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1. Introduction
Let C be a nonempty subset of a real Hilbert space X . Let T : C → C be a self-mapping. Recall
that a mapping T is said to be:

(1) contractive if there exists a constant k < 1 such that ‖Tx−T y‖ ≤ k‖x− y‖ for all x, y ∈ C;

(2) nonexpansive if ‖Tx−T y‖ ≤ ‖x− y‖ for all x, y ∈ C;



190 Strong and ∆-Convergence Theorems for Asymptotically . . . : N. Pakkaranang and P. Kumam

(3) k-strictly pseudo-contractive [20] if there exists a constant k ∈ [0,1) such that
‖Tx−T y‖2 ≤ k‖x− y‖2 +k‖(I −T)x− (I −T)y‖2 for all x, y ∈ C;

(4) asymptotically nonexpansive if there exists a sequence {kn} in [1,∞) with lim
n→∞kn = 1 such

that ‖Tnx−Tn y‖ ≤ kn‖x− y‖ for all x, y ∈ C and n ≥ 1;

(5) uniformly L-Lipschitzian [6] if there exists a constant L > 0 such that
‖Tnx−Tn y‖ ≤ L‖x− y‖ for all x, y ∈ C and n ≥ 1;

(6) asymptotically k-strictly pseudo-contractive [19] if there exist a sequence {kn} in [1,∞]
with lim

n→∞kn = 1 and constant k ∈ [0,1) such that

‖Tnx−Tn y‖2 ≤ kn‖x− y‖2 +k‖(I −Tn)x− (I −Tn)y)‖2 for all x, y ∈ C and n ≥ 1.

The class of strictly pseudo-contractive mappings has been studied by several authors (see
for example [2, 8, 16, 18]) that an asymptotically strictly pseudo-contractive mapping is an
uniformly L-Lipschitzion mapping.

In this paper, we define the concept of an asymptotically k-strictly pseudo-contractive
mapping in a CAT(0) as follows: Let C be a nonempty subset of a CAT(0) space X . A mapping
T : C → C is said to be asymptotically k-strictly pseudo-contractive if there exist a constant
k ∈ [0,1) and sequence {kn} ∈ [1,∞) with lim

n→∞kn = 1 such that

d(Tnx,Tn y)2 ≤ knd(x, y)2 +k(d(x,Tnx)+d(y,Tn y))2 (1.1)

for all x, y ∈ C. A point x ∈ C is called a f ixed point of T if x = T(x). We denote with F(T) the
set of fixed points of T . A sequence {xn} is called approximate fixed point sequence for T if

lim
n→∞ (.xn,Txn)= 0.

Kirk [10–12] first studied the theory of fixed point in CAT(0) spaces1. Later on, the fixed
point theory for some mappings in CAT(0) spaces has been rapidly developed by many authors
(see, e.g., [5–7,9,13,23,24]).

In 1953, Mann [15] introduced the following iteration for approximating a fixed point of
nonexpansive and pseudo-contractive mappings, sequence {xn} is defined by

xn+1 =αnxn + (1−αn)Txn (1.2)

for all n ≥ 1, where {αn} is an appropriate sequence (0,1).
Motivate and inspired, we modify Mann’s iteration (1.2) to asymptotically nonexpansive and

asymptotically k-strictly pseudo-contractive mappings in CAT(0) spaces is as below

xn+1 =αnxn ⊕ (1−αn)Tnxn (1.3)

for all n ≥ 1, where {αn} is an appropriate sequence (0,1).
Qihou [19] proved some convergence results for class of an asymptotically k-strictly pseudo-

contractive mapping in Hilbert spaces.
The purpose of this paper, we prove strong and ∆-convergence results by using modified

Mann iteration process for an asymptotically k-strictly pseudo-contractive mapping in CAT(0)
spaces. In section 2 and 3, we present preliminaries and main results, respectively.

1The initials of term “CAT” are is honour of E. Cartan, A.D. Alexanderov and V.A. Toponogov.
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2. Preliminaries
Let (X ,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic
from x to y) is a map c from closed interval [0, r]⊂R to X such that

c(0)= x, c(r)= y and d(c(t), c(s))= |t− s|
for all s, t ∈ [0, r].

