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1. Introduction
Let Γ=PSL(2,Z), the set of all integer matrices of order 2 with the unit determinant and every
matrix A is identified with its negative −A. With the matrix multiplication, Γ is actually the
quotient of the group SL(2,Z) by its center {±I}. This quotient group is called the modular
group. The group Γ can act on the upper half-plane H2 = {z ∈C : Im(z)> 0} by linear fractional
transformation, that is,

±
(
a b
c d

)
· z = az+b

cz+d
,
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where z ∈H2 and ±(a b
c d

) ∈Γ. For convenience, we may omit the sign of matrices representing
the elements of Γ and the related objects which we mention after.

In another manner, we can consider that the modular group is a group of linear fractional
transformations on H2 determined by

Γ=
{

z 7→ az+b
cz+d

: a,b, c,d ∈Z and ad−bc = 1
}

,

and a group operation is composition of functions. The extended modular group Γ̂ is the group
generated by the modular group Γ and the hyperbolic reflection z 7→ −z̄ across the imaginary
axis. The explicit forms of elements of Γ̂ are demonstrated as follows,

z 7→ az+b
cz+d

, a,b, c,d ∈Z and ad−bc = 1,

z 7→ az̄+b
cz̄+d

, a,b, c,d ∈Z and ad−bc =−1.

 (1.1)

In the forms of matrix representations, Γ̂ is generated by PSL(2,Z) and the matrix
(−1 0

0 1
)
, and

acts on H2 by the action (1.1).
The action of Γ̂ on H2 can be extended to the set of rational numbers together with ∞,

Q̂=Q∪ {∞}, where ∞ is represented by the fractions 1
0 = −1

0 . Similarly, every element of Q is
represented by the reduced fractions x

y = −x
−y . With these representations, the action (1.1) can be

rewritten as follows,

z 7→ ax+by
cx+d y

,

where
(a b

c d
) ∈ Γ̂. The group Γ acts on Q̂ by the same action. Further, it acts transitively on Q̂,

that is, for every v ∈ Q̂ there exists an element γ ∈Γ such that γ(∞)= v. This means that there
is the only one orbit under the action of Γ. Exactly, Γ̂ acts transitively on Q̂ since it contains Γ
as a subgroup.

The suborbital graph is a directed graph arisen from the transitive group action. The concept
of this graph was introduced by Sims in 1967 for finite permutation groups, see more details
in [12]. Next, this idea was extended to the case of Γ by Jones, Singerman, and Wicks. They
investigated and described many properties of suborbital graphs for Γ in [8]. After that there
were many studies focusing on the suborbital graphs for the modular group and modular-group-
like objects, see in [4, 7, 11] for examples, including the extended modular group which was
studied in [9].

In [8], the authors let Gu,n denote the suborbital graph for Γ on Q̂. They used the Γ-invariant
equivalence relation induced by the congruence subgroup,

Γ0(n)=
{(

a b
c d

)
∈Γ : c ≡ 0 mod n

}
,

of Γ to partition Q̂ into many finite numbers of blocks, the equivalence classes. They restricted
Gu,n on the block containing ∞, and denoted this subgraph by Fu,n. Connectivity of Fu,n was
studied there. Connectivity of suborbital graphs for various underline subgroups of Γ has been
also investigated, see for example in [2, 3, 6, 10].

In the case of the extended modular group Γ̂, the notations of suborbital graphs are defined
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similar to the case of Γ. The authors used Ĝu,n to denote the suborbital graph for Γ̂ on Q̂, and
constructed the Γ̂-invariant equivalence relation on Q̂ by using the congruence subgroup

Γ̂0(n)=
{(

a b
c d

)
∈ Γ̂ : c ≡ 0 mod n

}
.

Certainly, F̂u,n denotes the subgraph of Ĝu,n restricted on the block containing ∞. It contains
Fu,n as a subgraph of the same vertex set. Some properties of the graphs in this case were
studied following from the case of Γ. Nevertheless, connectivity of the graph was not yet
examined.

Connectivity of an undirected graph is an easy concept. For the easiest explanation, if we pull
one vertex of the connected graph, other vertices will be moved. The case of a directed graph is
more complicated. There are many types of connectivity depending on directions. This research
focuses on only weak and strong types. Connectivity of graphs in the studies mentioned above
is actually weakly connected that we investigate graphs’ connectivity when they are considered
as undirected ones. For the strong type, the graph is said to be strongly connected if for any pair
v and w of vertices, there is a directed path from v to w. Obviously, strong connectivity implies
weak connectivity, so we say that the graph is disconnected or not connected if the graph does
not satisfy the axiom of weak connectivity.

