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1. Introduction and Some Important Definitions
In the sequel, let K be a non-empty set. Throughout this paper, we use indifferently the notation
K2 to denote the product space K ×K . 4 will denote a partial order on K , and η will be a metric
on K .

The existence of fixed points of nonlinear contraction mappings in metric spaces endowed
with a partial ordering has been considered recently by Ran and Reurings [17] to obtain a
solution of a matrix equation in 2004. Fixed point theorems in partially ordered metric spaces
have been studied by some authors since 2004 (see [1], [3], [8], [10], [15], [16], [18]). Nietto and
Lopez [15] extended the results in [17] by removing the continuity condition of the mapping.
They applied their results to get a solution of a boundary value problem. The efficiency of these
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kind of extensions of fixed point theorems in such kind of problems, as it is well known, is due
to the fact that most real valued function spaces are partially ordered metric spaces.

The work of coupled fixed points in partially ordered metric spaces was initiated by Guo and
Lakshmikantham [9]. Subsequently, Bhaskar and Lakshmikantham [5] introduced the concept
of the mixed monotone property as follows.

Definition 1 ([5]). Let (K ,4) be a partially ordered set and F : K2 → K be a mapping. Then a
map F is said to have the mixed monotone property if F(a,b) is monotone nondecreasing in
a and is monotone non-increasing in b; that is, for any a, b ∈ K , a1, a2 ∈ K , a1 4 a2 implies
F (a1,b)4 F (a2,b) and b1, b2 ∈ K , b1 4 b2 implies F (a,b1)< F (a,b2) .

Definition 2 ([5]). An element (a,b) ∈ K2 is said to be a coupled fixed point of the mapping
F : K2 → K if F(a,b)= a and F(b,a)= b.

Lakshmikantham and Ćirić [12] introduced concepts of a mixed g-monotone mapping and a
coupled coincidence point.

Definition 3 ([12]). Let (K ,4) be a partially ordered set and F : K2 → K and g : K → K . We
say F has the mixed g-monotone property if for any a, b ∈ K , a1, a2 ∈ K , ga1 4 ga2 implies
F (a1,b)4 F (a2,b) and b1, b2 ∈ K , gb1 4 gb2 implies F (a,b1)< F (a,b2) .

Definition 4 ([12]). An element (a,b) ∈ K2 is said to be a coupled coincidence point of a mapping
F : K2 → K and g : K → K if F(a,b)= ga and F(b,a)= gb.

Definition 5 ([12]). Let K be a nonempty set and F : K2 → K and g : K → K . We say F and g
are commutative if gF (a,b)= F (ga, gb) for all a, b ∈ K .

Definition 6 ([7]). Let
(
K ,η

)
be a metric space, F : K2 → K a mapping and g a self mapping

on K . A hybrid pair F, g is compatible if η (g (F (an,bn)) , F (gan, gbn)) → 0 as n → ∞ and
η (g (F(bn,an)) , F (gbn, gan)) → 0 as n →∞ whenever (an) and (bn) are sequences in K such
that lim

n→∞F (an,bn)= lim
n→∞ gan = a, lim

n→∞F(bn,an)= lim
n→∞ gbn = b with a, b ∈ K .

Definition 7 ([4]). Let Φ denote the class of functions ϕ : [0,∞)→ [0,∞) which satisfying

(ϕi) ϕ is continuous and (strictly) increasing;

(ϕii) ϕ (t)< t for all t > 0;

(ϕiii) ϕ (t+ s)≤ϕ (t)+ϕ (s) for all t, s ∈ [0,∞) .

Note that by (ϕi) and (ϕii), we have ϕ (t)= 0 if and only if t = 0.

Definition 8 ([13]). Let Ψ denote the class of functions ψ : [0,∞)→ [0,∞) which satisfying
(ψi) lim

t→r
ψ (t)> 0 for all r > 0 and lim

t→0+
ψ (t)= 0.
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Theorem 1 ([14]). Let (K ,4) be a partially ordered set, and suppose there is a metric η on K
such that

(
K ,η

)
is a complete metric space. Let F : K2 → K and g : K → K be two maps with F

having the mixed g-monotone property on K such that there exists two elements a0, b0 ∈ K
with ga0 4 F (a0,b0) and gb0 < F (b0,a0). Suppose there exists ϕ ∈Φ and ψ ∈Ψ such that

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
≤ϕ

(
η (ga, gc)+η (gb, gd)

2

)
−ψ

(
η (ga, gc)+η (gb, gd)

2

)
(1.1)

for all a, b, c, d ∈ K with ga< gc and gb 4 gd.
Suppose F

(
K2)⊆ g (K), g is continuous and the pair (F, g) is compatible.

Also suppose either

(a) F is continuous or;

(b) K has the following properties:

(b1) if a non-decreasing sequence {an}→ a, then gan 4 ga for all n,

(b2) if a non-increasing sequence {bn}→ b, then gb 4 bn for all n.

Then there exists a, b ∈ K such that ga = F(a,b) and gb = F(b,a), that is, F and g have a
coupled coincidence point in K .

