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1. Introduction
In matrix and operator theory, there are various kinds of products, namely, Kronecker (tensor)
product, Tracy-Singh product, and Khatri-Rao product. Denote by Mm,n(C) the set of all complex
matrices of order m×n and abbreviate Mn,n(C) to Mn(C). Recall that the Kronecker product of
A = [ai j] ∈ Mm,n(C) and B ∈ Mp,q(C) is defined by

A ⊗̂B = [
ai jB

]
i j ∈ Mmp,nq(C).

To define the Khatri-Rao product [3] of two matrices A and B with arbitrary sizes, we must
partition A = [A i j] and B = [Bi j] in the same block-matrix form (the sizes of A i j and Bi j may be



46 Several Inequalities for Khatri-Rao Products of Hilbert Space Operators: A. Ploymukda and P. Chansangiam

different). The Khatri-Rao product of A and B is given by

A �̂B = [
A i j ⊗̂Bi j

]
i j .

Note that if A is considered of only one block, then A �̂B = A ⊗̂B. If both A and B are entrywise
partitioned (each block is a 1×1 matrix), then their Khatri-Rao product is just their Hadamard
product:

A ̂̄ B = [ai jbi j].

Interesting matrix inequalities concerning Khatri-Rao products and Hadamard products have
been established by many authors, e.g. [1, 5, 6, 15] and references therein.

As is well known, the Kronecker product of complex matrices is generalized to the tensor
product of operators on a complex Hilbert space. Recently, the notions of Tracy-Singh product
and Khatri-Rao product for Hilbert space operators were investigated in [11, 12, 13, 14].

In this paper, we continue developing the theory of operator products by establishing
certain inequalities for Khatri-Rao products of Hilbert space operators. These inequalities
involve ordinary products and powers, ordinary and Moore-Penrose inverses. We also discuss
Kantorovich type inequalities concerning Khatri-Rao products. Our results generalize some
matrix inequalities in [1, 5, 6, 15]. In operator case, we require some mild conditions on operators
such as the closeness of their ranges. Moreover, we develop new operator inequalities by using
the techniques of block partitioning and unital positive linear maps.

This paper is organized as follows. Section 2 supplies preliminaries on Tracy-Singh products,
Khatri-Rao products and Moore-Penrose inverses of operators on a Hilbert space. In Section 3,
we establish certain operator inequalities concerning Khatri-Rao products, ordinary products
and powers. In Section 4, we derive several inequalities for Khatri-Rao products of operators
involving ordinary and Moore-Penrose inverses. In Section 5 deals with Kantorovich type
inequalities. Finally, conclusion is provided at the end of the paper.

2. Preliminaries
Let H, H′, K and K′ be complex Hilbert spaces. When X and Y are Hilbert spaces, let B(X,Y)
be the Banach space of all bounded linear operators from X into Y, and abbreviate B(X,X) to
B(X). Capital letters always denote bounded linear operators, except for the positive constant M.
In particular, I and 0 stand for the identity operator and the zero operator, respectively. Denote
the spectrum of an operator X by Sp(X ). As usual, ⊗ and ⊕ denote the tensor product and the
direct sum, respectively.

2.1 Tracy-Singh Products of Operators
From projection theorem, we can make Hilbert space decompositions as follows:

H =
n⊕

j=1
H j , H′ =

m⊕
i=1

H′
i , K =

q⊕
j=1

K j , K′ =
p⊕

i=1
K′

i . (2.1)
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Thus each operator A ∈ B(H,H′) and B ∈ B(K,K′) can be represented uniquely as operator
matrices

A = [
A i j

]m,n
i, j=1 and B = [Bkl]

p,q
k,l=1

where A i j ∈ B(H j,H′
i) and Bkl ∈ B(Kl ,K′

k) for each i = 1, . . . ,m, j = 1, . . . ,n, k = 1, . . . , p and
l = 1, . . . , q.

Definition 1 ([13]). Let A = [A i j]
m,n
i, j=1 ∈ B(H,H′) and B = [Bkl]

p,q
k,l=1 ∈ B(K,K′) be partitioned

according to the decompositions (2.1). We define the Tracy-Singh product of A and B to be the
bounded linear operator from

⊕n,q
j,l=1H j⊗Kl to

⊕m,p
i,k=1H

′
i⊗K′

k represented by an operator matrix

A�B = [[
A i j ⊗Bkl

]
kl

]
i j .

