A New Study on Generalized Absolute Matrix Summability

Hikmet Seyhan Özarslan

Department of Mathematics, Erciyes University, Kayseri, Turkey
seyhan@erciyes.edu.tr; hseyhan38@gmail.com

Abstract. In this paper, a general theorem on $|A, p_n; \delta|_k$ summability factors, which generalizes a theorem of Bor [4] on $|N, p_n|_k$ summability factors, has been proved by using almost increasing sequences.

Keywords. Summability factors; Absolute matrix summability; Almost increasing sequence; Infinite series; Hölder inequality; Minkowski inequality

MSC. 26D15; 40D15; 40F05; 40G99

Received: September 2, 2016 Accepted: November 9, 2016

Copyright © 2016 Hikmet Seyhan Özarslan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A positive sequence (b_n) is said to be almost increasing if there exists a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$ (see [1]). Obviously, every increasing sequence is almost increasing sequence but the converse need not be true as can be seen from the example $b_n = ne^{(-1)^n}$. Let $\sum a_n$ be a given infinite series with the partial sums (s_n). Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty \quad \text{as} \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \ i \geq 1). \quad (1.1)$$

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v \quad (1.2)$$
defines the sequence \((\sigma_n)\) of the Riesz mean or simply the \((\tilde{N}, p_n)\) mean of the sequence \((s_n)\), generated by the sequence of coefficients \((p_n)\) (see [5]).

The series \(\sum a_n\) is said to be summable \(|\tilde{N}, p_n|_k\), \(k \geq 1\), if (see [2])
\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{P_n}\right)^{k-1} |\Delta \sigma_{n-1}|^k < \infty,
\]
where
\[
\Delta \sigma_{n-1} = -\frac{P_n}{P_n} \sum_{v=1}^{n} P_{v-1} a_v, \quad n \geq 1.
\]

Let \(A = (a_{nv})\) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then \(A\) defines the sequence-to-sequence transformation, mapping the sequence \(s = (s_n)\) to \(As = (A_n(s))\), where
\[
A_n(s) = \sum_{v=0}^{n} a_{nv} s_v, \quad n = 0, 1, \ldots .
\]

The series \(\sum a_n\) is said to be summable \(|A, p_n; \delta|_k\), \(k \geq 1\) and \(\delta \geq 0\), if (see [6])
\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{P_n}\right)^{\delta k+k-1} |\tilde{\Delta} A_n(s)|^k < \infty,
\]
where
\[
\tilde{\Delta} A_n(s) = A_n(s) - A_{n-1}(s).
\]

If we set \(\delta = 0\), then \(|A, p_n; \delta|_k\) summability reduces to \(|A, p_n|_k\) summability (see [5]). If we take \(a_{nv} = \frac{P_v}{P_n}\) and \(\delta = 0\), then \(|A, p_n; \delta|_k\) summability reduces to \(|\tilde{N}, p_n|_k\) summability. In the special case \(\delta = 0\) and \(p_n = 1\) for all \(n\), \(|A, p_n; \delta|_k\) summability is the same as \(|A|_k\) summability (see [9]). Also if we take \(a_{nv} = \frac{P_v}{P_n}\), then \(|A, p_n; \delta|_k\) summability is the same as \(|\tilde{N}, p_n; \delta|_k\) summability (see [3]).

Before stating the main theorem we must first introduce some further notations.

Given a normal matrix \(A = (a_{nv})\), we associate two lower semimatrices \(\hat{A} = (\hat{a}_{nv})\) and \(\hat{\hat{A}} = (\hat{\hat{a}}_{nv})\) as follows:
\[
\hat{a}_{nv} = \sum_{i=0}^{n} a_{ni}, \quad n, v = 0, 1, \ldots .
\]
and
\[
\hat{\hat{a}}_{00} = \hat{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \hat{a}_{nv} - \hat{a}_{n-1,v}, \quad n = 1, 2, \ldots .
\]

It may be noted that \(\hat{A}\) and \(\hat{\hat{A}}\) are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have
\[
A_n(s) = \sum_{v=0}^{n} a_{nv} s_v = \sum_{v=0}^{n} \hat{a}_{nv} a_v
\]
and
\[
\hat{\hat{A}} A_n(s) = \sum_{v=0}^{n} \hat{\hat{a}}_{nv} a_v .
\]
2. Known Result

In [4], the following theorem dealing with $|\vec{N}, p_n|_k$ summability factors of infinite series has already been proved.

