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1. Introduction
Fixed point problems in non-linear analysis was study and very important tool in the last 60
years. In fact, the techniques of fixed point have been apply to many fields of sciences such
as Chemistry, Biology, Physics and Engineering. Over the years, fixed point theory has been
generalized by several mathematicians (see [1–11]).

Throughout this article, N, R+, R denote that set of natural numbers, the set of positive real
numbers and the set of real numbers, respectively.

Wardowski [1] introduced a new contraction called F-contraction and proved a fixed point
result as a generalization of the Banach contraction principle. Firstly, let Im be the set of
functions F :R+ →R satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all α,β ∈R+ such that α<β implies that F(α)< F(β).
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(F2) For any sequence {αn} of positive real numbers, lim
n→∞αn = 0 and lim

n→∞F(αn) = −∞ are
equivalent.

(F3) There exists k ∈ (0,1) such that lim
α→0+α

kF(α)= 0.

Definition 1.1 ([1]). Let (X ,d) be a metric space and F ∈ Im. A self-mapping S : X → X is said to
be an F -contraction, if there exists τ> 0 such that d (Sx,Sy)> 0→ τ+F (d (Sx,Sy))≤ F (d (x, y))
for all x, y ∈ X .

Theorem 1.2 ([1]). Let (X ,d) be a complete metric space and S : X → X be an F-contraction.
Then, S has a unique fixed point.

Geraghty [6] studied a generalized of Banach contraction principle. We denote by Ω the
family of all functions β : [0,∞) → [0,1) such that, for any bounded sequence {tn} of positive
reals, β (tn)→ 1 implies tn → 0.

Theorem 1.3 ([6]). Let be a metric space and S : X → X be a self-mapping. Suppose that there
exists β ∈Ω such that for all x, y ∈ X ,

d (Sx,Sy)≤β (d (x, y))d (x, y) .

On the other hand, Samet et al. [9] introduced the class of α-admissible mappings.

Definition 1.4 ([9]). For a nonempty set X , let S : X → X and α : X × X → [0,∞) be given
mappings. We say that S is α-admissible, if for all x, y ∈ X we have α (x, y) ≥ 1 implies
α (Sx,Sy)≥ 1.

Definition 1.5 ([2]). For a nonempty set X , let S, f : X → X and α : X×X →R be given mappings.
We say that (S, f ) is triangular α-admissible, if

(S1) α (x, y)≥ 1⇒α (Sx, f y)≥ 1 and α ( f x,Sy)≥ 1, x, y ∈ X .

(S2) α (x, z)≥ 1, α (z, y)≥ 1⇒α (x, y)≥ 1, x, y, z ∈ X .

2. Main Results
We introduce the concept of an F-α-Geraghty contraction as follows:

Definition 2.1. Let S, f : X → X be a metric space and be a self-mappings. (S, f ) is said to be
an F-α-Geraghty contraction, if there exists τ> 0 such that, for all x,∈ X with α (x, y) ≥ 1 we
have

d (Sx, f y)> 0⇒ τ+F (d (Sx, f y))≤ F
(
β (M (x, y))

)
M (x, y) , (2.1)

where F ∈,β ∈Ω and

M (x, y)=max
{

d (x, y) ,d (x,Sx) ,d (y, f y) ,
d (x, f y)+d (y,Sx)

2

}
. (2.2)
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In case where F(x)= ln(x) for x > 0, (2.1) becomes

d (Sx, f y)≤ e−τβ (M (x, y)) M (x, y) (2.3)

≤β (M (x, y) M (x, y))

for all x, y ∈ X with α (x, y) ≤ 1 and Sx 6= f y Note that (2.3) is satisfied for all x, y ∈ X with
α (x, y)≤ 1 and Sx = f y.

If S = f then is called generalized F-α-Geraghty contraction mapping, if there exists τ> 0
such that, for all x, y ∈ X , with d (x, y)≥ 1 we have

d ( f x, f y)≥ 0⇒ τ+F (d ( f x, f y))≤ F
(
β (M (x, y))

)
M (x, y) ,

where F ∈ Im,β ∈Ω and

M (x, y)=max
{

d (x, y) ,d (x,Sx) ,d (y,Sy) ,
d (x,Sy)+d (y,Sx)

2

}
.