Lemma 1 ([13]). The Tracy-Singh product for operators satisfies the following properties
(provided that each term is well-defined):

(i) The map (A,B) 7→ A�B is bilinear.

(ii) Compatibility with adjoints: (A�B)∗ = A∗�B∗.

(iii) Compatibility with ordinary products: (A�B)(C�D)= AC�BD.

(iv) Positivity: if A> 0 and B> 0, then A�B> 0.

Lemma 2 ([14]). Let A ∈ B(H) and B ∈ B(K) be positive operators. Then for any positive real
number α,

(A�B)α = Aα�Bα.

2.2 Khatri-Rao products of operators
Throughout this paper, we fix the orthogonal decompositions of Hilbert spaces:

H =
n⊕

j=1
H j , H′ =

m⊕
i=1

H′
i , K =

n⊕
j=1

K j , K′ =
m⊕

i=1
K′

i . (2.2)

Definition 2 ([11]). Let A = [
A i j

]m,n
i, j=1 ∈ B(H,H′) and B = [

Bi j
]m,n

i, j=1 ∈ B(K,K′) be partitioned
according to the decompositions (2.2). The Khatri-Rao product of A and B is defined to be the
bounded linear operator from

⊕n
j=1H j ⊗K j to

⊕m
i=1H

′
i ⊗K′

i represented by an operator matrix

A�B = [
A i j ⊗Bi j

]m,n
i, j=1 .

Lemma 3 ([11]). The Khatri-Rao product for operators satisfies the following properties:

(i) Compatibility with adjoints: (A�B)∗ = A∗�B∗.

(ii) Positivity: if A> 0 and B> 0, then A�B> 0.

Lemma 4 ([11]). There are isometries Z1 and Z2 such that ZiZ∗
i 6 I for i = 1,2 and for any

A ∈B(H,H′) and B ∈B(K,K′), we have

A�B = Z∗
1 (A�B)Z2.
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In particular, if H=H′ and K=K′, then Z1 = Z2 := Z and

A�B = Z∗(A�B)Z

for any A ∈B(H) and B ∈B(K).

We call (Z1, Z2) the ordered pair of selection operators associated with the ordered tuple
(H,H′,K,K′) of Hilbert spaces and call Z the selection operator associated with the ordered
tuple (H,K).

Lemma 5 ([11]). Let (Z1, Z2) be the ordered pair of selection operators associated with the
ordered tuple (H,H′,K,K′) of Hilbert spaces. Then there are bounded linear operators V and W
such that

Z∗
1 V = 0, Z∗

2W = 0, Z1Z∗
1 +VV∗ = I, Z2Z∗

2 +WW∗ = I .

2.3 Moore-Penrose inverse of operators
Recall that a Moore-Penrose inverse of A ∈ B(H,K) is an operator A† ∈ B(K,H) satisfying the
following conditions ([10])

(i) AA†A = A,

(ii) A†AA† = A†,

(iii)
(
AA†)∗ = AA†,

(iv)
(
A†A

)∗ = A†A.

It is well known (see e.g. [2]) that a Moore-Penrose inverse of A ∈B(H,K) exists if and only if the
range of A is closed. In this case, A† is uniquely determined. If A is invertible, then A† = A−1.

The next lemma provides a block-matrix technique for deriving operator inequalities.

Lemma 6 ([16]). Consider an operator in B(H1 ⊕H2) represented by an operator matrix

R =
[
R11 R12
R∗

12 R22

]
,

where R11 and R22 are Hermitian, and R11 has a closed range. Then R> 0 if and only if

(i) R11> 0 ,

(ii) R12 = R11R†
11R12 ,

(iii) R22>R∗
12R†

11R12 .

Lemma 7 ([13]). Let A ∈B(H,H′) and B ∈B(K,K′). If A and B have closed ranges, then so is
A�B and the following property holds:

(A�B)† = A†�B†.