The concept of G-increasing and {F,G} generalized compatiblity has been established by
Hussain et al. [11].

Definition 9 ([11]). Suppose that F, G : K2 → K are two mappings. F is said to be G-increasing
with respect to 4 if for all a, b, c, d ∈ K , with G(a,b)4G(c,d) we have F(a,b)4 F(c,d).

Definition 10 ([11]). An element (a,b) ∈ K2 is said to be a coupled coincidence point of a
mappings F, G : K2 → K if F (a,b)=G(a,b) and F(b,a)=G(b,a).

Definition 11 ([11]). Let F, G : K2 → K . We say that pair {F,G} is generalized compatible if lim
n→∞η (F (G (an,bn) ,G(bn,an)) ,G (F (an,bn) ,F(bn,an)))= 0

lim
n→∞η (F (G(bn,an),G (an,bn)) ,G (F(bn,an),F (an,bn)))= 0,

whenever (an) and (bn) are sequences in K such that lim
n→∞F (an,bn)= lim

n→∞G (an,bn)= x1,

lim
n→∞F(bn,an)= lim

n→∞G(bn,an)= x2.

Definition 12 ([11]). Let F, G : K2 → K be two maps. We say that the pair {F,G} is commuting
if F (G(a,b),G (b,a))=G (F(a,b),F(b,a)) for all a, b ∈ K .

Remark 1 ([11]). A commuting pair is a generalized compatible but not conversely in general.
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The aim of this paper is to stand for new approach of the results of Jain et al. [14] and
Berinde [4]. We utilize generalized compatibility of a pair {F,G}, of mapping F, G : K2 → K to
obtain coupled coincidence point results for such a pair of mappings involving (ϕ,ψ) contractive
condition without mixed G-monotone property of F . Thus, the derived coupled fixed point
results do not have the mixed monotone property of F . An example are also given to confirm the
effectiveness of the presented work.

2. Main Results
Theorem 2. Let (K ,4) be a partially ordered set, and suppose there is a metric η on K such
that (K ,η) is a complete metric space. Assume that F, G : K2 → K are two generalized compatible
mappings such that F is G-increasing with respect to 4, G is continuous and has the mixed
monotone property, and there exists two elements a0, b0 ∈ K with

G (a0,b0)4 F (a0,b0) and G (b0,a0)< F (b0,a0) .

Suppose there exists ϕ ∈Φ and ψ ∈Ψ such that

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
≤ϕ

(
η (G(a,b),G(c,d))+η (G(b,a),G(d, c))

2

)
−ψ

(
η (G(a,b),G (c,d))+η (G(b,a),G(d, c))

2

)
(2.1)

for all a, b, c, d ∈ K with G(a,b)4G(c,d) and G(b,a)<G(d, c). Suppose that for any a, b ∈ K ,
there exists c, d ∈ K such that{

F(a,b)=G(c,d),
F(b,a)=G(d, c).

(2.2)

Also suppose that either

(a) F is continuous or;

(b) K has the following properties:

(b1) if a non-decreasing sequence {an}→ a, then an 4 a for all n,
(b2) if a non-increasing sequence {bn}→ b, then b 4 bn for all n.

Then F and G have a coupled coincidence point in K .

Proof. Let a0, b0 ∈ K be such that G (a0,b0) 4 F (a0,b0) and G (b0,a0) < F (b0,a0). By (2.2),
there exists (a1,b1) ∈ K2 such that F (a0,b0)=G (a1,b1) and F (b0,a0)=G (b1,a1). Continuing
in the same way, we can easly construct sequences {an} and {bn} in K such that

F (an,bn)=G (an+1,bn+1) and F(bn,an)=G (bn+1,an+1) for all n ∈N. (2.3)

First, we show that for all n ∈N, we have

G (an,bn)4G (an+1,bn+1) and G (bn+1,an+1)4G(bn,an). (2.4)
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Since G (a0,b0) 4 F (a0,b0) and F (b0,a0) 4 G (b0,a0) and since F (a0,b0) = G (a1,b1) and
F (b0,a0)=G (b1,a1), we get G (a0,b0)4G (a1,b1) and G (b1,a1)4G (b0,a0). Hence (2.4) holds
for n = 0. Assume that (2.4) holds for some fixed n ∈N. As F is G-increasing with respect to 4,
we get

G (an+1,bn+1)= F (an,bn)4 F (an+1,bn+1)=G (an+2,bn+2)

and

G (bn+2,an+2)= F (bn+1,an+1)4 F(bn,an)=G (bn+1,an+1) .