In this paper, we examine connectivity of the graph F̂u,n. We found that there are differences
between the results of F̂u,n and Fu,n. The graph F̂u,n is (weakly or strongly) connected in many
more cases than the graph Fu,n. More precisely, for n ≥ 5, the graph Fu,n is not connected while
F̂u,n is (weakly or strongly) connected if n = 5,7,9 and u 6≡ ±1 mod n. Moreover, we obtain that
Fu,4 is not strongly connected while F̂u,4 is strongly connected.

2. Preliminaries
This section summarizes several necessary basic backgrounds which can be found in [1, 8, 9].
We start this section with a general definition of a suborbital graph.

Let G be a group acting transitively on a nonempty set X . Then G can act on the Cartesian
product X × X by

g(v,w)= (g(v), g(w)),

where g ∈ G and (v,w) ∈ X × X . The suborbital graph G(v,w) for G is a directed graph with
the vertex set X and there is a directed edge from v1 to v2, which is traditionally denoted by
v1 → v2, if and only if the ordered pair (v1,v2) exists in the orbit G(v,w). We can see that the
graph G(w,v) is actually the graph G(v,w) but arrows are reversed. We say that G(w,v) and
G(v,w) are paired suborbital graphs. If G(v,w)=G(w,v), the graph is said to be self-paired.

Let α ∈ X . Since G acts on X transitively, every element of X can be written in the form
g(α) for some g ∈G. Suppose that H is a subgroup of G containing the stabilizer Gα. Then the
G-invariant equivalence relation ∼ on X induced by H is given by,

g(α)∼ g′(α) if and only if g′ ∈ gH.

An equivalence class is called a block, and the block containing β ∈ X is denoted by [β].
If β = g(α), we see that [β] = {gh(α) : h ∈ H}. Thus, the block [α] is actually the orbit

Communications in Mathematics and Applications, Vol. 8, No. 3, pp. 345–358, 2017



348 Connectivity of Suborbital Graphs for the Congruence Subgroups. . . : P. Jaipong and W. Tapanyo

H(α)= {h(α) : h ∈ H}, so H acts transitively on [α]. Let P= {[g(α)] : g ∈G}. Since the relation ∼
is G-invariant, the action of G can be directly extended to P. The induced action is certainly
transitive.

Let us consider more about the subgroup H. For the cases H =Gα and H =G, the obtained
relations are the identity and universal relations, respectively. The interesting case is the case
Gα < H < G which provides the nontrivial G-invariant equivalence relation. If v,w ∈ [α], the
graph G(v,w) restricted on the block [α] will be more complicated than the trivial graph. In this
case, the obtained subgraph is, in fact, the suborbital graph for H on its orbit H(α)= [α]. We
have known from the above paragraph that G permutes the blocks transitively. This implies
that the restricted graphs on blocks in P are isomorphic. Of course, G(v,w) is the union of all
those restricted graphs.

In the case of the modular group, G and X are replaced by Γ and Q̂, respectively. Now, we
have v,w ∈ Q̂. Since Γ acts on Q̂ transitively, we obtain that (∞, u

n ) ∈Γ(v,w) for some u
n ∈ Q̂ with

n ≥ 0. Certainly, G(∞, u
n )=G(v,w). Then the graph is simply denoted by Gu,n. If u

n =∞, this is
the trivial case of suborbital graphs. Thus, we assume that n ≥ 1. In this case, the edges of
the graph are the upper-semicircles connecting two rational numbers or the vertical half-lines
in H2 joining the rational vertices on the real line to the ideal vertex ∞. The Γ-invariant
equivalence relation is constructed by replacing Gα and H by Γ∞ and Γ0(n), respectively. Here,
the graph Fu,n is established to be the subgraph of Gu,n on [∞]= { x

y ∈ Q̂ : y≡ 0 mod n}. For the
case n = 1, we have G1,1 = F1,1. It is called the Farey graph and denoted by F. In the same
way, the suborbital graphs for the case of the extended modular group are established and the
notations are determined likewise as described in the previous section. The first result provided
below is a general property of a suborbital graph G for a group G. Other than vertices of the
graph, G also acts transitively on edges of G.

Figure 1. The Farey graph F embedded in H2

Proposition 1. Let G be a suborbital graph for a group G. Then G acts on vertices and edges of
G transitively.

