Gaussian Tetranacci Numbers

Dursun Taşcı and Halime Acar*
Department of Mathematics, Gazi University, Ankara, Turkey
*Corresponding author: halimeacar4242@gmail.com

Abstract

In this paper, we define Gaussian Tetranacci sequence. Moreover, we give generating function, Binet-like formula, sum formulas and matrix representation of Gaussian tetranacci numbers.

Keywords. Tetranacci numbers; Gaussian Tetranacci numbers
MSC. 11B37; 11B39
Received: March 13, $2017 \quad$ Accepted: June 11, 2017
Copyright © 2017 Dursun Taşcı and Halime Acar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Tetranacci sequence was defined by Feinberg in [3]. Then, some new properties and theorems were obtained from this definition in [13], [8], [9], [12] and [1]. In [14], Waddill defined new Tetranacci sequences by choosing arbitrary integers as initial conditions. Weisstein determined prime Tetranacci numbers by choosing prime numbers for initial conditions in [10].

In this study, we define Gaussian Tetranacci numbers by using Gauss integers as initial conditions. In [4] Gürel used Gauss integers in Tribonacci sequence and thus defined Gaussian Tribonacci numbers. On the other hand, Gauss integers have extremely been used in Fibonacci sequence studies, some of which are [2], [5], [11] and [7]. Indeed, the idea of using complex numbers in Fibonacci sequence belongs to Horadam [6].

The Tetranacci sequence is the sequence of integers M_{n} defined by the initial values $M_{0}=M_{1}=0, M_{2}=M_{3}=1$ and the recurrence relation [3],

$$
\begin{equation*}
M_{n}=M_{n-1}+M_{n-2}+M_{n-3}+M_{n-4} \text { for all } n \geq 4 \tag{1.1}
\end{equation*}
$$

The first few values of M_{n} are $0,0,1,1,2,4,8,15, \ldots$

2. Gaussian Tetranacci Numbers

Gaussian Tetranacci numbers are defined by

$$
\begin{equation*}
G M_{n}=G M_{n-1}+G M_{n-2}+G M_{n-3}+G M_{n-4} \quad(n \geq 4) \tag{2.1}
\end{equation*}
$$

for the initial conditions

$$
G M_{0}=G M_{1}=0, G M_{2}=1 \text { and } G M_{3}=1+i .
$$

We note that

$$
\begin{equation*}
G M_{n}=M_{n}+i M_{n-1} . \tag{2.2}
\end{equation*}
$$

The first few values of Gaussian Tetranacci numbers are given the following table.

n	0	1	2	3	4	5	6	7	8
$G M_{n}$	0	0	1	$1+i$	$2+i$	$4+2 i$	$8+4 i$	$15+8 i$	\ldots

Theorem 2.1. The generating function of Gaussian Tetranacci numbers,

$$
\begin{equation*}
g(x)=\sum_{n=0}^{\infty} G M_{n} \cdot x^{n}=\frac{x^{2}+i \cdot x^{3}}{1-x-x^{2}-x^{3}-x^{4}} . \tag{2.3}
\end{equation*}
$$

Proof. Let

$$
g(x)=G M_{0}+G M_{1} \cdot x+G M_{2} \cdot x^{2}+G M_{3} \cdot x^{3}+\cdots+G M_{n} \cdot x^{n}=\sum_{n=0}^{\infty} G M_{n} \cdot x^{n}
$$

be generating function of Gaussian Tetranacci numbers. Then we have

$$
\begin{aligned}
g(x) \cdot x & =G M_{0} \cdot x+G M_{1} \cdot x^{2}+G M_{2} \cdot x^{3}+G M_{3} \cdot x^{4}+\cdots+G M_{n-1} \cdot x^{n}+\cdots \\
g(x) \cdot x^{2} & =G M_{0} \cdot x^{2}+G M_{1} \cdot x^{3}+G M_{2} \cdot x^{4}+G M_{3} \cdot x^{5}+\cdots+G M_{n-2} \cdot x^{n}+\cdots \\
g(x) \cdot x^{3} & =G M_{0} \cdot x^{3}+G M_{1} \cdot x^{4}+G M_{2} \cdot x^{5}+G M_{3} \cdot x^{6}+\cdots+G M_{n-3} \cdot x^{n}+\cdots
\end{aligned}
$$

and

$$
g(x) \cdot x^{4}=G M_{0} \cdot x^{4}+G M_{1} \cdot x^{5}+G M_{2} \cdot x^{6}+G M_{3} \cdot x^{7}+\cdots+G M_{n-4} \cdot x^{n}+\cdots
$$