Thus (2.4) holds for all n ∈N. Denote

tn = η (G (an,bn) ,G (an+1,bn+1))+η (G(bn,an),G (bn+1,an+1))
2

for all n ∈ N. Since G (an,bn) 4 G (an+1,bn+1) and G(bn,an) < G (bn+1,an+1), from (2.1) and
(2.3), we have

ϕ

(
η (G (an+1,bn+1) ,G (an+2,bn+2))+η (G (bn+1,an+1) ,G (bn+2,an+2))

2

)
=ϕ

(
η (F (an,bn) ,F (an+1,bn+1))+η (F(bn,an),F (bn+1,an+1))

2

)
≤ϕ

(
η (G (an,bn) ,G (an+1,bn+1))+η (G(bn,an),G (bn+1,an+1))

2

)
−ψ

(
η (G (an,bn) ,G (an+1,bn+1))+η (G(bn,an),G (bn+1,an+1))

2

)
. (2.5)

Similarly, we have

ϕ

(
η (G (bn+2,an+2) ,G (bn+1,an+1))+η (G (an+2,bn+2) ,G (an+1,bn+1))

2

)
=ϕ

(
η (F (bn+1,an+1) ,F (bn,an))+η (F (an+1,bn+1) ,F (an,bn))

2

)
≤ϕ

(
η (G (bn+1,an+1) ,G(bn,an))+η (G (an+1,bn+1) ,G (an,bn))

2

)
−ψ

(
η (G (bn+1,an+1) ,G (bn,an))+η (G (an+1,bn+1) ,G (an,bn))

2

)
. (2.6)

Adding (2.5) and (2.6), we have

2ϕ (tn+1)≤ 2ϕ (tn)−2ψ (tn)

or equivalently,

ϕ (tn+1)≤ϕ (tn)−ψ (tn) . (2.7)

Since ψ is non-negative and the monotonicity of ϕ, it follows that the sequence {tn} is monotone
decreasing. Hence, there is some t ≥ 0 such that lim

n→∞ tn = t. We claim that t = 0. Suppose, to the
contrary, that t > 0. Taking limit as n →∞ on both sides of (2.7) and using the property of ϕ
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and ψ, we have

ϕ (t)= lim
n→+∞ϕ (tn)≤ lim

n→+∞
[
ϕ (tn−1)−ψ (tn−1)

]
=ϕ (t)− lim

tn−1→t
ψ (tn−1)<ϕ (t)

a contradiction. Hence t = 0, that is

lim
n→+∞

[
η (G (an,bn) ,G (an+1,bn+1))+η (G(bn,an),G (bn+1,an+1))

2

]
= lim

n→+∞ϕ (tn)= 0. (2.8)

Now, we show that (G (an,bn) ,G (bn,an)) is Cauchy sequence in K2 endowed with the metric Υ
defined by

Υ ((a,b), (c,d))= η (a, c)+η (b,d) (2.9)

for all (a,b), (c,d) ∈ K2. If (G (an,bn) ,G(bn,an)) is not a Cauchy sequence in
(
K2,Υ

)
. Then

there exists ε > 0 for which we can find two sequences of positive integers (m (k)) and (n (k))
such that for all positive integer k with n (k)> m (k)> k, we have

Υ
((

G
(
am(k),bm(k)

)
,G

(
bm(k),am(k)

))
,
(
G

(
an(k),bn(k)

)
,G

(
bn(k),an(k)

)))
2

> ε,

Υ
((

G
(
am(k),bm(k)

)
,G

(
bm(k),am(k)

))
,
(
G

(
an(k)−1,bn(k)−1

)
,G

(
bn(k)−1,an(k)−1

)))
2

≤ ε.
(2.10)

By (2.9), we get

ηk =
η

(
G

(
am(k),bm(k)

)
,G

(
an(k),bn(k)

))+η(
G

(
bm(k),am(k)

)
,G

(
bn(k),an(k)

))
2

> ε (2.11)

and
η

(
G

(
am(k),bm(k)

)
,G

(
an(k)−1,bn(k)−1

))+η(
G

(
bm(k),am(k)

)
,G

(
bn(k)−1,an(k)−1

))
2

≤ ε. (2.12)

By (2.11), (2.12) and using triangle inequality, for k ≥ 0, we have

ε< ηk

≤ η
(
G

(
am(k),bm(k)

)
,G

(
an(k)−1,bn(k)−1

))+η(
G

(
an(k)−1,bn(k)−1

)
,G

(
an(k),bn(k)

))
2

+ η
(
G

(
bm(k),am(k)

)
,G

(
bn(k)−1,an(k)−1

))+η(
G

(
bn(k)−1,an(k)−1

)
,G

(
bn(k),an(k)

))
2

≤ ε+ tn(k)−1.

Letting k →∞ and using (2.8) in the last inequality, we obtain

lim
n→∞ηk = ε. (2.13)

Again, from the triangle inequality,

ηk =
η

(
G

(
am(k),bm(k)

)
,G

(
an(k),bn(k)

))+η(
G

(
bm(k),am(k)

)
,G

(
bn(k),an(k)

))
2

≤ η
(
G

(
am(k),bm(k)

)
,G

(
am(k)+1,bm(k)+1

))+η(
G

(
am(k)+1,bm(k)+1

)
,G

(
an(k)+1,bn(k)+1

))
2
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+ η
(
G

(
an(k)+1,bn(k)+1

)
,G

(
an(k),bn(k)

))+η(
G

(
bm(k),am(k)