In particular, c is an isometry and d(x, y)= r. The image of c is called a geodesic (or metric)
segment joining x and y. When it is unique, this geodesic is denoted by [x, y]. We denote the
point w ∈ [x, y] if and only if there exists α ∈ [0,1] such that

d(x,w)=αd(x, y) by w = (1−α)x⊕αy.

The space (X ,d) is called a geodesic space if any two points of X are joined by a geodesic
and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each
x, y ∈ X . A subset D ⊆ X is called convex if D includes geodesic segment joining every two
points of itself. A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X ,d) consist of
three points (the vertices of 4) and a geodesic segment between each pair of vertices (the
edges of 4). A comparison triangle for geodesic triangle (or 4(x1, x2, x3)) in (X ,d) is a triangle
4(x1, x2, x3)=4(x1, x2, x3) in the Euclidean plane R2 such that

dR2(xi, x j)= d(xi, x j) for i, j ∈ {1,2,3}.

A geodesic metric space is said to be a CAT(0) space [1] if all geodesic triangle satisfy the
following comparison axiom. Let 4 be a geodesic triangle in X and 4 be a comparison triangle
for 4. Then, 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all comparison
points

d(x, y)≤ dR2(x, y).

If x, y1, y2 are points of a CAT(0) space and y0 is the midpoint of the segment [y1, y2], which
we will denote by

( y1 ⊕ y2

2

)
, then the CAT(0) inequality implies

d
(
x,

y1 ⊕ y2

2

)2
≤ 1

2
d (x, y1)2 + 1

2
d (x, y2)2 − 1

4
d (y1, y2)2 . (2.1)

The inequality (2.1) is called the (CN) inequality (see more details Bruhat and Titz [3]).
A geodesic metric space is a CAT(0) space if and only if it satisfies the (CN) inequality.
A subset C of a CAT(0) space X is convex if for any x, y ∈ C, then [x, y]⊂ C.

Lemma 2.1 ( [7]). Let X be a CAT(0) space.

(i) For any x, y, z ∈ X and t ∈ [0,1], has

d ((1− t) x⊕ ty, z)≤ (1− t)d (x, z)+ td (y, z) . (2.2)

(ii) For any x, y, z ∈ X and t ∈ [0,1], has

d ((1− t) x⊕ ty, z)2 ≤ (1− t)d (x, z)2 + td (y, z)2 − t (1− t)d (x, y)2 . (2.3)

Next, we refer some elementary properties about CAT(0) spaces as follows: Let {xn} be a
bounded sequence in a CAT(0) space (X ,d). For all x ∈ X , we set

r(x, {xn})= limsup
n→∞

d(x, {xn}).
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The asymptotic radius r({xn}) of {xn} is given by

r({xn})= inf{r(x, {xn}) : x ∈ X },

and the asymptotic center A({xn}) of {xn} is the set

A({xn})= {x ∈ X : r(x, {xn})= r({xn})}.

We know that in a complete CAT(0) space, (see [6]) A({xn}) consists of exactly one point.
In 1976, a concept of convergence in a general metric space introduced by Lim [14] setting

which is called ∆-convergent. In 2008, Kirk and Panyanak [12] used the concept of ∆-convergent
to prove on the CAT(0) space.

Definition 2.2 ( [4,6,14,17,21,22]). A sequence {xn} in X is said to be ∆-converge to x ∈ X if x
is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case we write
∆− lim

n→∞xn = x and call x the ∆-limit of {xn}.

Lemma 2.3 ( [7]). If {xn} is a bounded sequence in a complete CAT(0) space with A({xn})= {x},
{un} is a subsequence of {xn} with A({un})= {u} and the sequence of {d(xn,u)} is convergent then
x = u.

Let C be a closed convex subset of a CAT(0) space X and {xn} be a bounded sequence in C.
We given the notation as follows:

xn *ω⇔Φ(ω)= inf
x∈C

Φ(x).