The following series of lemmas are fundamental properties of the graph Gu,n and Ĝu,n.
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Lemma 2. Gu,n =Gu′,n′ if and only if n = n′ and u ≡ u′ mod n.

Lemma 3. Gu,n and Gu′,n are paired if −uu′ ≡ 1 mod n.

Lemma 4. Gu,n is self-paired if and only if u2 ≡−1 mod n.

Lemma 5. Ĝu,n and Ĝu′,n are paired if uu′ ≡±1 mod n.

Lemma 6. Ĝu,n is self-paired if and only if u2 ≡±1 mod n.

The next lemma provides that the Farey graph F can be embedded in the upper half-plane
H2, in fact, in H2 union with its Euclidean boundary R̂.

Lemma 7. No edges of F cross in H2.

The first fundamental result of the graph Fu,n is demonstrated in the next theorem, the
edge conditions of the graph Fu,n. It is obtained directly from the edge conditions for Gu,n, see
more details in [8, Theorem 3.2]. A bunch of results for Fu,n is also provided below.

Theorem 8. There is an edge r
s → x

y in Fu,n if and only if it satisfies one of the following
conditions,

(1) x ≡ ur mod n and ry− sx = n,

(2) x ≡−ur mod n and ry− sx =−n.

Lemma 9. Fu,n is isomorphic to a subgraph of F by the isomorphism v 7→ nv.

Theorem 10. Fu,n is weakly connected if and only if n ≤ 4.

A path in a directed graph is a sequence of m ≥ 1 different vertices v1,v2, . . . ,vm, allow
v1 = vm, such that v1 → v2 →···→ vm and some arrows may be reversed. The path in the first
case is said to be directed. A semi-infinite path is similarly defined from an infinite sequence of
vertices such that the first vertex exists. If 4≤ m <+∞ and v1 = vm, a (directed) path is called a
(directed) circuit. A (directed) circuit of three vertices is called a (directed) triangle. We say that
a graph is a forest if it contains no loops and circuits.

Theorem 11. Fu,n contains directed triangles if and only if u2 ±u+1≡ 0 mod n.

Remark 12. Fu,n is a forest if and only if it contains no triangles, i.e., u2 ±u+1 6≡ 0 mod n.

Similar to Fu,n, the edge conditions for F̂u,n is concluded from the edge conditions for the
graph Ĝu,n which is described in [9, Theorem 2].

Theorem 13. There is an edge r
s → x

y in F̂u,n if and only if it satisfies one of the following
conditions,

(1) x ≡ ur mod n and ry− sx = n,

(2) x ≡−ur mod n and ry− sx =−n,

(3) x ≡−ur mod n and ry− sx = n,
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(4) x ≡ ur mod n and ry− sx =−n.

We see that the first two conditions of Theorem 13 are the edge conditions for Fu,n and the
others are for F−u,n, so we have the following remark immediately.

Remark 14. r
s → x

y is an edge in F̂u,n if and only if it belongs to Fu,n or F−u,n. Then F̂u,n = F̂−u,n.
Moreover, F̂u,n =Fu,n if and only if 1≤ n ≤ 2, i.e., Fu,n =F−u,n.

The series of obvious results below can be concluded by combining the previous remark
together with some preceding results described above.

Corollary 15. F̂u,n = F̂u′,n if and only if u ≡ u′ mod n or u ≡−u′ mod n.

Corollary 16. Fu,n and F̂u,n are isomorphic to subgraphs of F by the isomorphism v 7→ nv.

Corollary 17. No edges of F̂u,n cross in H2.

3. Connectivity of graphs
This section examines connectivity of graphs. We start with the strong type of connectivity of
Fu,n. By Theorem 10, the graph Fu,n is weakly connected if and only if n ≤ 4, so we can consider
only for n ≤ 4. For n = 4, Lemma 4 and Remark 12 imply that Fu,n is a non-self-paired tree, so
we can see easily that it cannot be strongly connected. In the remaining cases, the graph Fu,n is
self-paired or contains directed triangles. The two types of connectivity are also equivalent after
applying the following proposition.

Proposition 18. Let G be a suborbital graph for a group G, and vertices v and w of the graph
be joined together by some path. If G is self-paired or contains directed circuits, then there is a
directed path from v to w.