So, we obtain

$$
\begin{aligned}
g(x) & -g(x) \cdot x-g(x) \cdot x^{2}-g(x) \cdot x^{3}-g(x) \cdot x^{4} \\
= & G M_{0}+\left(G M_{1}-G M_{0}\right) \cdot x+\left(G M_{2}-G M_{1}-G M_{0}\right) \cdot x^{2} \\
& +\left(G M_{3}-G M_{2}-G M_{1}-G M_{0}\right) \cdot x^{3} \\
& +\left(G M_{4}-G M_{3}-G M_{2}-G M_{1}-G M_{0}\right) \cdot x^{4} \\
& +\left(G M_{5}-G M_{4}-G M_{3}-G M_{2}-G M_{1}-G M_{0}\right) \cdot x^{5}+\cdots \\
& +\left(G M_{n}-G M_{n-1}-G M_{n-2}-G M_{n-3}-G M_{n-4}\right) \cdot x^{n}+\cdots
\end{aligned}
$$

$$
g(x) \cdot\left(1-x-x^{2}-x^{3}-x^{4}\right)=x^{2}+i \cdot x^{3}
$$

or

$$
g(x)=\frac{x^{2}+i \cdot x^{3}}{1-x-x^{2}-x^{3}-x^{4}} .
$$

The roots of the equation $t^{4}-t^{3}-t^{2}-t-1=0$ are

$$
\begin{aligned}
& \alpha=-7.6379 \times 10^{-2}-0.8147 i, \\
& \beta=-7.6379 \times 10^{-2}+0.8147 i, \\
& \gamma=-0.7748, \\
& \theta=1.9276 .
\end{aligned}
$$

We note that, $\alpha+\beta+\gamma+\theta=1$ and $\alpha \cdot \beta \cdot \gamma \cdot \theta=-1$. As well known, the Binet-like formula of Tetranacci numbers is

$$
\begin{align*}
M_{n}= & \frac{\alpha^{n+3}}{(\alpha-\beta) \cdot(\alpha-\gamma) \cdot(\alpha-\theta)}+\frac{\beta^{n+3}}{(\beta-\alpha) \cdot(\beta-\gamma) \cdot(\beta-\theta)} \\
& +\frac{\gamma^{n+3}}{(\gamma-\alpha) \cdot(\gamma-\beta) \cdot(\gamma-\theta)}+\frac{\theta^{n+3}}{(\theta-\alpha) \cdot(\theta-\beta) \cdot(\theta-\gamma)} \tag{2.4}
\end{align*}
$$

Now, we give the Binet-like formula for Gaussian Tetranacci numbers.
Theorem 2.2. The Binet formula for the Gaussian Tetranacci numbers is

$$
\begin{align*}
G M_{n}= & {\left[\frac{\alpha^{n+3}}{(\alpha-\beta) \cdot(\alpha-\gamma) \cdot(\alpha-\theta)}+\frac{\beta^{n+3}}{(\beta-\alpha) \cdot(\beta-\gamma) \cdot(\beta-\theta)}\right.} \\
& \left.+\frac{\gamma^{n+3}}{(\gamma-\alpha) \cdot(\gamma-\beta) \cdot(\gamma-\theta)}+\frac{\theta^{n+3}}{(\theta-\alpha) \cdot(\theta-\beta) \cdot(\theta-\gamma)}\right] \\
+ & i \cdot\left[\frac{\alpha^{n+3}}{(\alpha-\beta) \cdot(\alpha-\gamma) \cdot(\alpha-\theta)}+\frac{\beta^{n+3}}{(\beta-\alpha) \cdot(\beta-\gamma) \cdot(\beta-\theta)}\right. \\
& \left.+\frac{\gamma^{n+3}}{(\gamma-\alpha) \cdot(\gamma-\beta) \cdot(\gamma-\theta)}+\frac{\theta^{n+3}}{(\theta-\alpha) \cdot(\theta-\beta) \cdot(\theta-\gamma)}\right] . \tag{2.5}
\end{align*}
$$

Proof. Considering eq. (2.2) the proof is easily seen.