Proposition 2.4 ( [17]). Let C be a closed convex subset of a CAT(0) space X and {xn} be a
bounded sequence in C. Then ∆− lim

n→∞xn = p implies that {xn}* p.

Lemma 2.5. (i) (see [11]) Every bounded sequences in a complete CAT(0) space always has an
∆-convergent subsequence.

(ii) (see [5]) Let C be a nonempty closed convex subset of a complete CAT(0) space and let {xn}
be a bounded sequence in C. Then the asymptotic center of {xn} is in C.

Definition 2.6 ( [22]). Let (X ,d) be a metric space and C be its nonempty subset. Then T : C → C
is said to be semi-compact if for a sequence xn in C with lim

n→∞d(xn,Txn) = 0, there exists a
subsequence {xnk } of {xn} such that xnk → p ∈ C.

3. Main Results
Next, we state our results of my work.

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a complete CAT(0) space
X and let T : C → C be an asymptotically k-strictly pseudo-contractive mapping. Then T has a
fixed point. Moreover fixed point set F(T) is closed and convex.

Proof. F(T) closed is evident. Since T is continuous. We will show that the fixed point set of T
is convex. Let p, q ∈ F(T) and t ∈ (0,1). Setting z = (1− t)p⊕ tq we get,

d(z, p)2 ≤ t2d(p, q)2 and d(z, q)2 ≤ (1− t)2d(p, q)2.
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Since T is an asymptotically k-strictly pseudo-contractive mapping, from Lemma 2.1, we obtain

d(z,Tnz)2 = d((1− t)p⊕ tq,Tnz)2

≤ (1− t)d(p,Tnz)2 + td(q,Tnz)2 − t(1− t)d(p, q)2

≤ (1− t){knd(z, p)2 +k(d(z,Tnz)+d(p, p))2}

+ t{knd(z, q)2 +k(d(z,Tnz)+d(q, q))2}− t(1− t)d(p, q)2

= (1− t){knt2d(p, q)2 +kd(z,Tnz)2}

+ t{kn(1− t)2d(p, q)2 +kd(z,Tnz)2}− t(1− t)d(p, q)2

= t(1− t)(tkn + (1− t)kn −1)d(p, q)2 + (1− t+ t)kd(z,Tnz)2

= t(1− t)(kn −1)d(p, q)2 +kd(z,Tnz)2,

where k ∈ [0,1) and a sequence {kn} in [1,∞) such that lim
n→∞kn = 1 for any n ≥ 1. It follow that

d(z,Tnz)2 ≤ t(1− t)d(p, q)2

1−k
(kn −1).

Hence, taking limit as n →∞ on the both side the above inequality and by using the fact of
kn → 1 as n →∞, we have lim

n→∞d(z,Tnz)= 0. From the continuity of T , we obtain

Tz = T( lim
n→∞Tnz)= lim

n→∞Tn+1z = z.

Therefore z ∈ F(T), that is, F(T) is convex. This complete proof.

Theorem 3.2. Let C be a nonempty closed convex subset of a complete CAT(0) space X and let
T : C → C be an asymptotically k-strictly pseudo-contractive mappings such that k ∈ [0, 1

2 ) there
exist sequence {kn}⊂ [1,∞) lim

n→∞kn = 1 and F(T) 6= ;. Let {xn} be a bounded sequence in C such
that ∆− lim

n→∞xn =ω and limsup
m→∞

limsup
n→∞

d(xn,Tmxn)= 0. Then Tω=ω.

Proof. By the hypothesis, ∆− lim
n→∞xn =ω. By Proposition 2.4 we have xn *ω.

Then, we have A(xn)=ω by Lemma 2.5(ii). Since limsup
m→∞

limsup
n→∞

d(xn,Tmxn)= 0. Then, we

have

Φ(x)= limsup
n→∞

d(Tmxn, x)= limsup
n→∞

d(Txn, x) (3.1)

for all x ∈ C. From (3.1) taking x = Tmω, we obtain

Φ(Tmω)2 = lim
n→∞supd(Tmxn,Tmω)2

≤ lim
n→∞sup{kmd(xn,ω)2 +k(d(xn,Tmxn)+d(ω,Tmω))2}.