Theorem 2.2. Let (X ,d) be a complete metric space and S, f : X → X be such that (S, f ) is an
F-α-Geraghty contraction. Suppose that the following holds:

(1) (S, f ) is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) S and f are continuous.

Then, (S, f ) have common fixed point.

Proof. By (2.2), there exists x0 ∈ X such that α (x0,Sx0) ≥ 1. Let x1 ∈ X be such that x1 = Sx0

and x2 = Sx1. Continuous this process, we construct a sequence {xn} such that x2n+1 = Sx2n

and x2n+2 = f x2n+1 for all n ∈N∪ {0}. By assumption α (x0, x1)≥ 1 and a pair (S, f ) is triangular
α-admissible, we have

α (xn, xn+1)≥ 1 for all n ∈N∪ {0} . (2.4)

From (2.1), (2.4) and the triangular inequality, we get

τ+F (d (x2n+1, x2n+2))= τ+F (d (Sx2n, f x2n+1))

≤ F
(
β (M (x2n, x2n+1)) M (x2n, x2n+1)

)
,

where

M (x2n, x2n+1)

=max
{

d (x2n, x2n+1) ,d (x2n,Sx2n) ,d (x2n+1, f x2n+1) ,
d (x2n, f x2n+1)+d (x2n+1,Sx2n)

2

}
=max

{
d (x2n, x2n+1) ,d (x2n, x2n+1) ,d (x2n+1, x2n+2) ,

d (x2n, x2n+2)
2

}
≤max

{
d (x2n, x2n+1) ,d (x2n+1, x2n+2) ,

d (x2n, f x2n+1)+d (x2n+1, x2n+2)
2

}
=max

{
d (x2n, x2n+1) ,d (x2n+1, x2n+2)

}
.
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So, we get

τ+F (d (x2n+1, x2n+2))≤ F(β(max{d(x2n, x2n+1),d(x2n+1, x2n+2)})) (2.5)

× (max{d(x2n, x2n+1),d(x2n+1, x2n+2)}).

If d (x2n+1, x2n+2)> d (x2n, x2n+1), then

max {d (x2n, x2n+1) ,d (x2n+1, x2n+2)}= d (x2n+1, x2n+2) .

So (2.5) becomes

τ+F (d (x2n+1, x2n+2))≤ F
(
β (d (x2n+1, x2n+2))d (x2n+1, x2n+2)

)
.

This yields,

F (d (x2n+1, x2n+2))< F
(
β (d (x2n+1, x2n+2))d (x2n+1, x2n+2)

)
.

From (F1) and β ∈ω, we have

d (x2n+1, x2n+2)<β (d (x2n+1, x2n+2))d (x2n+1, x2n+2)

< d (x2n+1, x2n+2)

which is a contradiction. Thus, for all n ∈N∪ {0}, we get

F (d (x2n+1, x2n+2))≤ F
(
β (d (x2n, x2n+1))d (x2n, x2n+1)

)−τ. (2.6)

Let d (x2n+1, x2n+2)= γn. From (2.6) implies that

F
(
γn

)≤ F
(
β

(
γ0

)
γ0

)−τ. (2.7)

Taking n →∞ in (2.7), we obtain

lim
n→∞γn = 0. (2.8)

Next, we shall prove that {xn} is a Cauchy sequence. From (2.7) and (F3) , there exists k ∈ (0,1)
such that

lim
n→∞γ

k
nF

(
γn

)= 0. (2.9)

By (2.7), for all n ∈N, we have

γk
nF

(
γn

)−γk
nF

(
β

(
γ0

)
γ0

)≤ γk
n
(
F

(
β

(
γ0

)
γ0

)−nτ
)−γk

nF
(
β

(
γ0

)
γ0

)
(2.10)

≤ 0.

Taking n →∞ in (2.10), by (2.8) and (2.9), we get

lim
n→∞γ

k
n = 0.

Therefore, there exists n0 ∈N such that for all n ≥ n0,

γn ≤ 1

n
1
k

.