)
,G

(
bm(k)+1,am(k)+1

))
2

+ η
(
G

(
bm(k)+1,am(k)+1

)
,G

(
bn(k)+1,an(k)+1

))+η(
G

(
bn(k)+1,an(k)+1

)
,G

(
bn(k),an(k)

))
2

= η
(
G

(
am(k),bm(k)

)
,G

(
am(k)+1,bm(k)+1

))+η(
G

(
bm(k),am(k)

)
,G

(
bm(k)+1,am(k)+1

))
2

+ η
(
G

(
am(k)+1,bm(k)+1

)
,G

(
an(k)+1,bn(k)+1

))+η(
G

(
bm(k)+1,am(k)+1

)
,G

(
bn(k)+1,an(k)+1

))
2

+ η
(
G

(
an(k)+1,bn(k)+1

)
,G

(
an(k),bn(k)

))+η(
G

(
bn(k)+1,an(k)+1

)
,G

(
bn(k),an(k)

))
2

= tm(k) + tn(k)

+ η
(
G

(
am(k)+1,bm(k)+1

)
,G

(
an(k)+1,bn(k)+1

))+η(
G

(
bm(k)+1,am(k)+1

)
,G

(
bn(k)+1,an(k)+1

))
2

.

From the monotonicity of ϕ and (ϕiii), we get

ϕ
(
ηk

)≤ϕ(
tm(k)

)+ϕ(
tn(k)

)+ϕ

η

(
G

(
am(k)+1,bm(k)+1

)
,G

(
an(k)+1,bn(k)+1

))
2

+η
(
G

(
bm(k)+1,am(k)+1

)
,G

(
bn(k)+1,an(k)+1

))
2

 . (2.14)

Then by (2.1) and (2.4), we have

ϕ

(
η

(
G

(
am(k)+1,bm(k)+1

)
,G

(
an(k)+1,bn(k)+1

))+η(
G

(
bm(k)+1,am(k)+1

)
,G

(
bn(k)+1,an(k)+1

))
2

)

=ϕ
(
η

(
F

(
am(k),bm(k)

)
,F

(
an(k),bn(k)

))+η(
F

(
bm(k),am(k)

)
,F

(
bn(k),an(k)

))
2

)

≤ϕ
(
η

(
G

(
am(k),bm(k)

)
,G

(
an(k),bn(k)

))+η(
G

(
bm(k),am(k)

)
,G

(
bn(k),an(k)

))
2

)

−ψ
(
η

(
G

(
am(k),bm(k)

)
,G

(
an(k),bn(k)

))+η(
G

(
bm(k),am(k)

)
,G

(
bn(k),an(k)

))
2

)
=ϕ(

ηk
)−ψ(

ηk
)
. (2.15)

From (2.14) and (2.15), we have

ϕ
(
ηk

)≤ϕ(
tm(k)

)+ϕ(
tn(k)

)+ϕ(
ηk

)−ψ(
ηk

)
. (2.16)

Letting k →∞ and by (2.8), (2.13) and the properties of ϕ and ψ in (2.16), we get

ϕ (ε)≤ϕ (0)+ϕ (0)+ϕ (ε)− lim
k→∞

ψ
(
ηk

)
=ϕ (ε)− lim

ηk→ε
ψ

(
ηk

)<ϕ (ε)

which is a contradiction. Therefore, (G (an,bn) ,G(bn,an)) is Cauchy sequence in
(
K2,Υ

)
which

implies that (G (an,bn)) and (G(bn,an)) are Cauchy sequence in
(
K ,η

)
. Since K is a complete
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metric space, there exists a, b ∈ K such that

lim
n→∞G (an,bn)= lim

n→∞F (an,bn)= a, lim
n→∞G(bn,an)= lim

n→∞F(bn,an)= b. (2.17)

Since the pair {F,G} satisfies the generalized compatibility, by (2.17), we have

η (F (G (an,bn) ,G(bn,an)) ,G (F (an,bn) ,F(bn,an)))→ 0 as n →∞ (2.18)

η (F (G(bn,an),G (an,bn)) ,G (F(bn,an),F (an,bn)))→ 0 as n →∞. (2.19)

Suppose the assumption (a) holds. For all n ∈N, we get

η (G(a,b),F (G (an,bn) ,G (bn,an)))

≤ η (G(a,b),G (F (an,bn) ,F(bn,an)))

+η (G (F (an,bn) ,F (bn,an)) ,F (G (an,bn) ,G (bn,an))) .

Letting n →∞ , by (2.17) and (2.19), and since F and G are continuous, we have

G(a,b)= F(a,b). (2.20)

Similarly, we show that

G(b,a)= F(b,a). (2.21)

Hence (a,b) is a coupled coincidence point of F and G.

