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1. Introduction
In this paper, we provide generalizations of the results of Merovci concerning some Turan-
type inequalities involving the (q,k)-Polygamma functions. In the meantime, we present the
following definitions and preliminary materials.

The (q,k)-analogue of the Gamma function, Γq,k(x) is defined for x > 0, q ∈ (0,1) and k > 0
by any of the following equivalent definitions (see [3], [4] and the references therein).

Γq,k(x)=
∫ ( [k]q

1−qk

) 1
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= 1
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∞∏
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1− q(n+1)k

1− qnk+x

where (1 + x)t
q,k = (1+x)∞q,k

(1+qtx)∞q,k
, (1 + x)∞q,k =

∞∏
i=0

(1 + qikx) for x, t ∈ R and Ex
q,k =

∞∑
n=0

qkn(n−1)/2xn

[n]qk ! =(
1+ (1− qk)x

)∞
q,k is the (q,k)-analogue of the classical exponential function. The function Γq,k(x)

satisfies the basic identities [3]

Γq,k(x+k)= [x]qΓq,k(x), Γq,k(k)= 1,

where [x]q = 1−qx

1−q . The (q,k)-Digamma function, ψq,k(x) and the (q,k)-Polygamma functions,

ψ(m)
q,k (x) are defined as follows (see [2], [6]).

ψq,k(x)= d
dx
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=−1
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ψ(m)
q,k (x)= dm

dxmψq,k(x)

= (ln q)m+1
∞∑

n=1

(nk)mqnkx

1− qnk , (1.1)

where m ∈N and ψ(0)
q,k(x)≡ψq,k(x).

In 2013, Merovci [6] established the following Turan-type inequalities involving the function
ψ(m)

q,k (x).

Theorem 1.1. For m,n = 1,2,3, . . . ,

ψ
( m

a + n
b )

q,k

(
x
a
+ y

b

)
≤ (

ψ(m)
q,k (x)

) 1
a
(
ψ(n)

q,k(y)
) 1

b , (1.2)

where m+n
2 is an integer, a > 1, 1

a + 1
b = 1.

Theorem 1.2. For m,n = 1,2,3, . . . ,(
ψ(m)

q,k (x)+ψ(n)
q,k(y)

) 1
u ≤ (

ψ(m)
q,k (x)

) 1
u + (

ψ(n)
q,k(y)

) 1
u , (1.3)

where m+n
2 is an integer, u ≥ 1.

Theorem 1.3. For every x > 0 and integers m ≥ 1, we have:

If m is odd, then
(
expψ(m)

q,k (x)
)2 ≥ expψ(m+1)

q,k (x) ·expψ(m−1)
q,k (x); (1.4)

If m is even, then
(
expψ(m)

q,k (x)
)2 ≤ expψ(m+1)

q,k (x) ·expψ(m−1)
q,k (x). (1.5)

Also, in a recent paper [9], the author gave improvements of Theorems 1.1 and 1.2.

In the present work, the main objective is to provide generalizations of the above inequalities.
In order to achieve this, the following lemmas shall be employed.
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Lemma 1.4 (Generalized Hölder’s Inequality). Let i = 1,2,3, . . . , N and n = 1,2,3, . . . ,T such
that the sums exist. Then the inequality

T∑
n=1

∣∣∣∣ N∏
i=1

Q i,n

∣∣∣∣≤ N∏
i=1

( T∑
n=1

∣∣Q i,n
∣∣αi

) 1
αi

(1.6)

is valid for αi > 1 such that
N∑

i=1

1
αi

= 1.

Lemma 1.5 (Generalized Minkowski’s Inequality). Let i = 1,2,3, . . . , N and n = 1,2,3, . . . ,T such
that the sums exist. Then the inequality( T∑

n=1

∣∣∣∣ N∑
i=1

Q i,n

∣∣∣∣u) 1
u

≤
N∑

i=1

( T∑
n=1

∣∣Q i,n
∣∣u

) 1
u

(1.7)

is valid for u ≥ 1.

For proofs of Lemmas 1.4 and 1.5, see [8] and the references therein.

Lemma 1.6 (Weighted AM-GM Inequality). For i = 1,2, . . . ,n, let Q i ≥ 0 and λi ≥ 0 such that
n∑

i=1
λi = 1. Then the inequality

n∑
i=1

λiQ i ≥
n∏

i=1
Qλi

i (1.8)

is valid .

Lemma 1.6 is well-known in the literature. See for instance [5] and the related references.

2. Main Results
In this section, we present generalizations of the results of Merovci as shown in Theorem 1.1,
1.2 and 1.3.

Theorem 2.1. For i = 1,2, . . . , N , let αi > 1,
N∑
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1
αi

= 1 and mi ∈N such that
N∑
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∈N. Then the
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(

N∑
i=1

mi
αi

)
q,k

( N∑
i=1

xi

αi

)∣∣∣∣≤ N∏
i=1

∣∣∣ψ(mi)
q,k (xi)

∣∣∣ 1
αi (2.1)

is valid for xi > 0.

Proof. From (1.1) and (1.6) we obtain
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=
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which yields the result (2.1).

Remark 2.2. Let N = 2, α1 = a, α2 = b, m1 = m, m2 = n, x1 = x and x2 = y in Theorem 2.1.
Then, we get∣∣∣∣ψ( m

a + n
b )

q,k
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x
a
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b
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b

as obtained in [9]. Particularly, if m and n are odd, then we obtain the result (1.2).

Remark 2.3. By letting q → 1 as k → 1 in Theorem 2.1, we recover Theorem 2.1 of [1].

Theorem 2.4. For i = 1,2, . . . , N , let mi ∈N. Then the inequality( N∑
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which yields the result (2.2). (Note. The first inequality follows from the fact that
n∑

i=1
au

i ≤(
n∑

i=1
ai

)u

, for ai ≥ 0, u ≥ 1, n ∈N whiles the second inequality is as a result of the generalized

Minkowski’s inequality (1.7)).

Remark 2.5. By letting N = 2, m1 = m, m2 = n, x1 = x and x2 = y in Theorem 2.4, we get(∣∣ψ(m)
q,k (x)

∣∣+ ∣∣ψ(n)
q,k(y)

∣∣) 1
u ≤ ∣∣ψ(m)

q,k (x)
∣∣ 1

u + ∣∣ψ(n)
q,k(y)

∣∣ 1
u

as obtained in [9]. Particularly, if m and n are odd, then we obtain the result (1.3).

Theorem 2.6. For i = 1,2, . . . , N , let αi > 1,
N∑

i=1

1
αi

= 1 and mi ∈N such that
N∑

i=1
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∈N. Then, the

following inequalities are valid for xi > 0.
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Proof. Let mi and
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both be odd. Then,
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)
−
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=
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which follows from the weighted AM-GM inequality (1.8). Hence

ψ
(
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αi

)
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( N∑
i=1
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αi

)
≤

N∑
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ψ
(mi)
q,k (xi)

αi
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Similarly, if mi and
n∑

i=1

mi
αi

are both even, then we obtain

ψ
(
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i=1
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)

q,k
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N∑
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Finally, by exponentiating (2.5) and (2.6), we obtain (2.3) and (2.4), respectively.
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3. Concluding Remarks
By using the generalized Hölder’s inequality, the generalized Minkowski’s inequality and the
weighted AM-GM inequality, we provide generalizations of the results of Merovci [6]. Interested
readers can also refer to the work [7] for similar results involving the m-th derivative of the
(q,k)-Gamma function.
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