3. Equations

Theorem 3.1. Sum of Gaussian Tetranacci numbers;

$$
\begin{equation*}
\sum_{k=1}^{n} G M_{k}=\frac{1}{3}\left[G M_{n+4}-G M_{n+2}-2 G M_{n+1}-(1+i)\right] . \tag{3.1}
\end{equation*}
$$

Proof. Using the recurrence relation,

$$
G M_{k}=G M_{k-1}+G M_{k-2}+G M_{k-3}+G M_{k-4}, \quad k \geq 4,
$$

we have

$$
\begin{aligned}
G M_{0} & =G M_{4}-G M_{3}-G M_{2}-G M_{1} \\
G M_{1} & =G M_{5}-G M_{4}-G M_{3}-G M_{2} \\
G M_{2} & =G M_{6}-G M_{5}-G M_{4}-G M_{3} \\
G M_{3} & =G M_{7}-G M_{6}-G M_{5}-G M_{4} \\
\vdots & \vdots \\
\vdots & \vdots \\
G M_{k-3} & =G M_{k+1}-G M_{k}-G M_{k-1}-G M_{k-2} \\
G M_{k-2} & =G M_{k+2}-G M_{k+1}-G M_{k}-G M_{k-1} \\
G M_{k-1} & =G M_{k+3}-G M_{k+2}-G M_{k+1}-G M_{k} \\
G M_{k} & =G M_{k+4}-G M_{k+3}-G M_{k+2}-G M_{k+1}
\end{aligned}
$$

If the equations are added side by side, we obtain

$$
\sum_{k=1}^{n} G M_{k}=\frac{1}{3}\left[G M_{k+4}-G M_{k+2}-2 \cdot G M_{k+1}-(1+i)\right] .
$$

Theorem 3.2.

$$
\begin{equation*}
\sum_{k=0}^{n} G M_{k} \cdot G M_{k+1}=M_{n} \cdot\left(M_{n+1}-M_{n-1}\right)+i \cdot\left(M_{n}^{2}+M_{n+1} \cdot M_{n-1}\right) \tag{3.2}
\end{equation*}
$$

where M_{n} denotes nth Tetranacci number.
Proof. If the equation $G M_{n}=M_{n}+i \cdot M_{n-1}$ is used, then we write

$$
\begin{aligned}
G M_{n} \cdot G M_{n+1} & =\left(M_{n}+i \cdot M_{n-1}\right) \cdot\left(M_{n+1}+i \cdot M_{n}\right) \\
& =M_{n} \cdot M_{n+1}+i \cdot M_{n} \cdot M_{n}+i \cdot M_{n-1} \cdot M_{n+1}-M_{n} \cdot M_{n-1} \\
& =M_{n} \cdot M_{n+1}+\left(G M_{n+1}-M_{n+1}\right) \cdot M_{n}+\left(G M_{n}-M_{n}\right) \cdot M_{n+1}-M_{n} \cdot M_{n-1} \\
& =M_{n} \cdot M_{n+1}+G M_{n+1} \cdot M_{n}-M_{n+1} \cdot M_{n}+G M_{n} \cdot M_{n+1}-M_{n} \cdot M_{n+1}-M_{n} \cdot M_{n-1} \\
& =M_{n} \cdot\left(M_{n+1}+i \cdot M_{n}-M_{n-1}\right)+i \cdot M_{n+1} \cdot M_{n-1} \\
& =M_{n} \cdot M_{n+1}+i \cdot M_{n}^{2}-M_{n} \cdot M_{n-1}+i \cdot M_{n+1} \cdot M_{n-1} \\
& =M_{n} \cdot\left(M_{n+1}-M_{n-1}\right)+i \cdot\left(M_{n}^{2}+M_{n+1} \cdot M_{n-1}\right) .
\end{aligned}
$$