Theorem 2.1. Let (X_n) be an almost increasing sequence and let there be sequences (β_n) and (λ_n) such that

\[
|\Delta \lambda_n| \leq \beta_n, \quad (2.1)
\]
\[
\beta_n \to 0 \quad \text{as} \quad n \to \infty, \quad (2.2)
\]
\[
\sum_{n=1}^{\infty} n |\Delta \beta_n| X_n < \infty, \quad (2.3)
\]
\[
|\lambda_n| X_n = O(1). \quad (2.4)
\]

If
\[
\sum_{n=1}^{m} \frac{|\lambda_n|}{n} = O(1) \quad \text{as} \quad m \to \infty, \quad (2.5)
\]
\[
\sum_{n=1}^{m} \frac{1}{n} |t_n|^k = O(X_m) \quad \text{as} \quad m \to \infty \quad (2.6)
\]

and (p_n) is a sequence such that
\[
\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad \text{as} \quad m \to \infty, \quad (3.3)
\]

where (t_n) is the nth $(C,1)$ mean of the sequence (na_n), then the series $\sum a_n \lambda_n$ is summable $|\vec{N}, p_n|_k$, $k \geq 1$.

3. Main Result

The aim of this paper is to generalize Theorem 2.1 to $|A, p_n; \delta|_k$ summability. Now, we shall prove the following theorem.

Theorem 3.1. Let $A = (a_{nv})$ be a positive normal matrix such that

\[
a_{\eta n 0} = 1, \quad n = 0,1,\ldots, \quad (3.1)
\]
\[
a_{n-1,v} \geq a_{nv}, \quad \text{for} \quad n \geq v + 1, \quad (3.2)
\]
\[
a_{nn} = O\left(\frac{p_n}{P_n}\right), \quad (3.3)
\]

and (X_n) be an almost increasing sequence. If the conditions (2.1)-(2.5) of Theorem 2.1 and the conditions
\[
\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta h-1} |t_n|^k = O(X_m) \quad \text{as} \quad m \to \infty, \quad (3.4)
\]
\[
\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k} \frac{|t_n|^k}{n} = O(X_m) \quad \text{as} \quad m \to \infty, \quad (3.5)
\]
To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

\[
\sum_{n=1}^{m+1} \left(\frac{P_n}{P_n} \right)^{\delta k} |\Delta_n \tilde{a}_{n+1}| = O \left(\left(\frac{P_n}{P_n} \right)^{\delta k - 1} \right) \quad \text{as} \quad m \to \infty,
\]

(3.6)

\[
\sum_{n=1}^{m+1} \left(\frac{P_n}{P_n} \right)^{\delta k} |\tilde{a}_{n+1}| = O \left(\left(\frac{P_n}{P_n} \right)^{\delta k} \right) \quad \text{as} \quad m \to \infty
\]

(3.7)

are satisfied, then the series \(\sum a_n \lambda_n \) is summable \(|A, p_n; \delta|, k \geq 1 \) and \(0 \leq \delta < 1/k \).

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2 ([4]). Under the conditions on \((X_n), (\beta_n)\) and \((\lambda_n)\) as taken in the statement of Theorem 3.1, the following conditions hold:

\[
n \beta_n X_n = O(1) \quad \text{as} \quad n \to \infty,
\]

(3.8)

\[
\sum_{n=1}^{\infty} \beta_n X_n < \infty.
\]

(3.9)

4. Proof of Theorem 3.1

Let \((I_n)\) denotes A-transform of the series \(\sum a_n \lambda_n \). Then, by (1.9) and (1.10), we have

\[
\tilde{a}_n = \sum_{v=1}^{n} \tilde{a}_{n+1} a_v \lambda_v
\]

\[
= \sum_{v=1}^{n} \tilde{a}_{n+1} \frac{\lambda_v}{v} a_v.
\]

Using Abel’s transformation, we have that

\[
\tilde{a}_n = \sum_{v=1}^{n-1} \Delta_v \left(\frac{\tilde{a}_{n+1} \lambda_v}{v} \right) \sum_{r=1}^{v} r a_r + \frac{\tilde{a}_{n+1} \lambda_n}{n} \sum_{r=1}^{n} r a_r
\]

\[
= \frac{n+1}{n} \tilde{a}_{n+1} \lambda_n t_n + \sum_{v=1}^{n-1} \Delta_v (\tilde{a}_{n+1} \lambda_v) t_v + \sum_{v=1}^{n-1} \frac{\lambda_v}{v} \tilde{a}_{n+1} \lambda_{v+1} t_v + \sum_{v=1}^{n-1} \frac{1}{v} \tilde{a}_{n+1} \lambda_{v+1} t_v
\]

\[
= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}.
\]

