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1. Introduction

The concepts of fuzzy sets and fuzzy set operations were firstly introduced by Zadeh [24], several
authors have discussed various aspects of the theory for applications of fuzzy logic control [21,22]
and more applications see [1,2,4,5,13,23]. In 1986, Matloka [7], given some basic theorems
for sequences of fuzzy numbers. Afterwards, Nanda [11] studied and discussed the sequences
of fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers
form a complete metric space. In 1993, Marouf [6] presented definitions for asymptotically
equivalence sequences and asymptotic regular matrices. Later, Patterson [14] extended by
present an asymptotical statistical equivalence analog of these definitions and natural regularity
conditions for nonnegative summability matrices. In 2006, Patterson and Savaş [15] extended
the definitions of Patterson in [14] to lacunary sequences. In 2007, Savaş [16] presented
the new concept which is a natural combination of the notion of asymptotically lacunary
statistical equivalence convergence of fuzzy numbers. On the other hand, the notion of double
sequences has been defined by Mursaleen and Edely [8,9]. Further of this concept we can see
in [10,17–20] and others. The subject of this paper is to presenting the asymptotically double
lacunary statistical equivalence, strongly asymptotically double lacunary statistical equivalence
of sequences of fuzzy numbers and give some relations among these new notions.

2. Preliminaries

In this section, we give some definitions and basic concept of them for the main results of this
paper. A fuzzy number is a function X from Rn to [0,1] satisfying

(i) X is normal, i.e. there exists an x0 ∈Rn such that X (x0)= 1;

(ii) X is fuzzy convex, i.e. for any x, y ∈Rn and 0≤λ≤ 1, X (λx+ (1−λ)y)≥min{X (x), X (y)};

(iii) X is upper semi-continuous;

(iv) The closure of {x ∈Rn : X (x)> 0}, denoted by X o, is compact.

These properties imply that for each 0 < α ≤ 1, the α-level set Xα = {x ∈ Rn : X (x) ≥ α} is a
nonempty compact convex, subset of Rn as the support X o. Let L(Rn) denote the set of all fuzzy
numbers. The linear structure of L(Rn) induces addition [X +Y ] and scalar multiplication λX ,
λ ∈R, in terms of α-level sets by

[X +Y ]α = [X ]α+ [Y ]α and [λX ]α =λ[X ]α (X ,Y ∈ L(Rn), λ ∈R)

for each 0≤α≤ 1. Define for each 0≤ q <∞,

dq(X ,Y )=
(∫ 1

0
δ∞(Xα,Yα)q

)1
/

q

and d∞ = sup
0≤α≤1

δ∞(Xα,Yα) where d∞ is Hausdorff metric.

Clearly d∞(X ,Y )= lim
q→∞dq(X ,Y ) with dq ≤ dr , if q ≤ r. Moreover dq is a complete, separable

and locally compact metric space (for more details see [3]). Throughout the paper, d will denote
dq with 1≤ q ≤∞.
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Definition 2.1 ( [16]). A sequence X = (Xk) of fuzzy numbers is a function X from the set N of
natural numbers into L(Rn). The fuzzy number Xn denotes the value of the function at n ∈N
and is called the nth term of the sequence.

Definition 2.2 ( [16]). A sequence X = (Xk) of fuzzy numbers is said to be convergent to a fuzzy
number X0 written as lim

k→∞
Xk = X0, if for every ε> 0 there exists a positive integer N0 such

that d(Xk, X0)< ε for all k > N0.

Definition 2.3 ( [16]). A sequence X = (Xk) of fuzzy numbers is said to to be bounded if the set
{Xk : k ∈N} of fuzzy numbers is bounded.

We denote by w(F) the set of all sequences X = (Xk) of fuzzy numbers, c(F) the set of all
convergent sequences of fuzzy numbers and l∞(F) the set of all bounded sequences of fuzzy
numbers. It is straightforward to see that c(F) ⊂ l∞(F) ⊂ w(F). Furthermore, c(F) and l∞(F)
are complete metric spaces (see also [11]).

3. Definitions and Notations

Definition 3.1. Two sequences X = (Xk) and Y = (Yk) of fuzzy numbers are said to be
asymptotically statistical equivalence if

lim
k→∞

d
(

Xk

Yk
,1

)
= 0 (denoted by X F∼Y ).