Theorem 3.3. For $n \geq 1$,

$$
\begin{equation*}
\sum_{k=0}^{n} G M_{k}^{2}=\left(M_{n}^{2}-M_{n-1}^{2}\right)+2 \cdot i \cdot M_{n-1} \cdot M_{n} \tag{3.3}
\end{equation*}
$$

Proof. If the equation $G M_{n}=M_{n}+i \cdot M_{n-1}$ is used, then we write

$$
\begin{aligned}
G M_{n} \cdot G M_{n} & =\left(M_{n}+i \cdot M_{n-1}\right) \cdot\left(M_{n}+i \cdot M_{n-1}\right) \\
& =M_{n} \cdot M_{n}+i \cdot M_{n} \cdot M_{n-1}+i \cdot M_{n-1} \cdot M_{n}-M_{n-1} \cdot M_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& =M_{n}^{2}+2 \cdot i \cdot M_{n} \cdot M_{n-1}-M_{n-1}^{2} \\
& =M_{n}^{2}+2 \cdot i \cdot M_{n} \cdot\left(G M_{n}-M_{n}\right)-M_{n-1}^{2} \\
& =M_{n}^{2}+2 \cdot M_{n} \cdot G M_{n}-2 \cdot M_{n}^{2}-M_{n-1}^{2} \\
& =M_{n}^{2}+2 \cdot M_{n} \cdot\left(M_{n}+i \cdot M_{n-1}\right)-2 \cdot M_{n}^{2}-M_{n-1}^{2} \\
& =M_{n}^{2}+2 \cdot M_{n}^{2}+2 \cdot i \cdot M_{n} \cdot M_{n-1}-2 \cdot M_{n}^{2}-M_{n-1}^{2} \\
& =M_{n}^{2}-M_{n-1}^{2}+2 \cdot i \cdot M_{n-1} \cdot M_{n} .
\end{aligned}
$$

Theorem 3.4. For $n \geq 1$,

$$
\begin{equation*}
\sum_{k=1}^{n} G M_{2 k+1}=\frac{1}{3} \cdot\left[G M_{2 n+2}+G M_{2 n+1}+2 \cdot G M_{2 n}+G M_{2 n-2}+i-2\right] \tag{3.4}
\end{equation*}
$$

Proof. The following equations are written by using eq. (2.1).

$$
\begin{aligned}
G M_{k} & =G M_{k-1}+G M_{k-2}+G M_{k-3}+G M_{k-4} \quad(k \geq 4) . \\
G M_{4} & =G M_{3}+G M_{2}+G M_{1}+G M_{0} \\
G M_{6} & =G M_{5}+G M_{4}+G M_{3}+G M_{2} \\
G M_{8} & =G M_{7}+G M_{6}+G M_{5}+G M_{4} \\
G M_{10} & =G M_{9}+G M_{8}+G M_{7}+G M_{6} \\
& \vdots \\
G M_{2 n+2} & =G M_{2 n+1}+G M_{2 n}+G M_{2 n-1}+G M_{2 n-2} .
\end{aligned}
$$

If the equations are regulated;

$$
\begin{aligned}
G M_{3} & =G M_{4}-G M_{2}-G M_{1}-G M_{0} \\
G M_{5} & =G M_{6}-G M_{4}-G M_{3}-G M_{2} \\
G M_{7} & =G M_{8}-G M_{6}-G M_{5}-G M_{4} \\
G M_{9} & =G M_{1} 0-G M_{8}-G M_{7}-G M_{6} \\
& \vdots \\
G M_{2 n+1} & =G M_{2 n+2}-G M_{2 n}-G M_{2 n-1}-G M_{2 n-2} .
\end{aligned}
$$