Next, suppose the assumption (b) holds. From (2.4) and (2.17), we obtain (G (an,bn)) is
non-decreasing sequence, G (an,bn)→ a as n →∞ and (G(bn,an)) is non-increasing sequence,
G(bn,an)→ b as n →∞. Hence, we obtain

G (an,bn)4 a and G (bn,an)< b. (2.22)

Since the pair {F,G} satisfies the generalized compatibility and G is continuous, from (2.19), we
get

lim
n→∞G (G (an,bn) ,G (bn,an))=G(a,b)

= lim
n→∞G (F (an,bn) ,F (bn,an))

= lim
n→∞F (G (an,bn) ,G(bn,an)) (2.23)

and

lim
n→∞G (G(bn,an),G (an,bn))=G(b,a)

= lim
n→∞G (F(bn,an),F (an,bn))

= lim
n→∞F (G (bn,an) ,G (an,bn)) . (2.24)

Next, we have

η (G(a,b),F(a,b))≤ lim
n→∞η (G (F (an,bn) ,F(bn,an)) ,F(a,b))

= lim
n→∞η (F (G (an,bn) ,G(bn,an)) ,F(a,b)) .
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Since G has the mixed monotone property, it follows from (2.22) that G (G (an,bn) ,G(bn,an))4
G(a,b) and G (G(bn,an),G (an,bn))<G(b,a). By (2.1), (2.23) and (2.24), we have

ϕ

(
η

(
F(a,b),G(a,b)+η (F(b,a),G(b,a))

)
2

)

≤ lim
n→∞ϕ

(
η

(
F (a,b) ,F (G (an,bn) ,G(bn,an))+η (F(b,a),F (G(bn,an),G (an,bn)))

)
2

)

≤ lim
n→∞ϕ

(
η

(
G (a,b) ,G (G (an,bn) ,G(bn,an))+η (G(b,a),G (G(bn,an),G (an,bn)))

)
2

)

− lim
n→∞ψ

(
η

(
G (a,b) ,G (G (an,bn) ,G(bn,an))+η (G(b,a),G (G(bn,an),G (an,bn)))

)
2

)
.

By lim
t→0+

ψ (t)= 0, we have

ϕ

(
η

(
F(a,b),G(a,b)+η (F(b,a),G(b,a))

)
2

)

≤ lim
n→∞ϕ

(
η

(
G (a,b) ,G (G (an,bn) ,G(bn,an))+η (G(b,a),G (G(bn,an),G (an,bn)))

)
2

)
=ϕ (0)= 0.

As ϕ is nonnegative and ϕ (0)= 0, we get

η (F(a,b),G(a,b))= 0 and η (F(b,a),G(b,a))= 0;

that is;

F(a,b)=G(a,b) and F(b,a)=G(b,a).

This completes the proof.

The commuting maps {F,G} are generalized compatible. Therefore, we have the following
Corollary.

Corollary 1. Let (K ,4) be a partially ordered set, and suppose there is a metric η on K such
that

(
K ,η

)
is a complete metric space. Assume that F, G : K2 → K are two commuting mappings

such that F is G−increasing with respect to 4, G is continuous and has the mixed monotone
property, and there exists two elements a0, b0 ∈ K with

G (a0,b0)4 F (a0,b0) and G (b0,a0)< F (b0,a0) .

Suppose that the inequalities (2.1) and (2.2) hold and either

(a) F is continuous or;

(b) K has the following properties:

(b1) if a non-decreasing sequence {an}→ a, then an 4 a for all n,
(b2) if a non-increasing sequence {bn}→ b, then b 4 bn for all n.

Then F and G have a coupled coincidence point in K .
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Definition 13 ([11]). Let (K ,4) be a partially ordered set and F : K2 → K and g : K → K . We
say that F is g-increasing with respect to 4 if for any a, b ∈ K ,

ga1 4 ga2 implies F (a1,b)4 F (a2,b)

and

gb1 4 gb2 implies F (a,b1)4 F (a,b2) .

Next, we infer an analogous result to Theorem 2.1 of Jain et al. [14, Theorem 1] without
g−mixed monotone property of F as follows.

Corollary 2. Let (K ,4) be a partially ordered set, and suppose there is a metric η on K such
that

(
K ,η

)
is a complete metric space. Let F : K2 → K and g : K → K be two maps with F is

g−increasing with respect to 4, and there exists ϕ ∈Φ and ψ ∈Ψ such that

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
≤ϕ

(
η (ga, gc)+η (gb, gd)

2

)
−ψ

(
η (ga, gc)+η (gb, gd)

2

)
for all a, b, c, d ∈ K with ga 4 gc and gb < gd. Suppose F

(
K2)⊆ g (K), g is continuous and

monotone increasing with respect to 4, and the pair {F, g} is compatible. Also suppose that either

(a) F is continuous or;

(b) K has the following properties:

(b1) if a non-decreasing sequence {an}→ a, then gan 4 ga for all n,
(b2) if a non-increasing sequence {bn}→ b, then gb 4 gbn for all n.

If there exists two elements a0, b0 ∈ K with ga0 4 F (a0,b0) and gb0 < F (b0,a0). F and g have
a coupled coincidence point in K .

