where f : I → R is continuous function with 0 ≤ f (t) for each t ∈ I and K : I × I ×R→ R is
continuous and nondecreasing function. Assume that the following conditions hold:

(i) there exist τ> 0 and β : X → (0,∞) such that for each (x, y) ∈ E and t, s ∈ [0,n], we have

|K(t, s, x)−K(t, s, y)| ≤ e−τ

β(x+ y)
dn(x, y) for each n ∈N;

moreover, ∣∣∣∣∫ f (t)

0

1
β(x(s)+ y(s))

ds
∣∣∣∣≤ e|τt|

for each t ∈ I ;

(ii) there exists x0 ∈ X such that (x0,Tx0) ∈ E;

(iii) for x, y ∈ X with (x, y) ∈ E we have (Tx,T y) ∈ E;

(iv) for any sequence {xn}⊆ X such that xn → x as n →∞ and (xn, xn+1) ∈ E for each n ∈N, we
have (xn, x) ∈ E for each n ∈N.

Then the integral equation (21) has atleast one solution.

Proof. For any (x, y) ∈ E and t ∈ [0,n] for each n ≥ 1, we have

|Tx(t)−T y(t)| ≤
∫ f (t)

0
|K(t, s, x(s))−K(t, s, y(s))|ds

≤
∫ f (t)

0

e−τ

β(x(s)+ y(s))
dn(x, y)ds

= e−τdn(x, y)
∫ f (t)

0

1
β(x(s)+ y(s))

ds

≤ e|τt|e−τdn(x, y).

Thus, we have

|Tx(t)−T y(t)|e−|τt| ≤ e−τdn(x, y).
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Equivalently

dn(Tx,T y)≤ e−τdn(x, y).

As natural logarithm belongs to F. Applying it on above inequality, we get

ln(dn(Tx,T y))≤ ln(e−τdn(x, y)).

After some simplification, we get

τ+ ln(dn(Tx,T y))≤ ln(dn(x, y)) for each n ∈N.

Thus, T satisfies (19) with an = 1, and bn = cn = en = Ln = 0 for each n ∈N and F(x)= ln x. As K
is nondecreasing, for each (x, y) ∈ E, we have (Tx,T y) ∈ E. Further, all the other conditions of
the Corollary 2.3, follows immediately from the hypothesis of the theorem. Thus, there exists a
fixed point of the operator T , that is, integral equation (21) has atleast one solution.

4. Conclusions
In this work we obtained the existence existence of fixed points for an integral operator by using
a new fixed point theorem in the setting of gauge spaces. Also we used our fixed point results
apply to find a solution of the Volterra integral equations.

Acknowledgement

Authors are thankful to reviewers for their useful comments. This project was supported by
the Theoretical and Computational Science (TaCS) Center under Computational and Applied
Science for Smart Innovation Cluster (CLASSIC), Faculty of Science, KMUTT.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] R.P. Agarwal, Y.J. Cho and D. O’Regan, Homotopy invariant results on complete gauge spaces, Bull.

Austral. Math. Soc. 67 (2003), 241 – 248, doi:10.1017/S0004972700033700.

[2] M.U. Ali and T. Kamran, On (α∗,ψ)-contractive multi-valued mappings, Fixed Point Theory Appl.
2013 (2013), 137, doi:10.1186/1687-1812-2013-137.

[3] J.H. Asl, S. Rezapour and N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed
Point Theory Appl. 2012 (2012), 212, doi:10.1186/1687-1812-2012-212.

[4] M. Cherichi, B. Samet and C. Vetro, Fixed point theorems in complete gauge spaces and applications
to second order nonlinear initial value problems, J. Funct. Space Appl. 2013 (2013), 293101.