3. Inequalities involving Ordinary Products and Powers

In this section, we derive certain inequalities for Khatri-Rao products involving ordinary
products and powers of operators.
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Proposition 1. Let A ∈B(H) and B ∈B(K) be Hermitian operators. Then

(A�B)2 6 A2�B2.

Proof. The operators A�B and A2�B2 are Hermitian due to the property (i) in Lemma 3. Let
Z be the selection operator associated with the ordered tuple (H,K). Lemmas 1(iii) and 4 imply
that

(A�B)2 = (Z∗(A�B)Z)2

= Z∗(A�B)ZZ∗(A�B)Z

6 Z∗(A�B)I(A�B)Z

= Z∗(A2�B2)Z

= A2�B2.

The above inequality holds since A�B is Hermitian (by Lemma 1(ii)).

The notion of unital positive linear map is useful in later discussions.

Definition 3. Let X and Y be Hilbert spaces. A map Φ : B(X) → B(Y) is said to be unital if
Φ(I)= I . The map Φ is said to be positive if Φ(A)> 0 whenever A> 0.

Theorem 1. Let A ∈B(H) and B ∈B(K) be positive operators. Then for α ∈ [1,2], we have

(A�B)α6 Aα�Bα . (3.1)

For α ∈ (0,1], inequality (3.1) will be reversed.

Proof. Note first that A�B> 0 by Lemma 3(ii). For any unital positive linear map Φ and a
positive operator X , the following holds for α ∈ [1,2] (see [9])

Φ(X )α 6 Φ(Xα). (3.2)

When α ∈ (0,1], the inequality (3.2) will be reversed. Consider a map

Φ(X ) = Z∗X Z

where Z is the selection operator in Lemma 4, associated with the ordered tuple (H,K). Then
Φ is linear, unital and positive. It follows from Lemmas 2 and 4 that for any α ∈ [1,2],

(A�B)α = (
Z∗(A�B)Z

)α 6 Z∗(A�B)αZ

= Z∗(Aα�Bα)Z = Aα�Bα.

Similarly, the inequality (3.1) will be reversed in the case α ∈ (0,1].

Lemma 8. Let S ∈ B(H) be a positive operator such that Sp(S) ⊆ [m, M] for some constants
m, M > 0. Then

S2 6 (m+M)S−mMI. (3.3)
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Proof. Since mI 6 S6MI , we have (MI −S)(mI −S)6 0 and hence

(MI −S)(mI −S)S−1 = S− 1
2 (MI −S)(mI −S)S− 1

2 6 0.

It follows that S6 (m+M)I −mMS−1 and hence the inequality (3.3) holds.

Lemma 9. Let S ∈B(H) be a Hermitian operator such that Sp(S)⊆ [m, M] for some constants
m, M ∈R. For any isometry X ∈B(K,H), we have

4mM(X∗S2X ) 6 (m+M)2(X∗SX )2.

Proof. The case mM6 0 is trivial. Consider the case M > m > 0, i.e., S > 0. Since X∗X = I , it
follows from Lemma 8 that

X∗S2X 6 X∗ ((m+M)S−mMI) X

= (m+M)2

4mM
(X∗SX )2 −

(
m+M

2
p

mM
X∗SX −

p
mMI

)2

6
(m+M)2

4mM
(X∗SX )2.

Finally, consider the case m < M < 0, i.e., S < 0. This case is done by applying the previous case
to −S.

Note that in Lemma 9, there always exists two constants m, M for which Sp(S) ⊆ [m, M].
For example, one can take

m = inf
‖x‖=1

〈Sx, x〉 and M = sup
‖x‖=1

〈Sx, x〉.

For the case of Hermitian matrices, m and M reduce to the smallest and the largest eigenvalues
of S, respectively.

Theorem 2. Let A ∈B(H) and B ∈B(K) be Hermitian operators such that Sp(A�B)⊆ [m, M].
Then

4mM (A2�B2) 6 (m+M)2(A�B)2. (3.4)

Proof. Substitute S = A�B and X = Z in Lemma 9, where Z is the selection operator. It follows
from Lemmas 2 and 4 that

4mM(A2�B2) = 4mMZ∗(A2�B2)Z

= 4mMZ∗(A�B)2Z

6 (m+M)2 (
Z∗(A�B)Z

)2

= (m+M)2(A�B)2.