Corollary 3. Let (K ,4) be a partially ordered set, and suppose there is a metric η on K such
that

(
K ,η

)
is a complete metric space. Let F : K2 → K and g : K → K be two maps with F is

g−increasing with respect to 4, and there exists ϕ ∈Φ and ψ ∈Ψ such that

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
≤ϕ

(
η (ga, gc)+η (gb, gd)

2

)
−ψ

(
η (ga, gc)+η (gb, gd)

2

)
for all a, b, c, d ∈ K with ga 4 gc and gb < gd. Suppose F

(
K2)⊆ g (K), g is continuous and

monotone increasing with respect to 4, and the pair {F, g} is commuting. Also suppose that
either

(a) F is continuous or;

(b) K has the following properties:

(b1) if a non-decreasing sequence {an}→ a, then gan 4 ga for all n,
(b2) if a non-increasing sequence {bn}→ b, then gb 4 gbn for all n.
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If there exists two elements a0, b0 ∈ K with ga0 4 F (a0,b0) and gb0 < F (b0,a0). F and g have
a coupled coincidence point.

Definition 14 ([11]). Let (K ,4) be a partially ordered set and F : K2 → K . We say that F is
increasing with respect to 4 if for any a, b ∈ K ,

a1 4 a2 implies F (a1,b)4 F (a2,b)

and

b1 4 b2 implies F (a,b1)4 F (a,b2) .

Corollary 4 ([4]). Let (K ,4) be a partially ordered set, and suppose there is a metric η on K
such that

(
K ,η

)
is a complete metric space. Let F : K2 → K is an increasing map with respect

to 4 and there exists two elements a0, b0 ∈ K with a0 4 F (a0,b0) and b0 < F (b0,a0). Suppose
there exists ϕ ∈Φ and ψ ∈Ψ such that

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
≤ϕ

(
η (a, c)+η (b,d)

2

)
−ψ

(
η (a, c)+η (b,d)

2

)
for all a, b, c, d ∈ K with a4 c and b < d. Also suppose that either

(a) F is continuous or;

(b) K has the following properties:

(b1) if a non-decreasing sequence {an}→ a, then an 4 a for all n,

(b2) if a non-increasing sequence {bn}→ b, then b 4 bn for all n.

Then F has a coupled fixed point.

Remark 2. (i) Theorem 2 generalized and improved Theorem 15 in [11].

(ii) Theorem 2 generalized and improved Theorem 3.1 of Alotaibi and Alsulami [2] without
g-mixed monotone property of F .

(iii) Theorem 2 generalized and improved Luong and Thuan [13] and Bhaskar and
Lakshmikantham [5] without the mixed monotone property of the concerned mapping F.

Now, we shall prove the uniqueness of coupled fixed point. Note that if (K ,4) is a partially
ordered set, then we endow the product K2 with the following partial order relation:

(a,b)4 (c,d)⇔G (a,b)4G(c,d) and G(b,a)<G(d, c),

where G : K2 → K2 is one-one.

Theorem 3. In addition to the hypotheses of Theorem 2, suppose that for every (a,b), (m,n) ∈ K2,
there exists another (c,d) ∈ K2 which is comparable to (a,b) and (m,n). Then F and G have a
unique coupled coincidence point.
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Proof. By virtue of Theorem 2, the set of coupled coincidence points of F and G is non-empty.
Suppose (a,b) and (m,n) are coupled coincidence points of F and G, that is,{

F(a,b)=G(a,b),
F(b,a)=G(b,a)

and

{
F (m,n)=G (m,n) ,
F (n,m)=G (n,m) .

By assumption, there exists (c,d) ∈ K2 such that (c,d) is comparable to (a,b) and (m,n). We
define sequences {cn}, {dn} as follows

c0 = c, d0 = d, F (cn,dn)=G (cn+1,dn+1) and F (dn, cn)=G (dn+1, cn+1) for all n ∈N.

Since (c,d) is comparable with (a,b), we assume that (a,b) 4 (c,d) = (c0,d0) which implies
G(a,b)4G (c0,d0) and G(b,a)<G (d0, c0). We assume that (a,b)4 (cn,dn) for some n ∈N. We
prove that

(a,b)4 (cn+1,dn+1) for all n ∈N.

Since F is G increasing, we have G(a,b)4G (cn,dn) implies F(a,b)4 F (cn,dn) and G(b,a)<
G (dn, cn) implies F(b,a)4 F (dn, cn). Then, we have

G(a,b)= F(a,b)4 F (cn,dn)=G (cn+1,dn+1)

and

G(b,a)= F(b,a)< F (dn, cn)=G (dn+1, cn+1) .

Hence we obtain

(a,b)4 (cn,dn) for all n ∈N. (2.25)

Denote

λn = η (G(a,b),G (cn,dn))+η (G(b,a),G (dn, cn))
2

for all n ∈N.