Proof. The self-paired case is obvious, so we prove only the remaining case. The proof can
be obtained by verifying that a directed edge a → b can be replaced by some directed path
of reverse direction. Suppose that a1 → b1 → b2 · · ·bn → a1 is a directed path of G. We know
from Proposition 1 that G acts transitively on edges of G. Thus, there is g ∈ G such that
g(a1 → b1) = a → b. Then we obtains that a → b → g(b2) · · · g(bn) → a is a directed circuit of G
containing the edge a → b. Hence we can replace the edge a → b by the reverse directed path
a ← g(bn) · · · g(b2)← b.

Theorem 19. Fu,n is strongly connected if and only if n ≤ 3.

Since Fu,n is a subgraph of F̂u,n with the same vertex set, we obtain that F̂u,n is also strongly
connected for every n ≤ 3. By the similar reason applying on Theorem 10, we obtain the trivial
result that F̂u,4 is weakly connected. It is also self-paired by Lemma 6, so Proposition 18 implies
that F̂u,4 is strongly connected. We conclude all of these trivial results in the next proposition.

Proposition 20. F̂u,n is strongly connected for every n ≤ 4.
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The next proposition is another obvious result which can be concluded through the usage
of Fu,n. If u ≡±1 mod n, then u2 ≡ 1 mod n. Thus, Lemma 3 implies that Fu,n and F−u,n are
paired suborbital graphs. Therefore, connectivity of F̂u,n follows from that of Fu,n.

Proposition 21. If n ≥ 5 and u ≡±1 mod n, the graph F̂u,n is not connected.

Next, we verify nontrivial cases which are benefited from the fact that Γ̂0(n) contains
the translation z 7→ z + 1 and the reflection z 7→ −z̄ + 1 across the line Re(z) = 1

2 . These
transformations guarantee periodicity and symmetry of the graph F̂u,n. The translation implies
that the graph is periodic with period 1 along the real axis, so we can consider F̂u,n only in the
strip 0≤Re(z)≤ 1. Together with the reflection, we can apply the narrower strip 0≤Re(z)≤ 1

2 in
some cases. In the next result, we prove disconnectedness of the graph where the two lemmas
below are required.

Lemma 22. Let j
k be a fraction, need not be reduced, v and w be vertices of F̂u,n such that

v < j
k < w. If k | n, then v and w are not adjacent.

Proof. We assume the contrary that v and w are adjacent. By Corollary 16, the vertices nv
and nw are adjacent in F, so the edge joining them crosses the edge n j

k →∞ of F in H2. This
provides a contradiction to Lemma 7.

Lemma 23. Let a,b,k ∈Z where b 6= 0 6= k. Then the fraction 1+2abk
4b2k is reduced.

Proof. Since gcd(1+2abk,2bk)= 1, gcd(1+2abk,4b2k)= 1.

Theorem 24. Let n 6= 9 be a non-prime integer greater than 5. Then the graph F̂u,n is not
connected.

Proof. In the proof, we consider the graph on the strip 0≤Re(z)≤ 1. The case u ≡±1 mod n is
concluded in Proposition 21, so we can assume that u 6≡ ±1 mod n. This implies that n 6= 6. By
Corollary 15, we may suppose that 0< u

n < 1. The goal of this proof is to find a subset of [0,1]
separating some vertices of the graph from others.

In the case n = 8, we have u = 3 or u = 5. Since 3 ≡ −5 mod 8, Corollary 15 implies that
F̂3,8 = F̂5,8. Thus, we can check only the case u = 3. By using Lemma 3, we can easily check that
F3,8 and F−3,8 are paired. Then connectivity of F̂u,8 can be concluded directly from connectivity
of F3,8. Since F3,8 is not connected, F̂u,8 is not connected.

For n ≥ 10, we write n = pm where p is the least prime factor of n. One can see that m ≥ 5.
We now partition the interval (0,1] into m disjoint subintervals (0, 1

m ], ( 1
m , 2

m ], ( 2
m , 3

m ], . . . , ( m−1
m ,1].