Corollary 1. Let A,B ∈Mn(C) be Hermitian matrices with eigenvalues λ1>λ2> · · ·>λn and
µ1>µ2> . . .>µn, respectively. Then

4λ1µ1λnµn (A2 ̂̄ B2) 6 (λ1µ1 +λnµn)2(A ̂̄ B)2.
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Proof. Consider a matrix case in Theorem 2. When we partition matrices A and B entrywise,
their Khatri-Rao product and their Tracy-Singh product reduce to the Hadamard product
A ̂̄ B and the Kronecker product A ⊗̂B, respectively. Note that the smallest and the largest
eigenvalues of A ⊗̂B are given by λnµn and λ1µ1, respectively.

Theorem 3. Let A,B ∈B(H,H′) and let α,β be any real scalars not both zero. Then

α2AA∗�BB∗+αβ
(
AB∗�BA∗+BA∗�AB∗)+β2BB∗�AA∗

> (αA�B+βB�A)(αA∗�B∗+βB∗�A∗).
(3.5)

Proof. Let (Z1, Z2) be the ordered pair of selection operators associated with (H,H′,H,H′). Set

T =
[
T1
T2

]
and R =

[
Z2 0
0 Z1

]
where T1 = I� I and T2 =αA�B+βB�A. It follows that

0 6 TT∗

=
[
T1T∗

1 T1T∗
2

T2T∗
1 T2T∗

2

]

=
[

I αA∗�B∗+βB∗�A∗

αA�B+βB�A X

]
,

where X =α2AA∗�BB∗+αβ (AB∗�BA∗+BA∗�AB∗)+β2BB∗�AA∗. Using Lemma 4, we
obtain

0 6 R∗TT∗R

=
[

I αA∗�B∗+βB∗�A∗

αA�B+βB�A Y

]
,

where Y = α2AA∗ � BB∗ + αβ (AB∗�BA∗+BA∗�AB∗) + β2BB∗ � AA∗. Note that Y is
Hermitian by Lemma 3(i). The proof is done by applying Lemma 6.

Corollary 2. For any A,B ∈B(H,H′), we have

AA∗�BB∗ > (A�B)(A∗�B∗).

Proof. This is a special case α= 1,β= 0 of Theorem 3.

Visick [15, Theorem 11] show that for any m×n complex matrices A and B, and for any
γ ∈ [−1,1], we have

AA∗ ̂̄ BB∗+γ(AB∗ ̂̄ BA∗) > (1+γ)(A ̂̄ B)(A ̂̄ B)∗.

The next result generalizes this fact to Khatri-Rao product of operators.

Corollary 3. Let A,B ∈ B(H,H′) and γ ∈ [−1,1]. Suppose A�B = B� A, AB∗�BA∗ =
BA∗�AB∗ and AA∗�BB∗ = BB∗�AA∗. Then

AA∗�BB∗+γ(AB∗�BA∗) > (1+γ)(A�B)(A∗�B∗). (3.6)
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Proof. Since |γ|6 1, we can write γ= 2αβ/
(
α2 +β2) for some real numbers α and β not both

zero. It follows from Theorem 3 that(
α2 +β2)(AA∗�BB∗)+2αβ(AB∗�BA∗) > (α+β)2(A�B)(A�B)∗.

Dividing both sides with α2 +β2 yields the desired result.

The next result generalizes the matrix result for Hadamard products provided in [15,
Corollary 12] to the Khatri-Rao product of operators.

Corollary 4. Let A,B ∈ B(H,H′). Suppose that A�B = B� A, AB∗�BA∗ = BA∗� AB∗ and
AA∗�BB∗ = BB∗�AA∗. We have

AA∗�BB∗ > ±(AB∗�BA∗), (3.7)

2(AA∗�BB∗) > AA∗�BB∗+ AB∗�BA∗ > 2(A�B)(A∗�B∗). (3.8)

Moreover, the following statements are equivalent:

(i) AA∗�BB∗+ AB∗�BA∗ = 2(A�B)(A∗�B∗),

(ii) Z∗
1 (A�B+B�A)W = 0,

(iii) AC�BD+BC�AD = 2(A�B)(C�D) for all C,D ∈B(H′,H).