To complete the proof of Theorem 3.1 by Minkowski’s inequality, it is sufficient to show that

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{P_n} \right)^{\delta k - 1} |I_{n,r}| < \infty, \quad \text{for} \quad r = 1, 2, 3, 4.
\]

First, we have that

\[
\sum_{n=1}^{m} \left(\frac{P_n}{P_n} \right)^{\delta k - 1} |I_{n,1}|^k = O(1) \sum_{n=1}^{m} \left(\frac{P_n}{P_n} \right)^{\delta k - 1} |\lambda_n| |t_n|^k \tilde{a}_{n+1}^k
\]

\[
= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{P_n} \right)^{\delta k - 1} |\lambda_n| |\lambda_n| |t_n|^k
\]

\[
= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{P_n} \right)^{\delta k - 1} |\lambda_n| |t_n|^k
\]

\[
= O(1) \sum_{n=1}^{m} \Delta |\lambda_n| \sum_{r=1}^{n} \left(\frac{P_r}{P_r} \right)^{\delta k - 1} |t_r|^k + O(1) |\lambda_m| \sum_{n=1}^{m} \left(\frac{P_n}{P_n} \right)^{\delta k - 1} |t_n|^k
\]
by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.

Now, when $k > 1$, applying Hölder’s inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, as in $I_{n,1}$, we have that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} |I_{n,2}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} |\Delta_v(nu)| \mid \lambda_v \mid |t_v|^k \right)^k
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again, we have that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} |I_{n,3}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} \mid \hat{\alpha}_{n,v+1} \mid |\Delta_v| \mid |t_v|^k \right)^k
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again, we have that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \mid \hat{\alpha}_{n,1} \mid |t_v|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} \mid \hat{\alpha}_{n,v+1} \mid \beta_v \mid |t_v|^k \right)^k
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Finally, we have that
\[
\sum_{n=2}^{m+1} \left(\frac{p_n}{p_m} \right)^{\delta k + k - 1} |I_{n,A}|^k \leq \sum_{n=2}^{m+1} \left(\frac{p_n}{p_m} \right)^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} |\tilde{a}_{n,v+1}| \left| \lambda_{v+1} \right| \frac{|t_v|}{v} \right)^k
\]
\[
\leq \sum_{n=2}^{m+1} \left(\frac{p_n}{p_m} \right)^{\delta k + k - 1} \left(\sum_{v=1}^{n-1} |\tilde{a}_{n,v+1}| \left| \lambda_{v+1} \right| \frac{|t_v|}{v} \right)^k \left(\sum_{v=1}^{n-1} |\tilde{a}_{n,v+1}| \left| \lambda_{v+1} \right| \frac{|t_v|}{v} \right)^{-k-1}
\]
\[
= O(1) \sum_{v=1}^{m} \frac{|\lambda_{v+1}|}{v} |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{p_n}{p_m} \right)^{\delta k} |\tilde{a}_{n,v+1}|
\]
\[
= O(1) \sum_{v=1}^{m} \frac{|\lambda_{v+1}|}{v} |t_v|^k + O(1) |\lambda_{m+1}||t_m|^k
\]
by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.

This completes the proof of Theorem 3.1. If we take \(a_{nv} = \frac{p_n}{p_m}\) and \(\delta = 0\) in Theorem 3.1, then we get Theorem 2.1. Also, if we take \(\delta = 0\) in Theorem 3.1, then we obtain a known theorem on \(|A, p_n|_k\) summability method (see [7]).

5. Conclusions

In this study, we have generalized a known theorem dealing with absolute summability method to absolute matrix summability method by using almost increasing sequences. And so it has been brought a different perspective and studying field.

Acknowledgement

This work was supported by Research Fund of the Erciyes University, Project Number: FBA-2014-3846. Also, the author thanks the referee for his/her valuable comments.

Competing Interests

The author declares that she has no competing interests.

Authors’ Contributions

The author wrote, read and approved the final manuscript.

References

A New Study on Generalized Absolute Matrix Summability: H. S. Özarslan

