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1. Introduction
Let (P) denote the problem of existence of a point in the plane of a given triangle T , that is at
rational distance from all the vertices of T . Answer to (P) is positive if T has a rational side
and the square of all sides are rational (see [1]). In [3], a complete solution to (P) is given for all
isosceles triangles with one rational side. In this article, we provide a complete solution to (P)
for all equilateral triangles.

In all what follows, θ denotes an arbitrary positive real number and T = [θ] denotes the
equilateral triangle with side-length θ. For convenience, we say that θ is “good” (or “suitable”) if
answer to (P) is positive for the triangle T = [θ]. Clearly, the property “θ is good” is invariant by
any rational re-scaling of θ.
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It turns out that the good θ must have algebraic degree 1,2 or 4, and they form a subclass of
the positive bi-quadric numbers, that is, the positive roots of equations of the form x4+ux2+v = 0,
u,v ∈Q. The general form of such numbers is√

α±
√
β, α, β ∈Q, β≥ 0, α±

√
β≥ 0

that includes positive numbers of the form

α,
p
α,α±

√
β
p
α±

√
β, α,β ∈Q, α,β≥ 0.

Notations and Conventions
(x, y) and (x, y, z) denote the gcd .

( x
p
)

denotes Legendre’s symbol. A triangle with side-lengths a,
b, c is denoted by T = [a,b, c]. A triangle is non-degenerated if it has positive area. A radical is
non-degenerated if it is irrational.

2. The results
Theorem 2.1. If θ is good, then, θ is bi-quadric. More precisely, θ2 =α±√

β for some α,β ∈Q,
β≥ 0 and α positive.

Theorem 2.2. Suppose θ ∉ Q and θ2 ∈ Q. Then, θ is good ⇔ θ has the form θ = λ
pp1 . . . pr ,

where λ ∈Q, λ> 0, r ≥ 1, p1, . . . , pr are distinct odd primes, pi is either 3 or of the form 6k+1.

Theorem 2.3. Suppose θ2 = α±√
β, α,β ∈ Q, α,β > 0,

√
β ∉ Q. Then, θ is good ⇔ up to a

rational re-scaling of θ, θ is described as follows:

2θ2 = (a2 +b2 + c2)±4∆
p

3 ,

where [a,b, c] is a non-degenerated primitive integral triangle with area ∆ such that 4∆
p

3 ∉Q.

Remark. ∆ is given by Hero’s formula, ∆=p
s(s−a)(s−b)(s− c), s = 1

2 (a+b+ c). Equivalently,
4∆

p
3 = p

3(a+b+ c)(−a+b+ c)(a−b+ c)(a+b− c), and the condition 4∆
p

3 ∉ Q means that
this latter radical is non-degenerated.

3. Proofs of Theorems 2.1 and 2.2
Proof of Theorem 2.1. Suppose θ good. Let M be a point in the plane of triangle T = [θ], whose
distances from the vertices of T are all rational. The following fundamental relation is well-
known (see [4]):

3(a4 +b4 + c4 +θ4)= (a2 +b2 + c2 +θ2)2 . (•)

Expanding (•) yields a relation as θ4−uθ2+v = 0, where u,v ∈Q and u = a2+b2+c2 > 0. Solving
for θ2 yields θ2 =α±√

β, with α,β ∈Q and α= 1
2 u > 0.

Lemma 3.1. Let q > 1 be a square-free integer. Then, we have: The equation x2+3y2 = qz2 has a
solution in integers x, y, z with z 6= 0 if and only if any prime factor of q is either 3 or of the form
6k+1.
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Proof. Suppose first that q has only prime factors as 3 or 6k+1. Since the quadratic form
x2+3y2, x, y ∈Z, represents 3 and every prime p = 6k+1, and since the set {x2+3y2, x, y ∈Z} is
closed by multiplication, we conclude that the equation x2+3y2 = q ·z2 has a solution in integers
x, y, z with z = 1.