Here, the operators Z1 and W are described in Lemmas 4 and 5, respectively.

Proof. By taking γ=−1 in inequality (3.6), we get

AA∗�BB∗ > AB∗�BA∗.

Letting γ= 1 in (3.6) yields

AA∗�BB∗+ AB∗�BA∗ > 2(A�B)(A�B)∗ > 0.

Hence we obtain the inequalities (3.7) and (3.8).

It is clear that (iii)⇒(i). To prove (i)⇒(ii), note that the condition A�B = B� A implies
A∗�B∗ = B∗� A∗ via Lemma 3(i). Note that the pair (Z1, Z2) is associated to (H,H′,H,H′)
while the pair (Z2, Z1) is associated to (H′,H,H′,H). It follows from Lemmas 1(iii), 4 and 5 that

4(A�B)(A∗�B∗)

= (2A�B)(2A∗�B∗)

= (A�B+B�A)(A∗�B∗+B∗�A∗)

= Z∗
1 (A�B+B�A)Z2Z∗

2 (A∗�B∗+B∗�A∗)Z1

= Z∗
1 (A�B+B�A)(I −WW∗)(A∗�B∗+B∗�A∗)Z1

= Z∗
1 (AA∗�BB∗+ AB∗�BA∗+BA∗�AB∗+BB∗�AA∗)Z1

− [
Z∗

1 (A�B+B�A)W
][

Z∗
1 (A�B+B�A)W

]∗
= AA∗�BB∗+ AB∗�BA∗+BA∗�AB∗+BB∗�AA∗
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− [
Z∗

1 (A�B+B�A)W
][

Z∗
1 (A�B+B�A)W

]∗
= 2(AA∗�BB∗+ AB∗�BA∗)− [

Z∗
1 (A�B+B�A)W

][
Z∗

1 (A�B+B�A)W
]∗ .

Then (i) holds only if[
Z∗

1 (A�B+B�A)W
][

Z∗
1 (A�B+B�A)W

]∗ = 0,

i.e., Z∗
1 (A�B+B�A)W = 0.

Now, suppose that (ii) holds. We have by Lemma 5 that

Z∗
1 (A�B+B�A)(I −Z2Z∗

2 ) = Z∗
1 (A�B+B�A)WW∗ = 0

or Z∗
1 (A�B+B�A) = Z∗

1 (A�B+B�A)Z2Z∗
2 . It follows from Lemmas 1(iii) and 4 that for any

C ∈B(H′,H) and D ∈B(K′,K),

AC�BD+BC�AD = Z∗
1 (AC�BD+BC�AD)Z1

= Z∗
1 (A�B+B�A)(C�D)Z1

= Z∗
1 (A�B+B�A)Z2Z∗

2 (C�D)Z1

= 2(A�B+B�A)(C�D).

A simple form of inequality (3.8) is obtained for the case of Hermitian operators.

Corollary 5. Let A,B ∈B(H) be Hermitian operators. Suppose A�B = B�A, A2�B2 = B2�A2

and AB�BA = BA�AB. Then

(A�B)2 6
1
2

(
A2�B2 + AB�BA

)
6 A2�B2. (3.9)

The inequality (3.9) for Hadamard product of matrices was obtained in [15, Corollary 13] as
follows: For any Hermitian matrices A,B ∈Mn(C), we have

(A ̂̄ B)2 6
1
2

(
A2 ̂̄ B2 + AB ̂̄ BA

)
6 A2 ̂̄ B2.

Note that in this case we do not impose commutativity conditions since the Hadamard product
of matrices is always commutative.

4. Inequalities involving Ordinary and Moore-Penrose Inverses

This section deals with operator inequalities for Khatri-Rao products involving ordinary and
Moore-Penrose inverses.