Using (2.1) and (2.25), we have

ϕ

(
η (G(a,b),G (cn+1,dn+1))+η (G(b,a),G (dn+1, cn+1))

2

)
=ϕ

(
η (F(a,b),F (cn,dn))+η (F(b,a),F (dn, cn))

2

)
≤ϕ

(
η (G(a,b),G (cn,dn))+η (G(b,a),G (dn, cn))

2

)
−ψ

(
η (G(a,b),G (cn,dn))+η (G(b,a),G (dn, cn))

2

)
. (2.26)

Similarly, we obtain

ϕ

(
η (G (dn+1, cn+1) ,G (b,a))+η (G (cn+1,dn+1) ,G (a,b))

2

)
=ϕ

(
η (F (dn, cn) ,F (b,a))+η (F (cn,dn) ,F (a,b))

2

)
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≤ϕ
(
η (G (dn, cn) ,G (b,a))+η (G (cn,dn) ,G (a,b))

2

)
−ψ

(
η (G (dn, cn) ,G (b,a))+η (G (cn,dn) ,G (a,b))

2

)
. (2.27)

Adding (2.26) and (2.27), we have

2ϕ (λn+1)≤ 2ϕ (λn)−2ψ (λn)

or equivalently,

ϕ (λn+1)≤ϕ (λn)−ψ (λn) . (2.28)

Since ψ is non-negative and the monotonicity of ϕ, it follows that the sequence {λn} is monotone
decreasing.Thus, there is some λn ≥ 0 such that lim

n→∞λn =λ. We claim that λ= 0. Suppose, to
the contrary, that λ> 0. Taking limit as n →∞ on both sides of (2.28) and using the property of
ϕ and ψ, we have

ϕ (λ)≤ϕ (λ)− lim
n→∞ψ

(
η (G(a,b),G (cn,dn))+η (G(b,a),G (dn, cn))

2

)
<ϕ (λ)

which is a contradiction. Therefore λ= 0, i.e.,

lim
n→∞λn = lim

n→∞
η (G(a,b),G (cn,dn))+η (G(b,a),G (dn, cn))

2
= 0. (2.29)

Hence, it follows that

lim
n→∞η (G(a,b),G (cn,dn))= lim

n→∞η (G (b,a) ,G (dn, cn))= 0. (2.30)

Similarly

lim
n→∞η (G (m,n) ,G (cn,dn))= lim

n→∞η (G (n,m) ,G (dn, cn))= 0. (2.31)

From (2.29) and (2.31), we have G(a,b) = G (m,n) and G(b,a) = G (n,m). This completes the
proof.

Example 1. Let K = [0,1] endowed with the natural ordering of real numbers. Let η(a,b) =
|a−b|, for all a, b ∈ K . Then

(
K ,η

)
is a complete metric space. Let F , G : K2 → K be defined by

F(a,b)=


a2 −b2

16
if a ≥ b,

0 if a < b

and

G(a,b)=
{

a2 −b2 if a ≥ b,
0 if a < b.

Clearly, G is continuous. Also, F is G−increasing.
Now, we prove that for any a, b ∈ K , there exists c, d ∈ K such that F(a,b) = G(c,d) and

F(b,a)=G(d, c). Let (a,b) ∈ K2 be fixed. It is easy to see the following cases.

Case 1: If a = b, then we have F(a,b)= 0=G(a,b) and F(b,a)= 0=G(b,a).

Case 2: If a > b, then we have F(a,b)= a2 −b2

16
=G

(
a
4

,
b
4

)
and F(b,a)= 0=G

(
b
4

,
a
4

)
.
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Case 3: If a < b, then we have F(a,b)= 0=G
(

a
4

,
b
4

)
and F(b,a)= b2 −a2

16
=G

(
b
4

,
a
4

)
.

Now, we show that the pair {F,G} satisfies the generalized compatibility hypothesis. Let (an)
and (bn) be two sequences in K such that lim

n→∞F (an,bn)= lim
n→∞G (an,bn)= x1,

lim
n→∞F(bn,an)= lim

n→∞G(bn,an)= x2.

Then we must have x1 = 0= x2 and one can easily prove thatη (F (G (an,bn) ,G(bn,an)) ,G (F (an,bn) ,F(bn,an)))→ 0 as n →+∞,

η (F (G(bn,an),G (an,bn)) ,G (F(bn,an),F (an,bn)))→ 0 as n →+∞.

Let ϕ,ψ : [0,∞) → [0,∞) be defined by ϕ (t) = 3t
4 , ψ (t) = 3t

8 for all t ≥ 0. Now, we verify the
contraction (2.1) for all a, b, c, d ∈ K , with G (a,b)4G(c,d) and G(d, c)4G(b,a). We have the
following cases.
Case 1: a ≥ b, c ≥ d. Then

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
= 3

4

(
η (F(a,b),F (c,d))+η (0,0)

2

)

= 3
8
η

(
a2 −b2

16
,
c2 −d2

16

)
= 3

8

∣∣∣∣a2 −b2

16
− c2 −d2

16

∣∣∣∣
≤ 3

8

∣∣(a2 −b2)− (
c2 −d2)∣∣+ ∣∣(a2 −b2)− (

c2 −d2)∣∣
16

≤ 3
8

∣∣(a2 −b2)− (
c2 −d2)∣∣+ ∣∣(a2 −b2)− (

c2 −d2)∣∣
2

= 3
4

∣∣(a2 −b2)− (
c2 −d2)∣∣+|−1| ∣∣(b2 −a2)− (d2 − c2)

∣∣
2

− 3
8

∣∣(a2 −b2)− (
c2 −d2)∣∣+|−1| ∣∣(b2 −a2)− (d2 − c2)

∣∣
2

=ϕ
(
η (G(a,b),G(c,d))+η (G(b,a),G(d, c))

2

)
−ψ

(
η (G(a,b),G(c,d))+η (G(b,a),G(d, c))

2

)
.