Since m | n, Lemma 22 implies that vertices in each subinterval are not adjacent to rational
vertices outside. By using Theorem 13, one can easily check that, there are at most 4 vertices
of F̂u,n in the interval (0,1] adjacent to ∞. Since m ≥ 5, there is at least one subinterval
( j

m , j+1
m ],0≤ j ≤ m−1, not containing the vertices adjacent to ∞. We will show that the interval

( j
m , j+1

m ] contains some vertices of F̂u,n, so that the strip j
m <Re(z)≤ j+1

m contains components
of the graph. Therefore, the graph is not connected. To do this we replace variables a,b and
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k in Lemma 23 by 2 j+1,m and pk, respectively. Then we obtain the reduced proper fraction
1+2(2 j+1)mpk

4m2 pk = 1+2(2 j+1)nk
4mnk . It converges to 2 j+1

2m as a sequence of index k. Since the interval

( j
m , j+1

m ] is a neighborhood of 2 j+1
2m , the fraction 1+2(2 j+1)nk

4mnk belongs to the interval ( j
m , j+1

m ] for
some large integer k. Certainly, 1+2(2 j+1)nk

4mnk is a vertex of F̂u,n. The proof is now completed.

The next example provides the different result from the case of the modular group. We have
known by Theorem 10 that the graph Fu,n is not connected for every n ≥ 5; however, it fails for
the graph F̂u,n. We show that F̂2,5 is weakly connected. In fact, the graph is strongly connected
because it is self-paired. Before demonstrating this example, we discuss the useful object, the
Stern-Brocot tree. More properties of the tree can be found in [5, page 115-123].

The Stern-Brocot tree is an infinite tree whose vertex set is generated inductively by using
the notion of mediants. Suppose that r

s and x
y are fractions, called parents. Their mediant is the

fraction given by r
s ⊕ x

y := r+x
s+y . We can see that the mediant of any two fractions is not unique,

so we usually write the fractions in the lowest terms and assume that s, y > 0 to make the
operation ⊕ well-defined. The concept is extended to the fraction 1

0 representing ∞ to construct
the Stern-Brocot tree. First, we start with the initial set ST0 =R0 = {0 = 0

1 ,∞= 1
0 }. Then for

every n ≥ 1, Rn denotes the set of all mediants of successive fractions in STn−1, and define
STn = STn−1 ∪Rn written as the set of fractions arranged in increasing order. In this case, 1

0
is assumed to be the greatest fraction. The union ∪n≥0STn is the vertex set of the tree. The
following remark provides some facts of the Stern-Brocot tree.

Remark 25. (1) If r
s and x

y are consecutive fractions in STn with s, y≥ 0, then ry− sx =−1
and r

s < r+x
s+y < x

y . Moreover, they are reduced fractions.

(2) Every vertex of the Stern-Brocot tree appears only one time in some STn.

(3) ∪n≥0STn =Q+∪ {0,∞}.

We see that the consecutive fractions r
s and x

y in STn satisfy the edge conditions of the Farey
graph F. Therefore, the fractions are adjacent in F, so the tree is a subgraph of F. We know
by Corollary 16 that F̂u,n is isomorphic to a subgraph of F by the isomorphism r

ns 7→ r
s . This

mapping sends all vertices of F̂u,n in the interval [0,+∞) to be vertices of the Stern-Brocot tree.
Obviously, its inverse is a function φn : r

s 7→ r
ns . We can see that φn preserves the operation ⊕,

that is, φn( r
s ⊕ x

y ) = φn( r
s )⊕φn( x

y ). This means that we can generate all vertices of F̂u,n in the
interval [0,+∞) by using the notion of mediants trough the function φn and the construction of
the Stern-Brocot tree. Certainly, some images of vertices of the tree under φn are not reduced,
so they cannot be vertices of F̂u,n. It is not necessary to write them in the lowest terms. Now, we
are ready to provide the demonstration of F̂2,5.

Example 26. F̂2,5 is weakly connected.

Proof. We have known that the graph F̂2,5 is periodic along the real axis with period 1 and
symmetric with respect to the line Re(z) = 1

2 . Then the induced subgraph of F̂2,5 in the strip
0 ≤ Re(z) ≤ 1

2 can represent induced subgraphs in other strips j
2 ≤ Re(z) ≤ j+1

2 , j ∈ Z. If the
subgraph in the strip 0≤Re(z)≤ 1

2 is weakly connected, then the subgraphs in other strips are
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2,5

-2,5

Figure 2. The graph F̂2,5

also weakly connected, and are joined to one another by the vertex ∞. This means that we can
consider only the subgraph in the strip 0 ≤ Re(z) ≤ 1

2 to verify that the graph F̂2,5 is weakly
connected.