Conversely, suppose that x2+3y2 = q · z2 has a solution in integers x, y, z, z 6= 0. Pick such a
solution with |z| minimum. Clearly, (x, y)= 1. We claim that q is odd and has no prime factor
6k−1. For the purpose of contradiction, we consider two cases:

Case 1: q is even. Set q = 2w, w odd. From x2 +3y2 = 2wz2, we see that x ≡ y(mod2). As
(x, y)= 1, x and y must be odd, so x2 +3y2 ≡ 4(mod8). Now, 4/2wz2 yields wz2 even. But
w is odd, hence z is even, so 2wz2 ≡ 0 (mod8). We get a contradiction.

Case 2: q = p ·w for some prime p = 6k−1. x2 +3y2 = pwz2 yields x2 +3y2 ≡ 0(mod p). As
(x, y)= 1, p cannot divide y. Hence for some t ∈Z, yt ≡ 1(mod p). Therefore, x2t2 +3y2t2 ≡
x2t2 +3≡ 0(mod p), so −3≡ (xt)2(mod p). Hence

(−3
p

)=+1 contradicting p = 6k−1.

Lemma 3.2. Let θ = λ
pq, λ ∈Q, λ> 0, q > 1 square-free integer. We have: θ is good ⇔. There

are a,b, e, r, s ∈Q, e 6= 0, such that

a2 +3b2 = q , (3.1)

(a+ e)2 +3(b+ e)2 = qr2 , (3.2)

(a− e)2 +3(b+ e)2 = qs2 . (3.3)

Proof. By re-scaling, we take θ = 2
pq. Let T = ABC = [θ]. Choose a x− y axis to get the

coordinates A(0,
√

3q), B(−pq,0), C(
pq, 0).

• Suppose first that θ is good:
There is a point M = M(x, y) in the plane of T such that MA, MB, MC ∈Q. Clearly, M 6= A,B,C.
Set w = MA

q , r = MB
wq , s = MC

wq . Then, w, r, s ∈Q− {0}.

The Pythagoras relations are:

MA
2 = x2 + (y−

√
3q)2 = w2q2 , (3.1′)

MB
2 = (x+p

q)2 + y2 = w2q2r2 , (3.2′)

MC
2 = (x−p

q)2 + y2 = w2q2s2 . (3.3′)

Subtracting (3.2′) and (3.3′) yields x = 1
4 w2q(r2 − s2) ·pq, that is,

x =α
p

q, α ∈Q . (3.4)

Then (3.2′) gives y2 ∈Q, and then (3.1′) gives 2y
√

3q ∈Q, hence, y= γ
√

3q, γ ∈Q.

For convenience, we put γ=β+1, obtaining

y= (β+1)
√

3q, β ∈Q , (3.5)

Due to (3.4) and (3.5), equations (3.1′), (3.2′), (3.3′) become after dividing by q:

α2 +3β2 = qw2 ,
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(α+1)2 +3(β+1)2 = qw2r2 ,

(α−1)2 +3(β+1)2 = qw2s2 .

Set a = α
w , b = β

w , e = 1
w . Dividing by w2, we get precisely relations (3.1), (3.2), (3.3).

• Conversely suppose that relations (3.1), (3.2), (3.3) hold with some a,b, e, r, s ∈Q, e 6= 0. Define
point M = M(x, y) in the plane of T by

x = a
e
p

q , y=
(

b
e
+1

)√
3q .

We may write:

MA
2 = x2 + (y−

√
3q)2 = q

a2

e2 +3q
b2

e2 = q
e2 (a2 +3b2)= q

e2 · q =
( q

e

)2
,

MB
2 =

((a+ e
e

)p
q
)2

+
((

b+ e
e

)√
3q

)2
= q

e2

(
(a+ e)2 +3(b+ e)2)= q

e2 · qr2 =
( qr

e

)2
,

MC
2 =

((a− e
e

)p
q
)2 +

((
b+ e

e

)√
3q

)2
= q

e2

(
(a− e)2 +3(b+ e)2)= q

e2 · qs2 =
( qs

e

)2
.