From here,

$$
\begin{aligned}
\sum_{k=1}^{n} G M_{2 k+1} & =G M_{2 n+2}-G M_{2}-\sum_{k=1}^{2 n-1} G M_{k} \\
& =G M_{2 n+2}-G M_{2}-\frac{1}{3} \cdot\left[G M_{2 n+3}-G M_{2 n+1}-2 \cdot G M_{2 n}-(1+i)\right] \\
& =\frac{1}{3} \cdot\left[3 \cdot G M_{2 n+2}-3-G M_{2 n+3}+G M_{2 n+1}+2 \cdot G M_{2 n}-(1+i)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3} \cdot\left[2 \cdot G M_{2 n+2}-3+G M_{2 n+2}+G M_{2 n+1}+G M_{2 n}-G M_{2 n+3}+G M_{2 n}-(1+i)\right] \\
& =\frac{1}{3} \cdot\left[G M_{2 n+2}+G M_{2 n+2}-3-G M_{2 n-1}+G M_{2 n}+(1+i)\right] \\
& =\frac{1}{3} \cdot\left[G M_{2 n+2}+G M_{2 n+1}+2 \cdot G M_{2 n}+G M_{2 n-2}+i-2\right] .
\end{aligned}
$$

Theorem 3.5. For $n \geq 1$,

$$
\begin{equation*}
\sum_{k=1}^{n} G M_{2 k}=\frac{1}{3}\left[2 \cdot G M_{2 n+1}+G M_{2 n-1}-G M_{2 n-2}+1-2 i\right] . \tag{3.5}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \sum_{k=1}^{2 n+1} G M_{k}=G M_{1}+G M_{2}+G M_{3}+\cdots+G M_{2 n+1}, \\
& \sum_{k=1}^{n} G M_{2 k+1}=G M_{1}+G M_{3}+G M_{5}+\cdots+G M_{2 n+1}, \\
& \begin{array}{l}
\sum_{k=1}^{2 n+1} G M_{k}-\sum_{k=1}^{n} G M_{2 k+1}=G M_{2}+G M_{4}+G M_{6}+\cdots+G M_{2 n} \\
\quad= \\
\quad \frac{1}{3} \cdot\left[G M_{2 n+5}-G M_{2 n+3}-2 \cdot G M_{2 n+2}-(1+i)\right] \\
\quad+\frac{1}{3} \cdot\left[G M_{2 n+2}+G M_{2 n+1}+2 \cdot G M_{2 n}+G M_{2 n-2}+i-2\right] \\
\quad= \\
\quad \frac{1}{3} \cdot\left[G M_{2 n+4}-2 \cdot G M_{2 n+2}-2 \cdot G M_{2 n}-G M_{2 n-2}+1-2 \cdot i\right] \\
\quad= \\
\frac{1}{3} \cdot\left[G M_{2 n+3}+G M_{2 n+2}+G M_{2 n+1}+G M_{2 n}-2 \cdot G M_{2 n+2}-2 \cdot G M_{2 n}-G M_{2 n-2}+1-2 \cdot i\right] \\
\quad= \\
\frac{1}{3} \cdot\left[2 \cdot G M_{2 n+1}+G M_{2 n-1}-G M_{2 n-2}+1-2 \cdot i\right] .
\end{array}
\end{aligned}
$$

In this section, we give two new generating matrices for Gaussian Tetranacci numbers. Then we get an explicit formula for the sums.

Let θ_{4}, R_{4} and $E_{4, n}$ matrices are defined as follows. θ is the analogue of the Qmatrix in [4].

$$
\begin{aligned}
& \theta_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], \\
& R_{4}=\left[\begin{array}{cccc}
1+i & 1 & 0 & 0 \\
1 & 0 & 0 & i \\
0 & 0 & i & 1-i \\
0 & i & 1-i & -1
\end{array}\right]
\end{aligned}
$$

and

$$
E_{4, n}=\left[\begin{array}{cccc}
G M_{n+3} & G M_{n+2} & G M_{n+1} & G M_{n} \\
G M_{n+2} & G M_{n+1} & G M_{n} & G M_{n-1} \\
G M_{n+1} & G M_{n} & G M_{n-1} & G M_{n-2} \\
G M_{n} & G M_{n-1} & G M_{n-2} & G M_{n-3}
\end{array}\right] .
$$

Theorem 3.6. For $n \geq 3$,

$$
\begin{equation*}
\theta_{4}^{n} \cdot R_{4}=E_{4, n} . \tag{3.6}
\end{equation*}
$$

Proof. (Induction on n) If $n=1$, then $\theta_{4} \cdot R_{4}=E_{4,1}$. Suppose that the equation holds for $n-1$, which means $\theta_{4}^{n-1} \cdot R_{4}=E_{4, n-1}$. Then we show that the equation holds for n.