Nuray and Savaş [13] defined the concept of statistically convergence of a sequence of fuzzy
numbers as follows:

Definition 3.2. A sequence X = (Xk) of fuzzy numbers is said to be statistical convergent to a
fuzzy number L if for every ε> 0,

lim
n→∞

1
n
|{the number ofk ≤ n : d (Xk,L)}≥ ε| = 0.

By combining the notion of asymptotically equivalence and statistical convergence, we can
write the following definition:

Definition 3.3. Two sequences X = (Xk) and Y = (Yk) of fuzzy numbers are said to be
asymptotically statistical equivalent of multiple L if provided that for every ε> 0,

lim
n→∞

1
n

∣∣∣∣{the number ofk ≤ n : d
(

Xk

Yk
,L

)
≥ ε

}∣∣∣∣= 0

(denoted by X SL(F)∼ Y and simply asymptotically statistical equivalent if L = 1.) Note that
support Y does not contain 0.

By a lacunary sequence θ = (kr), where k0 = 0, we will mean an increasing sequence of
nonneqative integers with kr −kr−1 →∞ as r →∞.
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The intervals determined by θ will be denoted by Ir = (kr−1,kr]. We write hr = kr −kr−1 and
the ratio kr

/
kr−1 will denoted by qr .

Nuray [12] introduced the concept of lacunary statistical convergence of fuzzy numbers as
follows:

Definition 3.4. A sequence X = (Xk) of fuzzy numbers is said to be lacunary statistical
convergent to a fuzzy number Lif for every ε> 0,

lim
r→∞

1
hr

|{k ∈ Ir : d (Xk,L)≥ ε}| = 0.

(denoted by Sθ− lim X = L and the set of all lacunary statistical convergent sequences to a fuzzy
number L by Sθ(X )).

Savaş and Mursaleen [19] introduced the concept of statistically convergence of a double
sequence of fuzzy numbers as follows:

Definition 3.5. A sequence X = (Xk,l) of fuzzy numbers is said to be statistically convergent to
a fuzzy number X0 if for every ε> 0,

lim
m,n→∞

1
mn

∣∣{(k, l);k ≤ m and l ≤ n : d
(
Xk,l , X0

)≥ ε}∣∣= 0.

In this case we write st2 − lim Xk,l = X0 and the set of all statistically convergent double
sequences is denoted by st2.

The double sequence θr,s = {(kr, ls)} is called double lacunary if there exist two increasing
sequences (kr) and (lr) of integers such that

k0 = 0, hr = kr −kr−1 →∞
and

l0 = 0, h̄r = ls − ls−1 →∞.

Notation. kr,s = kr ls, hr,s = hr h̄s, θr,s is determined by Ir,s = {(k, l) : kr−1 < k ≤ kr and
ls−1 < l ≤ ls}, qr = kr

kr−1
, q̄r = ls

ls−1
and qr,s = qr q̄s.

Savaş [17] introduced the concept of lacunary statistically convergence of a double sequence
of fuzzy numbers as follows:

Definition 3.6. Let θr,s be a double lacunary sequence. A sequence X = (Xk,l) of fuzzy numbers
is said to double lacunary statistically convergent to a fuzzy number X0 if for every ε> 0,

lim
r,s→∞

1
hr,s

∣∣{(k, l) ∈ Ir,s : d
(
Xk,l , X0

)≥ ε}∣∣= 0.

In this case we write Sθr,s − lim Xk,l = X0 and the set of all double lacunary statistically
convergent double sequences is denoted by Sθr,s(F).

From these result as above, we introduce the new concept by the following definitions:
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Definition 3.7. Let θr,s be a double lacunary sequence and p = (pk,l) be a bounded double
sequence of positive real numbers. Then, the two double sequences of fuzzy numbers X = (Xk,l)
and Y = (Yk,l) are said to be strongly asymptotically double Cesaro statistical equivalent of
multiple Lprovided that,

lim
m,n→∞

1
mn

m∑
k=1

n∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

= 0.

(denoted by X σ
L(p)∼ Y and called strongly asymptotically double Cesaro statistical equivalent, if

L = 1.)