Now, let R̂0 = {0
5 , 1

5 , 2
5 , 5

10 }. This set is the image of {0
1 , 1

1 , 2
1 , 5

2 } under φ5. We see that 0
1 and

1
1 are successive terms in ST1, 1

1 and 2
1 are successive terms in ST2, 2

1 and 5
2 are successive

terms in ST4. Thus, we can generate all reduced fractions in [0, 5
2 ] by using mediants with the

initial set {0
1 , 1

1 , 2
1 , 5

2 }. Hence, all vertices of the graph F̂2,5 in [0, 1
2 ] are also generated by the

same concept with the initial set R̂0.
We have known by Remark 25 that every pair of consecutive fractions r

s and x
y in

STn satisfies the property ry− sx = −1. Then their images r
5s and x

5y satisfy the property
r(5y)− (5s)x =−5. Hence, we can check only the remaining congruence conditions in Theorem
13 to show that every mediant which is a vertex of F̂2,5 can be joined with at least one of its
parents.

Now, suppose that r
5s and x

5y are consecutive terms in ∪n
i=0R̂i for some n ≥ 0. We will show

that if the mediant r+x
5(s+y) is a vertex of F̂2,5, it can be joined to r

5s or x
5y . We consider all situations

which can possibly occur. Start with the case that the numerator of one parent is divisible by
5. We may suppose that 5 divides r. Since numerators of every two successive fractions in R̂0

are not divisible by 5 in the same time, this situation also occurs for ∪n
i=0R̂i for every n ≥ 1.

Thus, 5 does not divide x, so x
5y is a vertex of F̂2,5. Since 5 does not divide r+ x and r+2x,

the fractions r+x
5(s+y) and r+2x

5(s+2y) are reduced. Then they are vertices of F̂2,5. It is obvious that
r+2x ≡ 2(r+x) mod 5 and r+2x ≡ 2x mod 5. Hence, Theorem 13 implies that the mediant r+2x

5(s+2y)
is adjacent to its parents x

5y and r+x
5(s+y) . This shows that r+x

5(s+y) can be joined to its parent x
5y

through the fraction r+2x
5(s+2y) . The case that x is divisible by 5 is similar. We will obtain that r+x

5(s+y)
is joined to r

5s .
For the other case, x and y are not divisible by 5, we obtain that if the mediant r+x

5(s+y) is
a vertex of F̂2,5, it is adjacent to at least one of its parents. The results are shown in Table 1.
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The numerators of fractions are written in the least residue system modulo 5. If r+ x ≡ 0 mod 5,
the mediant r+x

5(s+y) is not a vertex of the graph. If r+ x 6≡ 0 mod 5, the mediant r+x
5(s+y) is a vertex

of the graph and adjacent to the fractions r
s or x

y whose numerators are circled.

Table 1. Adjacent vertices of F̂2,5

r x r+ x r x r+ x
1© 1© 2 2 3 0
1© 2 3 2© 4 1
1 3© 4 3© 3© 1
1 4 0 3 4© 2
2© 2© 4 4© 4© 3

We have proved that every time we obtain another mediant which is a vertex of F̂2,5 in the
interval [0, 1

2 ], it can be joined to at least one of its parents. Combining this result with the
fact that the vertices 1

5 and 2
5 of F̂2,5 in the initial set R̂0 are adjacent, so all vertices of F̂2,5

in [0, 1
2 ] belong to the same weakly connected component. Therefore, the graph F̂2,5 is weakly

connected.

The preceding example can be extended to a general case. After applying Corollary 15,
we obtain that F̂u,5 = F̂2,5, for every u 6≡ ±1 mod 5. Thus, F̂u,5 is weakly connected for every
u 6≡ ±1 mod 5. For n = 7 and n = 9, connectivity of the graphs can be proved by using the similar
arguments. We may verify only the case u = 2. For other u 6≡ ±1 mod n, the graph F̂u,n is either
paired with or equal to F̂2,n. Combining the obtained results with Proposition 21, we obtain the
theorem below.

Theorem 27. For n = 5,7,9, F̂u,n is weakly connected if and only if u 6≡ ±1 mod n.

Corollary 28. For n = 5,7, F̂u,n is strongly connected if and only if u 6≡ ±1 mod n.

Proof. The forward is obtained directly by the theorem above. For the converse, we obtain that
F̂u,5 and F̂u,7 are self-paired and contains directed triangles by Lemma 6 and Theorem 11,
respectively. Thus, Proposition 18 and the previous theorem imply that the graphs are strongly
connected.