Then, for all n ≥ n0 and q ∈N
d

(
xn, xn+q

)≤ d (xn, xn+1)+d (xn+1, xn+2)+·· ·+d
(
xn+q−1, xn+q

)
≤

n+q−1∑
i=n

d (xi, xi+1)
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=
n+q−1∑

i=n
γi

≤
∞∑

i=n

1

i
1
k

.

Since
∞∑

n=1

1

n
1
k
<∞, then lim

n→∞d
(
xn, xn+q

) = 0. Hence, {xn} is a Cauchy sequence. By (X ,d) is a

complete metric space, there exists x∗ ∈ X such that d (xn, x∗)= 0.

Finally, we shall prove that is a common fixed point of and Since d (xn, x∗)= 0. So, we have
lim

n→∞d (x2n, x∗)= lim
n→∞d (x2n+1, x∗)= 0. By continuity of S and f . We get that lim

n→∞d (x2n+1,Sx∗)=
lim

n→∞d (Sx2n,Sx∗)= 0 and lim
n→∞d (x2n+2, f x∗)= lim

n→∞d ( f x2n+1, f x∗)= 0. Thus, Sx∗ = x∗ = f x∗ and
hence x∗ is a common fixed point of S and f .

In the following, we have some corollary of our result.

Corollary 2.3. Let (X ,d) be a complete metric space and S, f : X → X be given mappings.
Suppose there exist a function α : X × X →R and τ> 0 such that

d (Sx, f y)> 0⇒ τ+F (α (x, y)d (Sx, f y)) (2.11)

≤ F
(
β (M (x, y)) M (x, y)

)
,

for all x, y ∈ X , where F ∈ Im,β ∈Ω and M(x, y) is defined by (2.2). Suppose that the following
holds:

(1) (S, f ) is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) S and f are continuous.

Then, (S, f ) have common fixed point.

Proof. Let x, y ∈ X , with α (x, y) ≥ 1. By (F1), if d (Sx, f y) > 0 and (2.11) holds, the proof is
concluded by Theorem 2.2.

Corollary 2.4. Let (X ,d) be a complete metric space and S, f : X → X be given mappings.
Suppose there exist τ> 0 such that

d (Sx, f y)> 0⇒ τ+F (d (Sx, f y))≤ F
(
β (M (x, y))

)
M (x, y) , (2.12)

for all x, y ∈ X , where F ∈ Im,β ∈Ω and M (x, y) is defined by (2.2). Then, (S, f ) have common
fixed point.

Proof. It suffices to take α (x, y)= 1 in Theorem 2.2.

Corollary 2.5. Let (X ,d) be a complete metric space and S, f : X → X be given mappings.
Suppose there exist τ> 0 such that

d (Sx, f y)> 0⇒ τ+F (d (Sx, f y))≤ F(M(x, y))M (x, y) , (2.13)
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for all x, y ∈ X , where F ∈ Im,β ∈Ω and M (x, y) is defined by (2.2). Then, (S, f ) have common
fixed point.

Proof. It suffices to take α (x, y)= 1 and β(M (x, y))= M (x, y) in Theorem 2.2.

Theorem 2.6. Let (X ,d) be a complete metric space and S, f : X → X be such that (S, f ) is an
F-α-Geraghty contraction. Suppose that the following holds:

(1) (S, f ) is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) if {xn} is a sequence in X such that α (xn, xn+1)≥ 1 for all n ∈N∪ {0}
and xn → x∗ ∈ X as n →∞, then there exist a sequence

{
xnk

}
of {xn} such

that α
(
xnk , x∗

)≥ 1 for all k.

Then, (S, f ) have common fixed point.

Proof. Following the proof of Theorem 2.2, we know that define x2n+1 = Sx2n and x2n+2 = f x2n+1

for all n ∈N∪ {0} converges to x∗ ∈ X . By the hypotheses of (2.3), there exists a sequence
{
xnk

}
of {xn} such that α

(
x2nk , x∗

)≥ 1 for all k. Then, by (2.1), we have

τ+F
(
d

(
x2nk+1, f x∗

))= τ+F
(
d

(
Sx2nk , f x∗

))
≤ F

(
β

(
M

(
x2nk , x∗

))
M

(
x2nk , x∗

))
,

where

M
(
x2nk , x∗

)=max
{

d
(
x2nk , x∗

)
,d

(
x2nk ,Sx2nk

)
,d

(
x∗, f x∗

)
,
d

(
x2nk , f x∗

)+d
(
x∗,Sx2nk

)
2

}
.