Lemma 10 ([4]). Let X and Y be Hilbert spaces. For any unital positive linear map Φ :B(X)→
B(Y) and for any operator T ∈B(X) such that Sp(T)⊆ [m, M]⊆ (0,∞), we have

Φ(T)−1 6 Φ(T−1) 6
(m+M)2

4mM
Φ(T)−1. (4.1)

Theorem 4. Let A ∈B(H) and B ∈B(K) be positive operators. Suppose that there are positive
constants m, M > 0 such that Sp(A�B)⊆ [m, M]. Then

(A�B)−1 6 A−1�B−1 6
(m+M)2

4mM
(A�B)−1. (4.2)
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Proof. Consider a unital positive linear map Φ : T 7→ Z∗TZ where Z is the selection operator
described in Lemma 4, associated with the ordered tuple (H,K). Using Lemmas 1(iv), 4 and 10,
we get

(A�B)−1 = (
Z∗(A�B)Z

)−1 6 Z∗(A�B)−1Z

= Z∗(A−1�B−1)Z = A−1�B−1.

Similarly, we obtain the right-hand side of (4.2).

Corollary 6. Let A,B ∈Mn(C) be positive definite matrices with eigenvalues λ1>λ2> . . .>λn

and µ1>µ2> . . .>µn, respectively. Then

(A ̂̄ B)−1 6 A−1 ̂̄ B−1 6
(λ1µ1 +λnµn)2

4λ1µ1λnµn
(A ̂̄ B)−1.

Proof. Consider a matrix case in Theorem 4. Partition A and B entrywise and then take m and
M to be the smallest and the largest eigenvalues of A�B = A ⊗̂B, respectively.

Theorem 5. Let A ∈ B(H) and B ∈ B(K) be positive invertible operators. Suppose that
Sp((A−1�B)⊕ (A�B−1))⊆ [m, M]⊆ (0,∞). Then we have the following bounds:

2I 6 A�B−1 + A−1�B 6
m+Mp

mM
I. (4.3)

Proof. The operator T := A�B−1 is positive by Lemma 1(v). The spectral mapping theorem
implies that T +T−1> 2I . Applying Lemma 1, we have

A�B−1 + A−1�B = A�B+ (
A�B−1)−1

> 2I.

Lemma 4 then implies that A�B−1 + A−1�B > 2I . Let Z be the selection operator associated
with (H,K). Denote

S = (
A−1�B

)⊕ (
A�B−1) and X = 1p

2

[
Z
Z

]
.

Since Z is an isometry, we have X∗X = I . It follows that the map Φ : T 7→ X∗TX is a unital
positive linear map. Using Lemma 4 again, we obtain

X∗SX = 1
2

[
Z∗ Z∗][

A−1�B 0
0 A�B−1

][
Z
Z

]
= 1

2
Z∗(A−1�B+ A�B−1)Z

= 1
2

(
A�B−1 + A−1�B

)
.

The property (iv) of Lemma 1 implies that

X∗S−1X = 1
2

[
Z∗ Z∗][

A�B−1 0
0 A−1�B

][
Z
Z

]
= 1

2
(
A�B−1 + A−1�B

)
.
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Now, Lemma 10 assures that

A�B−1 + A−1�B 6
(m+M)2

mM
(
A�B−1 + A−1�B

)−1
.

Thus we obtain the right-hand side of (4.3).

Corollary 7. Let A,B ∈Mn(C) be positive definite matrices with eigenvalues λ1>λ2> . . .>λn

and µ1>µ2> . . .>µn, respectively. Then

2I 6 A ̂̄ B−1 + A−1 ̂̄ B6
m+Mp

mM
I,

where m = min
{
µn

λ1
,
λn

µ1

}
and M = max

{
µ1

λn
,
λ1

µn

}
.

Proof. When we partition A and B entrywise, the Khatri-Rao product A �̂B reduces to the
Hadamard product A ̂̄ B. In this case, their Tracy-Singh product reduces to the Kronecker
product. We have

Sp
[

A �̂B−1 0
0 A−1 �̂B

]
= Sp(A−1 ⊗̂B)∪Sp(A ⊗̂B−1)

= {λ−1µ : λ ∈Sp(A),µ ∈Sp(B)}∪ {λµ−1 : λ ∈Sp(A),µ ∈Sp(B)}

⊆ [m, M].

Now, the result follows from Theorem 5.