Now, we see that for a prime number p such that 5 ≤ p < 11, the graph F̂u,p is connected
for every u 6≡ ±1 mod p. However, it is not true for p = 11 and 13. The example of F̂2,11 below is
also benefited from the notion of mediants similar to the previous example of F̂2,5. In the proof,
we construct the Fibonacci sequence for the fraction using the concept of mediants instead of
the usual addition on R.

Example 29. F̂2,11 is not connected.

Proof. We know by Lemma 16 that F̂2,11 is isomorphic to a subgraph of the Farey graph F

by the mapping v 7→ 11v. Since the Farey graph has no edge-crossing in H2, all vertices of
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F̂2,11 in the interval ( 2
11 , 5

11 ) are not adjacent to every vertex outside the interval [ 2
11 , 5

11 ]. Also,
Theorem 13 implies that they are not adjacent to ∞. In particular, 3

11 is not adjacent to every
vertices outside the interval ( 2

11 , 4
11 ], and 4

11 is not adjacent to every vertices outside the interval
[ 3

11 , 5
11 ). If there are non-vertices α ∈ ( 2

11 , 3
11 ) and β ∈ ( 4

11 , 5
11 ) such that no edges of F̂2,11 cross the

lines Re(z)=α and Re(z)=β, then the strip α≤Re(z)≤β certainly separates some connected
components of the graph from others.

To find the real number α, we consider the fractions 2
11 and 3

11 , the images of 2
1 and 3

1 under
the function φ11 : x

y 7→ x
11y . We see that 2

1 and 3
1 are successive terms in ST3. Then all vertices

of F̂2,11 in [ 2
11 , 3

11 ] can be generated by mediants with the initial values 2
11 and 3

11 . First, we
consider 5

22 , the mediant of 2
11 and 3

11 . It is adjacent to its parent 3
11 , but not adjacent to 2

11 .
Next, we consider the nonadjacent vertices 2

11 and 5
22 . Their mediant is the fraction 7

33 adjacent
to 2

11 , but not adjacent to 5
22 . We then consider the next pair of nonadjacent vertices 7

33 and 5
22 ,

and so on. The diagram below shows the first 10 steps of the method. The arrow heads aim to
the mediants of two fractions at the arrow tails. The dotted lines mean that the mediants and
their parents are not adjacent, and the others represent the edges of the graph. We see that
212≡ 3 mod 11 and 343≡ 2 mod 11. Then the situation is repeated with period 10. Finally, we
obtain the sequence of vertices {am}= { 3

11 , 2
11 , 5

22 , . . .} such that am → am+2 for every m ≥ 1. We
will show that it is convergent and its limit is the required value α.

2
11

3
11

22

7
33

12
55

19
88

31
143

50
231

81
374

131
605

212
979

343
1584

5
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Let bm = a2m and cm = a2m−1. Then {11bm} and {11cm} are increasing and decreasing
subsequences of {11am}, respectively. By boundedness of the sequences, the limits of {11bm}
and {11cm} exist. If their limits are different, all reduced fractions between the limits will not
be generated by using mediants. Thus, their limits must be equal, so it guarantee existence
of the limit of the sequence {am}. Let α= lim

m→+∞am. It is easy to see that α belongs to (bm, cm)
and (bm, cm+1) for every m ≥ 1. We will show that 11α ∉ STn for every n ≥ 0, so that α is not a
vertex of F̂2,11. We verify this by using mathematical induction. Since α ∈ ( 2

11 , 3
11 ) and 3

1 first
appears in ST3, we have 11α ∉ STn for all n ≤ 3. We now suppose that 11α ∉ STk for some
k > 3. In the case that k is odd, we have k = 2m+1 for some m ≥ 2. Further, we have 11bm and
11cm are consecutive terms in STk providing the mediant 11cm+1 ∈ STk+1. Since α ∈ (bm, cm+1)
and 11α ∉ STk , we obtain 11α ∉ STk+1. In the case k = 2m for some m ≥ 2, we see that 11bm−1

and 11cm are successive terms in STk providing the mediant bm ∈ STk+1. Since α ∈ (bm, cm)
and 11α ∉ STk, α does not belong to STk+1. Thus, 11α ∉ STn for every n ≥ 0. We have shown
that α is not a vertex of F̂2,11, so it cannot be a vertex in a path joining 2

11 and 3
11 . Next, we will

show that there are not any edges of F̂2,11 crossing the line Re(z)=α.
Suppose that v and w are adjacent vertices of F̂2,11 such that v < α < w. Since 2