Definition 3.8. Let θr,s be a double lacunary sequence. Then, the two double sequences of fuzzy
numbers X = (Xk,l) and Y = (Yk,l) are said to be asymptotically double lacunary statistical
equivalent of multiple L provided that for every ε> 0,

lim
r,s→∞

1
hr,s

∣∣∣∣{(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)
≥ ε

}∣∣∣∣= 0.

(denoted by X
SL
θr,s

(F)
∼ Y and called asymptotically double lacunary statistical equivalent, if

L = 1).

Definition 3.9. Let θr,s be a double lacunary sequence and p = (pk,l) be a a bounded double
sequence of positive real numbers. Then, the two double sequences of fuzzy numbers X = (Xk,l)
and Y = (Yk,l) are said to be strongly asymptotically double lacunary statistical equivalent of
multiple L provided that,

lim
r,s→∞

1
hr,s

∑
(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)pk,l

= 0.

(denoted by X
N

L(p)(F)
θr,s∼ Y and called strongly asymptotically double lacunary statistical equivalent,

if L = 1.)

From above definition, if we take pk,l = p for all k, l, we write X σL p (F)∼ Y and X
N

L p
θr,s

(F)
∼ Y

instead X σ
L(p) (F)∼ Y and X

N
L(p)
θr,s

(F)
∼ Y (respectively).
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4. Main Result

Theorem 4.1. Let θr,s be a double lacunary sequence and let X = (Xk,l) and Y = (Yk,l) be double
sequences of fuzzy numbers. Then

(i) If X
N

L p
θr,s

(F)
∼ Y then X

SL
θr,s

(F)
∼ Y .

(ii) If X ,Y ∈ l2∞(F) and X
SL
θr,s

(F)
∼ Y then X

N
L p
θr,s

(F)
∼ Y .

(iii) SL
θr,s

(F)∩ l2∞(F)= NLp
θr,s

(F)∩ l2∞(F).

Proof. (i) Let ε> 0 and X
N

L p
θr,s∼ Y . Then we get∑

(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)p
= ∑

(k,l)∈Ir,s,d
(

Xk,l
Yk,l

,L
)
≥ε

d
( Xk,l

Yk,l
,L

)p
+ ∑

(k,l)∈Ir,s,d
(

Xk,l
Yk,l

,L
)
<ε

d
( Xk,l

Yk,l
,L

)p

≥ ∑
(k,l)∈Ir,s,d

(
Xk,l
Yk,l

,L
)
≥ε

d
( Xk,l

Yk,l
,L

)p

≥ εp
∣∣∣∣{(k, l) ∈ Ir,s : d

( Xk,l

Yk,l
,L

)
≥ ε

}∣∣∣∣
it follows that

lim
r,s→∞

1
hr,s

∣∣∣∣{(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)
≥ ε

}∣∣∣∣= 0.

Hence X
SL
θr,s

(F)
∼ Y .

(ii) Let X ,Y ∈ l2∞(F) and X
SL
θr,s

(F)
∼ Y . Then we can find M > 0 such that

d
( Xk,l

Yk,l
,L

)
≤ M for all k and l.

Let ε> 0 and Nε ∈N such that
1

hr,s

∣∣∣∣{(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)}
≥

(ε
2

) 1
p
∣∣∣∣≤ ε

2Mp ,

for all r, s > Nε. Putting Lk,l :=
{

(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)
≥

(ε
2

) 1
p
}

, then for all r, s > Nε, we have

1
hr,s

∑
(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)p
= 1

hr,s

∑
(k,l)∈Lk,l

d
( Xk,l

Yk,l
,L

)p
+ 1

hr,s

∑
(k,l)∉Lk,l

d
( Xk,l

Yk,l
,L

)p

≤ 1
hr,s

·Mp
∣∣∣∣{(k, l) ∈ Ir,s : d

( Xk,l

Yk,l
,L

)
≥

(ε
2

) 1
p
}∣∣∣∣+

1
hr,s

· ε
2

∣∣∣∣{(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)
<

(ε
2

) 1
p
}∣∣∣∣

< 1
hr,s

Mp · hr,sε

2Mp + 1
hr,s

·hr,s
ε

2
= ε.
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Hence X
N

L p
θr,s∼ Y .

(iii) This follows directly from (i) and (ii). Hence the proof is completes.