Taking k →∞, we get

lim
k→∞

M
(
x2nk , x∗

)= d
(
x∗, f x∗

)
. (2.14)

Suppose that d (x∗, f x∗) > 0. From (2.14) there exists N ∈N such that for all k ≥ N , we have
M

(
x2nk , x∗

)> 0, which implies that

β
(
M

(
x2nk , x∗

))< M
(
x2nk , x∗

)
.

This is,

d
(
x2nk , f x∗

)< M
(
x2nk , x∗

)
. (2.15)

Taking k →∞ in (2.15), we get d (x∗, f x∗)< d (x∗, f x∗), which is a contradiction. Hence, we find
that x∗ is a common of f . Similarly, we find that x∗ is a common of S. Thus, x∗ is a common of
S and f .

Corollary 2.7. Let (X ,d) be a complete metric space and S, f : X → X be given mappings.
Suppose there exist a function α : X × X →R and τ> 0 such that

d (Sx, f y)> 0⇒ τ+F (α (x, y)d (Sx, f y))≤ F
(
β (M (x, y)) M (x, y)

)
, (2.16)

for all x, y ∈ X , where F ∈ Im, β ∈Ω and M (x, y) is defined by (2.2). Suppose that the following
holds:

Communications in Mathematics and Applications, Vol. 9, No. 4, pp. 627–636, 2018



On F -α-Geraghty Contractions: J. Janwised et al. 633

(1) (S, f ) is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) if {xn} is a sequence in X such that α (xn, xn+1)≥ 1 for all n ∈N∪ {0}
and xn → x∗ ∈ X as n →∞, then there exist

{
xnk

}
of {xn} such

that α
(
xnk , x∗

)≥ 1 for all k.

Then, (S, f ) have common fixed point.

Proof. Let x, y ∈ X , with α (x, y) ≥ 1 By (F1), if d (Sx, f y) > 0 and (2.16) holds, the proof is
concluded by Theorem 2.6. If

M (x, y)=max
{

d (x, y) ,d (x,Sx) ,d (y,Sy) ,
d (x,Sy)+d (y,Sx)

2

}
and in Theorem 2.2 and Theorem 2.6, we have the following corollaries.

Corollary 2.8. Let (X ,d) be a complete metric space and S, f : X → X be generalized F-α-
Geraghty contraction mapping such that the following holds:

(1) S is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) S and f are continuous.

Then, S has a fixed point.

Corollary 2.9. Let (X ,d) be a complete metric space and S, f : X → X be generalized F-α-
Geraghty contraction mapping such that the following holds:

(1) S is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) if {xn} is a sequence in X such that α (xn, xn+1)≥ 1 for all n ∈N∪ {0}
and xn → x∗ ∈ X as n →∞, then there exist a sequence

{
xnk

}
of {xn} such

that α
(
xnk , x∗

)≥ 1 for all k.

Then, S has a fixed point.

If M (x, y) = max {d (x, y) ,d (x,Sx) ,d (y,Sy)} and S = f in Theorem 2.2, Theorem 2.6, we
obtain the following corollaries.

Corollary 2.10. Let (X ,d) be a complete metric space, α : X ×X →R be a function and f : X → X
be generalized F-α-Geraghty contraction mapping such that the following holds:

(1) S is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) S and f are continuous.

Then, S has a fixed point.
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Corollary 2.11. Let (X ,d) be a complete metric space, α : X ×X →R be a function and f : X → X
be generalized F-α-Geraghty contraction mapping such that the following holds:

(1) S is triangular α-admissible;

(2) there exists x0 ∈ X such that α (x0,Sx0)≥ 1;

(3) if {xn} is a sequence in X such that α (xn, xn+1) ≥ 1 for all n ∈N∪ {0} and xn → x∗ ∈ X as
n →∞, then there exist a sequence

{
xnk

}
of {xn} such that α

(
xnk , x∗

)≥ 1 for all k.

Then, S has a fixed point.