Proposition 2. Let A ∈B(H) and B ∈B(K) be positive operators. If both A and B have closed
ranges, then

A�B† + A†�B > 2AA†�BB†. (4.4)

Proof. Since the ranges of A and B are closed, the Moore-Penrose inverses A† and B† exists
and are unique. The positivity of A and B implies that B†B = BB† and S := A�B† > 0. The
spectral mapping theorem implies that S+S†> 2SS†. It follows from Lemmas 1(iii) and 7 that

A�B† + A†�B = A�B† + (A�B†)†

> 2(A�B†)(A�B†)†

= 2(A�B†)(A†�B)

= 2AA†�B†B.

We get the desired result by pre- and post-multiplying the above inequality with Z∗ and Z.

We mention that Proposition 2 is an operator extension of [6, Theorem 6].

Remark 1. If A and B are strictly positive, the inequality (4.4) reduces to the left-hand side of
(4.3).
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Theorem 6. Let A ∈ B(H) and B ∈ B(K) be positive operators. If A,B and A�B have closed
ranges, then(

A�BB† + AA†�B
)
(A�B)†(A�BB† + AA†�B

)
6 A�B† + A†�B+2AA†�BB†. (4.5)

Proof. Since the ranges of A,B and A � B are closed, the operators A†, B† and (A�B)† are
well-defined. Let Z be the selection operator and denote

S =
[
A1/2�B1/2 A1/2�

(
B†)1/2 + (

A†)1/2
�B1/2

]
and X =

[
Z 0
0 Z

]
.

Using Lemma 1, we get

0 6 S∗S =
[

A�B A�BB† + AA†�B
A�BB† + AA†�B A�B† + A†�B+2AA†�BB†

]
.

Using Lemma 4, we obtain

0 6 X∗S∗SX

=
[

Z∗ 0
0 Z∗

][
A�B A�BB† + AA†�B

A�BB† + AA†�B A�B† + A†�B+2AA†�BB†

][
Z 0
0 Z

]

=
[

A�B A�BB† + AA†�B
A�BB† + AA†�B Y

]
,

where Y = A�B† + A†�B+2AA†�BB†. Note that A�B> 0 by Lemma 3(ii). The operator Y
is Hermitian by Lemma 3(i). Now, we get the desired result by applying Lemma 6.

Theorem 6 is a generalization of a matrix version given in [6, Theorem 5].

5. Kantorovich type inequalities

In this section, we generalize some well-known Kantorovich type inequalities for Khatri-Rao
products of matrices to that of operators. Moreover, we establish new operator inequalities.

The following lemma is an operator extension of [7].

Lemma 11. Let S ∈B(K) be a positive operator with Sp(S)⊆ [m, M]⊆ (0,∞) and let X ∈B(H,K)
be an isometry. Then

X∗SX − (X∗S−1X )−1 6 (
p

M−p
m)2I, (5.1)

X∗S2X − (X∗SX )2 6
1
4

(M−m)2I, (5.2)

(X∗S2X )1/2 − X∗SX 6
(M−m)2

4(M+m)
I. (5.3)

Proof. The proof is similar to that of matrix versions in [7].

In [5, Theorem 8], Liu gave certain matrix inequalities involving Khatri-Rao products. Now,
we extend some Liu’s results to Khatri-Rao product of operators.
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Proposition 3. Let A ∈B(H) and B ∈B(K) be positive invertible operators and 0< mI 6 A�B6
MI . Then

A�B− (A−1�B−1)−1 6 (
p

M−p
m)2I , (5.4)

A2�B2 − (A�B)2 6
1
4

(M−m)2I , (5.5)

(A2�B2)1/2 − A�B 6
(M−m)2

4(M+m)
I . (5.6)

Proof. From (5.1), set S = A�B and X = Z, where Z is the associated selection operator.
It follows from Lemmas 1 and 4 that

A�B− (A−1�B−1)−1 = Z∗(A�B)Z− (Z∗(A−1�B−1)Z)−1

= Z∗(A�B)Z− (Z∗(A�B)−1Z)−1

6 (
p

M−p
m)2I.

Thereby, from (5.2) and (5.3), we obtain (5.5) and (5.6).

The next result is a new Kantorovich-type inequality involving Khatri-Rao products.