$$
\begin{aligned}
\theta_{4}^{n} \cdot R_{4} & =\theta_{4} \cdot \theta_{4}^{n-1} \cdot R_{4} \\
& =\theta_{4} \cdot E_{4, n-1} \\
& =E_{4, n} .
\end{aligned}
$$

Thus the proof is complete.
Theorem 3.7. For $n \geq 1$,

$$
\theta_{4}^{n} \cdot\left[\begin{array}{c}
2+i \tag{3.7}\\
1+i \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
G M_{n+4} \\
G M_{n+3} \\
G M_{n+2} \\
G M_{n+1}
\end{array}\right] .
$$

Proof. (Induction on n) If $n=1$, then

$$
\theta_{4}^{1} \cdot\left[\begin{array}{c}
2+i \\
1+i \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
4+2 i \\
2+i \\
1+i \\
1
\end{array}\right]=\left[\begin{array}{c}
G M_{5} \\
G M_{4} \\
G M_{3} \\
G M_{2}
\end{array}\right] .
$$

Suppose that the equation holds for $n-1$. Then we show that the equation holds for n.

$$
\begin{aligned}
\theta_{4}^{n} \cdot\left[\begin{array}{c}
2+i \\
1+i \\
1 \\
0
\end{array}\right] & =\theta_{4} \cdot \theta_{4}^{n-1} \cdot\left[\begin{array}{c}
2+i \\
1+i \\
1 \\
0
\end{array}\right] \\
& =\theta_{4} \cdot\left[\begin{array}{c}
G M_{n+3} \\
G M_{n+2} \\
G M_{n+1} \\
G M_{n}
\end{array}\right] \\
& =\left[\begin{array}{c}
G M_{n+4} \\
G M_{n+3} \\
G M_{n+2} \\
G M_{n+1}
\end{array}\right]
\end{aligned}
$$

Thus the proof is complete.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] J. Arkin, D.C. Arney, G.E. Bergum, S.A. Burr and B.J. Porter, Unique Fibonacci formulas, Fibonacci Quarterly 27 (4) (1989), 296-302.
[2] G. Berzsenyi, Gaussian Fibonacci numbers, The Fibonacci Quarterly 15 (3) (1977), 233-236.
[3] M. Feinberg, Fibonacci-Tribonacci, Fibonacci Quarterly 1 (3) (1963), 71-74.
[4] E. Gurel, k-Order Gaussian Fibonacci and k-Order Gaussian Lucas Recurrence Relations, Ph.D Thesis, Pamukkale University Institute of Science Mathematics.Denizli, Turkey (2015).
[5] C.J. Harman, Complex Fibonacci numbers, The Fibonacci Quarterly 19 (1) (1981), 82-86.
[6] A.F. Horadam, Complex fibonacci numbers and fibonacci quaternions, Amer. Math. Monthly 70 (1963), 289-291.
[7] J.H. Jordan, Gaussian Fibonacci and Lucas numbers, The Fibonacci Quarterly 3 (4) (1965), 315-318.
[8] T.B. Kirkpatrick, Jr., Fibonacci sequences and additive triangles of higher order and degree, Fibonacci Quarterly 15 (4) (1977), 319-322.
[9] W.I. McLaughlin, Note on a Tetranacci alternative to Bode's law, Fibonacci Quarterly 17 (2) (1979), 116-117.
[10] T.D. Noe and J.V. Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences 8 (2005), Article 05.4.4.
[11] S. Pethe and A.F. Horadam, Generalized Gaussian Fibonacci numbers, Bull. Austral. Math. Soc. 33 (1986), 37-48.
[12] R. Scheon, Harmonic, geometric and arithmetic means in generalized Fibonacci sequences, Fibonacci Quarterly 22 (4) (1984), 354-357.
[13] W.R. Spickerman and R.N. Joyner, Binet's formula for the recursive sequence of order K, Fibonacci Quarterly 22 (4) (1984), 327-331.
[14] M.E. Waddill, The Tetranacci sequence and generalizations, The Fibonacci Quarterly 30 (1) (1992), 9.