Case 2: a ≥ b, c < d. Then

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
= 3

4

(
η (F(a,b),F (c,d))+η (F(b,a),F(d, c))

2

)

= 3
8

{
η

(
a2 −b2

16
,0

)
+η

(
0,

d2 − c2

16

)}
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= 3
8

{
a2 −b2

16
+ d2 − c2

16

}
= 3

8

{
(a2 −b2)− (

c2 −d2)
16

}

≤ 3
8

{
(a2 −b2)− (c2 −d2)

}+{
(a2 −b2)− (

c2 −d2)}
16

≤ 3
8

{
(a2 −b2)− (

c2 −d2)}+{
(a2 −b2)− (

c2 −d2)}
2

= 3
8

{
(a2 −b2)− (

c2 −d2)}+{
(d2 − c2)− (−a2 +b2)}

2

= 3
4

{
(a2 −b2)− (

c2 −d2)}+{
(d2 − c2)− (−a2 +b2)}

2

− 3
8

{
(a2 −b2)− (

c2 −d2)}+{
(d2 − c2)− (−a2 +b2)}

2

=ϕ
(
η (G(a,b),G(c,d))+η (G(d, c),G(b,a))

2

)
−ψ

(
η (G(a,b),G(c,d))+η (G(d, c),G(b,a))

2

)
.

Case 3: a < b, c ≥ d. Then

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
= 3

4

(
η (F(a,b),F (c,d))+η (F(b,a),F(d, c))

2

)

= 3
8

{
η

(
0,

c2 −d2

16

)
+η

(
b2 −a2

16
,0

)}
= 3

8

{
c2 −d2

16
+ b2 −a2

16

}

≤ 3
8

{(
c2 −d2)+ (

b2 −a2)}+{(
c2 −d2)+ (

b2 −a2)}
16

≤ 3
8

{(
c2 −d2)+ (

b2 −a2)}+{(
c2 −d2)+ (

b2 −a2)}
2

= 3
4

{(
c2 −d2)− (

a2 −b2)}+{(
b2 −a2)− (

d2 − c2)}
2

− 3
8

{(
c2 −d2)− (

a2 −b2)}+{(
b2 −a2)− (

d2 − c2)}
2

=ϕ
(
η (G(c,d),G(a,b))+η (G(b,a),G(d, c))

2

)
−ψ

(
η (G(c,d),G(a,b))+η (G(b,a),G(d, c))

2

)
.

Case 4: a < b, c < d. Then

ϕ

(
η (F(a,b),F(c,d))+η (F(b,a),F(d, c))

2

)
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= 3
4

(
η (0,0)+η (F (b,a) ,F(d, c))

2

)

= 3
8
η

(
b2 −a2

16
,
d2 − c2

16

)
= 3

8

∣∣∣∣b2 −a2

16
− d2 − c2

16

∣∣∣∣
≤ 3

8

∣∣(b2 −a2)− (
d2 − c2)∣∣+ ∣∣(b2 −a2)− (

d2 − c2)∣∣
16

≤ 3
8

∣∣(b2 −a2)− (
d2 − c2)∣∣+ ∣∣(b2 −a2)− (

d2 − c2)∣∣
2

= 3
4
|−1| ∣∣(a2 −b2)− (

c2 −d2)∣∣+ ∣∣(b2 −a2)− (d2 − c2)
∣∣

2

− 3
8
|−1| ∣∣(a2 −b2)− (

c2 −d2)∣∣+ ∣∣(b2 −a2)− (d2 − c2)
∣∣

2

=ϕ
(
η (G(a,b),G(c,d))+η (G(b,a),G(d, c))

2

)
−ψ

(
η (G(a,b),G(c,d))+η (G(b,a),G(d, c))

2

)
.

Thus, the inequality (2.1) of Theorem 2 holds.
Therefore, all the conditions of Theorem 2 are satisfied and (0,0) is a coupled coincidence

point of F and G.

3. Conclusion
Our theorems and corollaries improve the coupled common fixed point theorems for a generalized
compatible pair of mappings in Jain et. (2012), Hussain et al. (2014), Alotaibi and Alsulami
(2011), Luong and Thuan (2011) and Bhaskar and Lakshmikantham (2006). Farther, we deduce
coupled fixed point results without mixed monotone property of F . Within the future scope of
the idea, reader may indicate

(1) the existence of a coupled coincidence point theorem for a α -
(
ϕ,ψ

)
-contractive mapping in

partially metric spaces via the notion of M-invariant set (for the definition of this notion,
see [6]),

(2) some existence and uniqueness results for coupled coincidence point and common fixed
point of

(
ϕ,ψ

)
-contractive mappings in complete metric spaces involving a graph.
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