Theorem 7. Let A ∈B(H) and B ∈B(K) be positive invertible operators such that mI 6 A�B6
MI for some positive constants m, M. Then

(A−1�B−1)(A�B)+ (A�B)(A−1�B−1)6
(m+M)2

2mM
I. (5.7)

Proof. From [4], we have for every unital positive linear map Φ,

Φ(X−1)Φ(X )+Φ(X )Φ(X−1) 6
(M+m)2

2Mm
I. (5.8)

provided that 0 < mI 6 X 6 MI . Consider Φ(X ) = Z∗X Z where Z is the selection operator
associated with (H,K). Lemma 1 yields

(A−1�B−1)(A�B)+ (A�B)(A−1�B−1)

= Z∗(A−1�B−1)ZZ∗(A�B)Z+Z∗(A�B)ZZ∗(A−1�B−1)Z

= Z∗(A�B)−1ZZ∗(A�B)Z+Z∗(A�B)ZZ∗(A�B)−1Z

6
(m+M)2

2mM
I.

Corollary 8. Let A,B ∈Mn(C) be positive definite matrices with eigenvalues λ1>λ2> . . .>λn

and µ1>µ2> . . .>µn, respectively. Then

(A ̂̄ B)(A−1 ̂̄ B−1) 6
(λ1µ1 +λnµn)2

4λ1µ1λnµn
I.

Proof. Apply Theorem 7 to matrices A and B partitioned entrywise.
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Lemma 12. Let S ∈ B(K) be a positive operator such that Sp(S) ⊆ [m, M] ⊆ (0,∞) and let
X ∈B(H,K) have a closed range. Then

X∗SX X †SX 6 X∗S2X 6
(m+M)2

4mM
X∗SX X †SX , (5.9)

X∗S2X − X∗SX X †SX 6
(M−m)2

4
X∗X . (5.10)

Proof. The closeness of the range of X implies the existence and uniqueness of X †. Since X X †

is Hermitian and idempotent, it is a projection and thus X X †6 I . Now, the proof can be proceed
using the same technique as in [8, Propositions 3.3 and 3.4].

The final result is an operator extension of some Khatri-Rao product inequalities in [6,
Theorem 1]. Here, we must impose the closeness of the range of a certain operator.

Proposition 4. Let A ∈B(H) and B ∈B(K) be positive operators such that Sp(A�B)⊆ [m, M]⊆
(0,∞). Let U ∈ B(K,H), V ∈ B(H,K) and let Z be the selection operator associated with the
ordered tuple (K,H). If (U�V )Z has a closed range, then U∗U�V∗V has a close range and the
following hold:

(U∗AU�V∗BV )(U∗U�V∗V )†(U∗AU�V∗BV )

6 U∗A2U�V∗B2V

6
(m+M)2

4mM
(
U∗AU�V∗BV

)(
U∗U�V∗V

)† (
U∗AU�V∗BV

)
,

U∗A2U�V∗B2V − (
U∗AU�V∗BV

)(
U∗U�V∗V

)† (
U∗AU�V∗BV

)
6

(M−m)2

4
(U∗U�V∗V ).

Proof. Denote S = A�B and X = (U�V )Z. Then S is positive by Lemma 1(v). Since the range
of X is closed, X † exists. It follows that (X∗X )† exists, i.e., X∗X has a closed range. Using
Lemmas 1, 2 and 4, we have

X∗SX = Z∗(U∗�V∗)(A�B)(U�V )Z = U∗AU�V∗BV ,

X∗S2X = Z∗(U∗�V∗)(A2�B2)(U�V )Z = U∗A2U�V∗B2V ,

X † = (
X∗X

)† X∗ = (U∗U�V∗V )†Z∗(U∗�V∗),

X †SX = (U∗U�V∗V )†Z∗(U∗�V∗)(A�B)(U�V )Z

= (U∗U�V∗V )†(U∗AU�V∗BV ).

Substitution in (5.9) and (5.10), we get the results.

6. Conclusions
Relations between the Khatri-Rao product of Hilbert space operators and ordinary products,
powers, ordinary inverses, and Moore-Penrose inverses are established in terms of inequalities.
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In particular, such relations hold for the tensor product of operators, the Khatri-Rao product
and the Hadamard product of complex matrices.
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