3. Application on A Dynamic Programming

In this subsection, we present an application on a dynamic programming. The existence
of solutions of functional equations and system of functional equations arising in dynamic
programming which have been studied by using various fixed point theorems (more details, the
reader can see [3–5]. We assume that U and V are Banach spaces, W ⊂U is a state space and
D ⊂V is a decision space. In particular, we are interested in solving the following two functional
equations arising in dynamic programming:

g(x)= sup
y∈D

{r(x, y)+P(x, y, g(τ(x, y)))}, x ∈W , (3.1)

g(x)= sup
y∈D

{r(x, y)+Q(x, y, g(τ(x, y)))}, x ∈W , (3.2)

where τ : W ×D → W , r : W ×D → R and P,Q : W ×D ×R→ R. We study the existence and
uniqueness of h∗ ∈ B(W) a common solution of the functional equations (3.1) and (3.2).

Let B(W) denote the set of all bounded real-valued functions on W . We know that B(W)
endowed with the metric

d(h,k)= sup
x∈W

|h(x)−k(x)|,h,k ∈ B(W), (3.3)

is a complete metric space. Consider the mappings S, f : B(W)→ B(W)

S(h)(x)= sup
y∈D

{r(x, y)+P(x, y,h(τ(x, y)))}, x ∈W , (3.4)

f (h)(x)= sup
y∈D

{r(x, y)+Q(x, y,h(τ(x, y)))}, x ∈W . (3.5)

It’s clear that, if r,P and Q are bounded, then the operators S and f are well-defined. We shall
prove the following theorem.

Theorem 3.1. Let 0<α< 1. Suppose there exists k ∈ (0,α) such that for every (x, y) ∈W ×D and
h1,h2 ∈ B(W), we obtain

P(x, y,h1(τ(x, y)))−Q(x, y,h2(τ(x, y)))| ≤ kM(h1,h2), (3.6)

where

M(h1,h2)=max
{

d(h1,h2),d(h1,Sh2),d(h2, f h2),
d(h1, f h2)+d(h2,Sh1)

2

}
. (3.7)

Then, S and f have a unique common fixed point in B(W).
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Proof. Let ξ> 0 be an arbitrary positive real number, x ∈W , h1,h2 ∈ B(W). By using (3.4) and
(3.5), there exist y1, y2 ∈ D such that

S(h1)(x)< r(x, y1)+P(x, y1,h1(τ(x, y1)))+ξ, (3.8)

f (h2)(x)< r(x, y2)+Q(x, y2,h2(τ(x, y2)))+ξ, (3.9)

S(h1)(x)≥ r(x, y2)+P(x, y2,h1(τ(x, y2))), (3.10)

f (h2)(x)≥ r(x, y1)+Q(x, y1,h2(τ(x, y1))) . (3.11)

From (3.10) and (3.11), it follows that

S(h1)(x)− f (h2)(x)≤ P(x, y1,h1(τ(x, y1)))−Q(x, y1,h2(τ(x, y1)))+ξ
≤ |P(x, y1,h1(τ(x, y1)))−Q(x, y1,h2(τ(x, y1)))|+ξ
≤ kM(h1,h2)+ξ.

Similarly, from (3.9) and (3.10), we obtain that

f (h2)(x)−S(h1)(x)≤ kM(h1,h2)+ξ. (3.12)

Consequently, we deduce that

|S(h1)(x)− f (h2)(x)| ≤ kM(h1,h2)+ξ. (3.13)

Since the inequality (3.13) is true for any x ∈W , we get that

d(S(h1), f (h2))≤ kM(h1,h2)+ξ. (3.14)

Finally, ξ is arbitrary, so

d(S(h1), f (h2))≤ kM(h1,h2)≤ kM(h1,h2)M(h1,h2), (3.15)

by taking τ = − ln( k
α

),β(t) = αt and F(t) = ln(t). Applying Corollary 2.5, the mappings S and
f have a unique common fixed point, that is, the functional equations (3.1) and (3.2) have a
unique common solution h∗ ∈ B(W).

Conclusion
This paper presents some common fixed point theorems for a pair of F-α-Geraghty contraction.
The presented theorems extend, generalize and inprove classical results in fixed point theory
and Banach contraction principle.
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