Theorem 4.2. Let θr,s be a double lacunary sequence and let X = (Xk,l) and Y = (Yk,l) be double
sequences of fuzzy numbers. Suppose that 0< h = inf pk,l ≤ pk,l = H < 1. Then

(i) If X
N

L(p)
θr,s

(F)
∼ Y , then X

SL
θr,s

(F)
∼ Y .

(ii) If X σ
L(p) (F)∼ Y , then X σL p (F)∼ Y .

Proof. (i) Let ε> 0 and X
N

L(p)
θr,s

(F)
∼ Y . Putting Lk,l :=

{
(k, l) ∈ Ir,s : d

(
Xk,l
Yk,l

,L
)
≥ ε

}
.

Since 0< h = inf pk,l ≤ pk,l = H <∞, we have

1
hr,s

∑
(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)pk,l

= 1
hr,s

∑
(k,l)∈Lk,l

d
( Xk,l

Yk,l
,L

)pk,l

+ 1
hr,s

∑
(k,l)∉Lk,l

d
( Xk,l

Yk,l
,L

)pk,l

≥ 1
hr,s

∑
(k,l)∈Lk,l

d
( Xk,l

Yk,l
,L

)pk,l

≥ 1
hr,s

∑
(k,l)∈Lk,l

min{εh,εH}

≥ 1
hr,s

∣∣∣∣{(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)
≥ ε

}∣∣∣∣min{εh,εH}

which implies that

lim
r,s→∞

1
hr,s

∣∣∣∣{(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)}
≥ ε

∣∣∣∣= 0.

Hence X
SL
θr,s∼ Y .

(ii) By the same argument used in proving part (i), we can get this result.

Theorem 4.3. Let θr,s be a double lacunary sequence and let X = (Xk,l) and Y = (Yk,l) be
bounded double sequences of fuzzy numbers. Suppose that 0< h = inf pk,l ≤ pk,l = H < 1. Then

(i) If X
SL
θr,s

(F)
∼ Y , then X

N
L(p)
θr,s

(F)
∼ Y .

(ii) If X σL p (F)∼ Y , then X σ
L(p) (F)∼ Y .

Proof. (i) Let ε> 0. Since X = (Xk,l) and Y = (Yk,l) are bounded, then there exists an integer M
such that d

(
Xk,l
Yk,l

,L
)
≤ M. Putting Lk,l :=

{
(k, l) ∈ Ir,s : d

(
Xk,l
Yk,l

,L
)
≥ ε

}
, we have

1
hr,s

∑
(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)pk,l

= 1
hr,s

∑
(k,l)∈Lk,l

d
( Xk,l

Yk,l
,L

)pk,l

+ 1
hr,s

∑
(k,l)∉Lk,l

d
( Xk,l

Yk,l
,L

)pk,l
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≤ 1
hr,s

∑
(k,l)∈Lk,l

max{Mh, MH}+ 1
hr,s

∑
(k,l)∉Lk,l

(ε)pk,l

≤max{Mh, MH}
1

hr,s

∣∣∣∣{(k, l) ∈ Ir,s : d
( Xk,l

Yk,l
,L

)
≥ ε

}∣∣∣∣
+max{εh,εH}

which implies that

lim
r,s→∞

1
hr,s

∑
(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)pk,l

= 0.

Therefore X
N

L(p)
θr,s

(F)
∼ Y .

(ii) By applying the argument used in the proof of part (i), we can get this result.

Theorem 4.4. Let θr,s be a double lacunary sequence and let X = (Xk,l) and Y = (Yk,l) be a

double sequences of fuzzy numbers. Suppose that lim
r

inf qr > 1 and lim
s

inf q̄s > 1. Then X σ
L(p) (F)∼ Y

implies X
N

L(p)
θr,s

(F)
∼ Y .

Proof. Since lim
r

inf qr > 1 and lim
s

inf q̄s > 1, then there exist δ> 0 and δ1 > 0 such that δ+1< qr

and δ1 +1< q̄s for all r, s ≥ 1. This implies that

hr

kr
> δ

1+δ and
h̄s

ls
> δ1

1+δ1
.