Communications in Mathematics and Applications, Vol. 9, No. 1, pp. 15–25, 2018

http://dx.doi.org/10.1017/S0004972700033700
http://dx.doi.org/10.1186/1687-1812-2013-137
http://dx.doi.org/10.1186/1687-1812-2012-212


Existence of Fixed Points for An Integral Operator via Fixed Point Theorem on Gauge Spaces: M.U. Ali et al. 25

[5] M. Cherichi and B. Samet, Fixed point theorems on ordered gauge spaces with applications to
nonlinear integral equations, Fixed Point Theory Appl. 2012 (2012), 13, doi:10.1186/1687-1812-
2012-13.

[6] C. Chifu and G. Petrusel, Fixed point results for generalized contractions on ordered gauge spaces
with applications, Fixed Point Theory Appl. 2011 (2011), 979586.

[7] A. Chis and R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point
Theory Appl. 3 (2004), 173 – 185, doi:10.1155/S1687182004403027.

[8] M. Cosentino and P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type,
Filomat 28 (2014), 715 – 722, doi:10.2298/FIL1404715C.

[9] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., USA (1966).

[10] M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications,
Proceed. Amer. Math. Soc. 128 (2000), 2957 – 2965, doi:10.1090/S0002-9939-00-05838-X.

[11] M. Jleli, E. Karapinar and B. Samet, Fixed point results for α-ψλ-contractions on gauge spaces
and applications, Abstr. Appl. Anal. 2013 (2013), 730825.

[12] E. Karapinar, H. Aydi and B. Samet, Fixed points for generalized (α,ψ)-contractions on generalized
metric spaces, J. Inequal. Appl. 2014 (2014), 229.

[13] T. Lazara andd G. Petrusel, Fixed points for non-self operators in gauge spaces, J. Nonlinear Sci.
Appl. 6 (2013), 2934.

[14] G. Minak, A. Helvac and I. Altun, Ciric type generalized F -contractions on complete metric spaces
and fixed point results, Filomat 28 (6) (2014), 1143 – 1151, doi:10.2298/FIL1406143M.

[15] G. Minak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem,
J. Inequal. Appl. 2013 (2013), 493, doi:10.1186/1029-242X-2013-493.

[16] B. Mohammadi, S. Rezapour and N. Shahzad, Some results on fixed points of α-ψ-Ciric generalized
multifunctions, Fixed Point Theory Appl. 2013 (2013), 24, doi:10.1186/1687-1812-2013-24.

[17] D. Paesano and C. Vetro, Multi-valued F-contractions in 0-complete partial metric spaces with
application to Volterra type integral equation, Revista de la Real Academia de Ciencias Exactas,
Fisicas y Naturales. Serie A. Matematicas 108 (2) (September 2014), 1005 – 1020.

[18] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric
spaces, Fixed Point Theory Appl. 2014 (2014), 210, doi:10.1186/1687-1812-2014-210.

[19] N.A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl.
2013 (2013), 277, doi:10.1186/1687-1812-2013-277.

[20] M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and
integral equations, Filomat 27 (2013), 1259 – 1268, doi:10.2298/FIL1307259S.

[21] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed
Point Theory Appl. 2012 (2012), 94, doi:10.1186/1687-1812-2012-94.

Communications in Mathematics and Applications, Vol. 9, No. 1, pp. 15–25, 2018

http://dx.doi.org/10.1186/1687-1812-2012-13
http://dx.doi.org/10.1186/1687-1812-2012-13
http://dx.doi.org/10.1155/S1687182004403027
http://dx.doi.org/10.2298/FIL1404715C
http://dx.doi.org/10.1090/S0002-9939-00-05838-X
http://dx.doi.org/10.2298/FIL1406143M
http://dx.doi.org/10.1186/1029-242X-2013-493
http://dx.doi.org/10.1186/1687-1812-2013-24
http://dx.doi.org/10.1186/1687-1812-2014-210
http://dx.doi.org/10.1186/1687-1812-2013-277
http://dx.doi.org/10.2298/FIL1307259S
http://dx.doi.org/10.1186/1687-1812-2012-94

	Introduction
	Main Results
	Application
	Conclusions
	References