Therefore, MA, MB, MC are all rational.

Proof of Theorem 2.2. Let θ such that θ ∉ Q and θ2 ∈ Q: θ can be written as θ = λ
pq, λ ∈ Q,

λ> 0, q > 1 square-free integer.

• Suppose first that q is even or has a prime factor 6k−1. By Lemma 3.1, a2 +3b2 = q, a,b ∈Q,
is impossible.

Hence, relation (3.1) in Lemma 3.2 fails, so θ is not good.

• Suppose now that q has only prime factors as 3 or 6k+1. We show that θ is good using the
characterization of Lemma 3.2:

By Lemma 3.1, for some a,b ∈Q, we have a2 +3b2 = q. Set e =− q
4b = −(a2+3b2)

4b , r = a−b
2b , s = a+b

2b .
We have

(a+ e)2 +3(b+ e)2 = (a2 +3b2)+4e2 +2e(a+3b)

= q+ q2

4b2 − q
2b

(a+3b)

= q
4b2 (4b2 + q−2b(a+3b))

= q
4b2 (4b2 +a2 +3b2 −2ab−6b2)

= q
4b2 (a2 +b2 −2ab)

= q
(a−b)2

4b2

= q · r2

and

(a− e)2 +3(b+ e)2 = (a2 +3b2)+4e2 −2e(a−3b)
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= q+ q2

4b2 + q
2b

(a−3b)

= q
4b2 (4b2 + q+2b(a−3b))

= q
4b2 (4b2 +a2 +3b2 +2ab−6b2)

= q
4b2 (a2 +b2 +2ab)

= q
(a+b)2

4b2

= q · s2 .

4. Proof of Theorem 2.3
Lemma 4.1. Let x, y, z, t be positive real numbers such that

3(x4 + y4 + z4 + t4)= (x2 + y2 + z2 + t2)2 . (})

Then, any three of x, y, z, t satisfy the triangle inequality.

Proof. Since x, y, z, t play symmetric roles, it suffices to show that x, y, z satisfy the triangle
inequality. Write (}) as

t4 − (x2 + y2 + z2)t2 + (x4 + y4 + z4 − x2 y2 − y2z2 − z2x2)= 0 .

The discriminant ∆ of this trinomial in t2 must be non-negative. But, ∆= 6(x2 y2+ y2z2+ z2x2)−
3(x4 + y4 + z4) that factors as ∆= 3(x+ y+ z)(−x+ y+ z)(x− y+ z)(x+ y− z).
Hence, (−x+ y+ z)(x− y+ z)(x+ y− z) ≥ 0. The reader can easily check (using contraposition)
that x, y, z must satisfy the triangle inequality.

Lemma 4.2. Let T = ABC = [θ]. Let a,b, c be positive real numbers satisfying

3(a4 +b4 + c4 +θ4)= (a2 +b2 + c2 +θ2)2 .

Then, there is a point M in the plane of T such that MA = a, MB = b and MC = c.

Proof. By Lemma 4.1, a, b and θ satisfy the triangle inequality. In particular, a + b ≥ θ.
It follows that the circle C(A,a) intersects the circle C(B,b) at two points M1 and M2

(M1 = M2 if a+ b = θ). Set c1 = M1C and c2 = M2C. By the fundamental relation (•), we
have 3(a4+b4+c4

1+θ4)= (a2+b2+c2
1+θ2)2 and 3(a4+b4+c4

2+θ4)= (a2+b2+c2
2+θ2)2. Therefore,

c2
1 and c2

2 are the roots of the trinomial in T

T2 − (a2 +b2 +θ2)T + (a4 +b4 +θ4 −a2b2 −b2θ2 −θ2a2)= 0 .

Since by hypothesis c2 is also a root of this trinomial, we must have c2 = c2
1 or c2 = c2

2. Hence
c = c1 or c = c2. Therefore, a, b and c are the distances from either point M1 or M2 to the
vertices A, B and C of T .