Then, we can write
1

hr,s

∑
(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)pk,l

= 1
hr,s

∑
k∈Ir

∑
l∈Is

d
( Xk,l

Yk,l
,L

)pk,l

= 1
hr,s

[
kr∑

k=1

ls∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

−
kr−1∑
k=1

ls∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

−
kr∑

k=1

ls−1∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

+
kr−1∑
k=1

ls−1∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l
]

= kr ls

hr,s

(
1

kr ls

kr∑
k=1

ls∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l
)

− kr−1ls

hr,s

(
1

kr−1ls

kr−1∑
k=1

ls∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l
)

− kr ls−1

hr,s

(
1

kr ls−1

kr∑
k=1

ls−1∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l
)

+ kr−1ls−1

hr,s

(
1

kr−1ls−1

kr−1∑
k=1

ls−1∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l
)

.
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From the fact X σ
L(p) (F)∼ Y , that the terms

1
kr ls

kr∑
k=1

ls∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

,
1

kr−1ls

kr−1∑
k=1

ls∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

,

1
kr ls−1

kr∑
k=1

ls−1∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

and
1

kr−1ls−1

kr−1∑
k=1

ls−1∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

converge to zero and thus

lim
r,s→∞

1
hr,s

∑
(k,l)∈Ir,s

d
( Xk,l

Yk,l
,L

)pk,l

= 0.

Therefore X
N

L(p)
θr,s∼ Y .

Theorem 4.5. Let θr,s be a double lacunary sequence and let X = (Xk,l) and Y = (Yk,l) be double

sequences of fuzzy numbers. Suppose that lim
r

sup qr <∞ and lim
s

sup q̄s <∞. X
N

L(p)
θr,s

(F)
∼ Y implies

X σ
L(p) (F)∼ Y .

Proof. Since lim
r

sup qr <∞ and lim
s

sup q̄s <∞, then there exist B > 0 such that qr < B and

q̄s < B for all r, s ≥ 1. Let ε> 0 and since X
N

L(p)
θr,s

(F)
∼ Y , also there exist r0 > 0 and s0 > 0 such that

for every i ≥ r0 and j ≥ s0

Ai, j := 1
hi, j

∑
k∈I i

∑
l∈I j

d
( Xk,l

Yk,l
,L

)pk,l

< ε.

Let M =max{Ar,s : 1≤ r ≤ r0 and 1≤ s ≤ s0} and m, n such that kr−1 < m ≤ kr and ls−1 < n ≤ ls.
So, we have

1
mn

m∑
k=1

n∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

≤ 1
kr−1ls−1

kr∑
k=1

ls∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

≤ 1
kr−1ls−1

r,s∑
p,u=1,1

( ∑
(k,l)∈Ip,u

d
( Xk,l

Yk,l
,L

)pk,l
)

= 1
kr−1ls−1

r0,s0∑
p,u=1,1

hp,uAp,u + 1
kr−1ls−1

∑
(r0<p≤r)∪(s0<u≤s)

hp,uAp,u

≤ M
kr−1ls−1

r0,s0∑
p,u=1,1

hp,u + 1
kr−1ls−1

∑
(r0<p≤r)∪(s0<u≤s)

hp,uAp,u

≤ M
kr−1ls−1

r0,s0∑
p,u=1,1

hp,u +
(

sup
(p≥r0)∪(u≥s0)

Ap,u

) 1
kr−1ls−1

∑
(r0<p≤r)∪(s0<u≤s)

hp,u

≤ Mkr0 ls0 r0s0

kr−1ls−1
+ ε

kr−1ls−1
kr ls
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≤ Mkr0 ls0 r0s0

kr−1ls−1
+εB2.

Since kr and ls both approach to infinity as both m and n approach to infinity and ε is arbitrary,
which implies that

lim
m,n→∞

1
mn

m∑
k=1

n∑
l=1

d
( Xk,l

Yk,l
,L

)pk,l

= 0.

Therefore X σ
L(p) (F)∼ Y .

Corollary 4.6. Let θr,s be a double lacunary sequence and let X = (Xk,l) and Y = (Yk,l) be
double sequences of fuzzy numbers. Suppose that 1< lim

r
sup qr <∞ and 1< lim

s
sup q̄s <∞, then

X
N

L(p)
θr,s∼ Y ⇔ X σ

L(p) (F)∼ Y .

Proof. The result follows immediately from Theorem 4.4 and Theorem 4.5.
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