1 and 3
1

are adjacent to ∞ in F, to avoid edge-crossing of F in H2 the vertices v and w must belong to
[ 2

11 , 3
11 ]. We see that b1 → b2 →··· and c1 → c2 →··· are semi-infinite paths in F̂2,11 converging

to α on the left and right, respectively. Since there are not any edges of F̂2,11 crossing in H2,
we must have v = bm and w = cm′ for some m,m′ ∈N. We know that bm is not adjacent to cm

and cm+1. Then m+1 < m′ or m > m′. In the case m+1 < m′, we see that bm′−1 < cm′ < cm′−1.
Since 11bm′−1 and 11cm′−1 are adjacent in F and bm < bm′−1, to avoid edge-crossing of F in H2

we obtain that bm and cm′ cannot be adjacent vertices of F̂2,11. In the case m > m′, we use the
similar argument. We have bm−1 < bm < cm. Since 11bm−1 and 11cm are adjacent in F and
cm < cm′ , the vertices bm and cm′ cannot be adjacent in F̂2,11. Thus, the adjacent vertices v and
w do not exist. Hence no edges of F̂2,11 cross the line Re(z)=α.

Now, we obtain the required value α ∈ ( 2
11 , 3

11 ). The value β ∈ ( 4
11 , 5

11 ) can be obtained similarly.
Therefore, F̂2,11 is not connected.

The following corollary is a consequence of Lemma 5, Corollary 15 and Proposition 21.

Corollary 30. The graph F̂u,11 is not connected for every u ≡ ±1 mod 11, u ≡ ±2 mod 11 and
u ≡±5 mod 11.

Next, we provide another disconnected example without the usage of mediants. However,
we need to use another notion, the Farey sequences. The Farey sequence Fm of order m ≥ 1, is
defined to be the set of all irreducible fractions x

y , with |y| ≤ m, ordered increasingly.

Example 31. F̂3,13 is not connected.

Proof. In this case, we have p = 13 and u = 3. We can check that 3
13 and 4

13 are only two vertices
of the graph in [0, 1

2 ] adjacent to ∞. It is easily seen that the interval [1
3 , 1

2 ] contains 5
13 , a vertex

of F̂3,13, but not containing 3
13 and 4

13 . We need to verify that there are not any edges of the
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graph crossing the line Re(z)= 1
3 and the line Re(z)= 1

2 , so that the strip 1
3 ≤Re(z)≤ 1

2 contains
connected components of F̂3,13. Since there are not any vertices of the graph in the interval
[1

3 , 1
2 ] adjacent to ∞, the graph is not connected
We will show only the case of the line Re(z) = 1

3 . The other case can be considered as a
subcase of the proven case. By the sake of contradiction, we suppose that v and w are adjacent
vertices of F̂3,13 such that v < 1

3 < w. Then Lemma 16 implies that 13v and 13w are adjacent
vertices in F. Certainly, 13v < 13

3 < 13w, so 13v and 13w belong to Farey sequences Fm for some
m = 1 or 2, see more in [8, Lemma 4.1]. If m = 2, we have 13v = 4 and 13w = 9

2 . Thus, v = 4
13 and

w = 9
26 . However, 9 6≡ ±3(4) mod 13 and 4 6≡ ±3(9) mod 13, so v and w are not adjacent in F̂3,13. In

the case m = 1, we have 13v = 4 and 13w = 5, so v = 4
13 and w = 5

13 . We see that 5 6≡ ±3(4) mod 13
and 4 6≡ ±3(5) mod 13. Thus, v and w are not adjacent in F̂3,13. The proof for the line Re(z)= 1

2
follows this last subcase. We now complete the proof of this example.

Corollary 32. The graph F̂u,13 is not connected for every u ≡ ±1 mod 13, u ≡ ±3 mod 13 and
u ≡±4 mod 13.

By the previous two examples of disconnectivity, we conjecture that for every prime number
p ≥ 11, the graph F̂u,p is not connected.

4. Conclusion
There are differences between connectivity results of F̂u,n and Fu,n. The graph F̂u,n is (weakly
or strongly) connected in many more cases than Fu,n. More precisely, the graph Fu,n is not
connected for every n ≥ 5 while F̂u,n is (weakly or strongly) connected for n = 5,7,9 and
u 6≡ ±1 mod n. Further, Fu,4 is not strongly connected while F̂u,4 is strongly connected.
Conjecture. For every prime number p ≥ 11, the graph F̂u,p is not connected.
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