Proof of Theorem 2.3. Let θ > 0 such that θ2 =α±√
β, α,β ∈Q, α,β> 0,

√
β ∉Q.
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• Suppose first that θ is good:
Let P be a point in the plane of T = ABC = [θ] such that P A = a, PB = b, PC = c are all rational.
We have

3(a4 +b4 + c4 +θ4)= (a2 +b2 + c2 +θ2)2 . (∗)

By Lemma 4.1, a, b and c satisfy the triangle inequality. Relation (∗) yields

θ4−Uθ2+V = 0 with U = a2+b2+c2 and V = a4+b4+c4−a2b2−b2c2−c2a2 (U ,V ∈Q).

Solving for θ2, we get

2θ2 = (a2 +b2 + c2)±
√

3(a+b+ c)(−a+b+ c)(a−b+ c)(a+b− c) . (?)

Since θ2 has algebraic degree 2, then, the radical in (?) is non-degenerated. In particular, the
triangle [a,b, c] is non degenerated. Select a sufficiently large positive integer N such that
Na, Nb, Nc are all integers and set D = (Na, Nb, Nc). If we multiply relation (?) by N2

D2 , this
results in replacing in (?) θ by N

D ·θ and a, b, c by the integers Na
D , Nb

D , Nc
D , respectively. As an

outcome, we obtain essentially the same relation (?) where θ has been re-scaled by the rational
N
D , and where the new symbols a, b, c represent relatively prime positive integers, satisfying
the triangle inequality.

• Conversely, suppose that for some positive rational λ, θ0 = λ ·θ is described precisely as in
Theorem 2.3. Eliminating the radical

4∆
p

3=
√

6(a2b2 +b2c2 + c2a2)−3(a4 +b4 + c4)

in the relation 2θ2
0 = (a2 +b2 + c2)±4∆

p
3 leads to

3(a4 +b4 + c4 +θ4
0)= (a2 +b2 + c2 +θ2

0)2 .

By Lemma 4.2 there is a point M in the plane of T = [θ0] that is at distances a, b, c from the
vertices of T . Since a, b, c are integers, then, θ0 is good. Therefore, θ =λ−1θ0 is also good.

5. Exercises
(1) Check which are “good” among the radicals:

p
2,

p
3,

p
5,

p
6,

p
7,

p
10 .

(2) Show that the positive real number θ =
√

25+12
p

3 is “good”.

(3) Suppose that 2θ2 =α+√
β, α,β ∈Q, α,β> 0,

√
β ∉Q, and α2 <β. Show that θ is not good.

(4) Produce solution-points to problem (P) for the triangle T = [
p

3].

(5) Let θ =α+β 4pq > 0, α,β ∈Q, β 6= 0, q > 1 square-free integer. Show that θ is not good.

(6) Suppose that 2θ2 =α±√
β> 0, α,β ∈Q, α,β> 0,

√
β ∉Q. Write the fraction α in lowest

terms as α= m
n (m,n positive integers) and suppose that mn has the form mn = 4l(8k+7),

k, l non-negative integers. Then, prove that θ is not good.

6. Conclusion
We have a complete answer to problem (P) for equilateral triangles T = [θ]:
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If θ is transcendental or has algebraic degree ≥ 5, then, θ is not good. If θ has algebraic degree 3,
or if both θ and θ2 have algebraic degree 4, then, θ is not good. If θ is irrational and θ2 ∈Q,
so θ has the form λ

pq, where λ ∈Q, λ> 0 and q > 1 is a square-free integer, then, θ is good
if and only if q is odd and has no prime factor 6k−1. Finally, if θ2 = α±√

β, α,β ∈Q, β > 0,√
β ∉Q, then, θ is not good if α≤ 0 or if α2 <β, while if α> 0 and α2 >β, θ is good if and only if

θ satisfies the geometric property described in Theorem 2.3.
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