Since lim
n→∞kn = 1 and limsup

m→∞
limsup

n→∞
d(xn,Tmxn)= 0. Taking limsup

m→∞
of the both sides the above

inequality, we have

limsup
m→∞

Φ(Tmω)2 ≤ limsup
m→∞

km limsup
n→∞

d(xn,ω)2 +k limsup
m→∞

limsup
n→∞

d(ω,Tmω)2

=Φ(ω)2 +k limsup
m→∞

d(ω,Tmω)2. (3.2)

By the (CN) inequality implies that

d
(
xn,

ω⊕Tω
2

)2
≤ 1

2
d(xn,ω)2 + 1

2
d(xn,Tmω)2 − 1

4
d(ω,Tmω)2.
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for any n,m ≥ 1. Letting n →∞ and taking limit supremum on the both sides, we get

Φ

(
ω⊕Tω

2

)2
≤ 1

2
Φ(ω)2 + 1

2
Φ(Tmω)2 − 1

4
d(ω,Tmω)2

for any m ≥ 1. Since A({xn})= {ω}, we get

Φ(ω)2 ≤Φ
(
ω⊕Tω

2

)2

≤ 1
2
Φ(ω)2 + 1

2
Φ(Tmω)2 − 1

4
d(ω,Tmω)2

which implies that

d(ω,Tmω)2 ≤ 2Φ(Tmω)2 −2Φ(ω)2.

Taking limit supremum on the both sides, we obtain

limsup
m→∞

d(ω,Tmω)2 ≤ 2limsup
m→∞

Φ(Tmω)2 −2Φ(ω)2. (3.3)

From inequalities (3.2) and (3.3), we get

limsup
m→∞

d(ω,Tmω)2 ≤ 2(Φ(ω)2 +k limsup
m→∞

d(ω,Tmω)2)−2Φ(ω)2

≤ 2k limsup
m→∞

d(ω,Tmω).

So, we obtain

(1−2k) limsup
m→∞

d(ω,Tmω)2 ≤ 0. (3.4)

Since k ∈ [0, 1
2 ), we get limsup

m→∞
d(ω,Tmω)= 0, which implies lim

m→∞Tm(ω)=ω therefore Tω=ω.

The proof is completed.

Theorem 3.3. Let C be a nonempty closed convex subset of a complete CAT(0) space X and
let T : C → C be an asymptotically k-strictly pseudo-contractive mapping with k ∈ [0, 1

2 ) and a
sequence {kn} in [1,∞) such that lim

n→∞kn = 1. Let {xn} be a sequence in C defined by (1.3) and
{αn} is a sequence in (0,1). Then lim

n→∞d(xn,Txn)= 0 and lim
n→∞d(xn, p) exist for all p ∈ F(T).

Proof. First, we will prove that lim
n→∞d(xn, p) exist. It follow from Theorem 3.1 such that F(T) 6= ;

and p ∈ F(T). Since T is asymptotically k-strictly pseudo-contractive mapping and using
Lemma 2.1 and Mann iteration (1.3), we have

d(xn+1, p)2 = d(αxn ⊕ (1−αn)Tnxn, p)2

≤αnd(xn, p)2 + (1−αn)d(Tnxn, p)2 −αn(1−αn)d(xn,Tnxn)2

≤αnd(xn, p)2 + (1−αn){knd(xn, p)2 +k(d(xn,Tnxn)2}−αn(1−αn)d(xn,Tnxn)2

=αnd(xn, p)2 +knd(xn, p)2 −knαnd(xn, p)2 + (1−αn)kd(xn,Tnxn)2

−αn(1−αn)d(xn,Tnxn)2.

From lim
n→∞kn = 1, taking limit as n →∞, we obtain

d(nn+1, p)2 ≤ d(xn, p)2 − [
(1−αn)(αn −k)d(xn,Tnxn)2] (3.5)

≤ d(xn, p)2. (3.6)

It follow that the sequence {xn} is bounded and lim
n→∞d(xn, p) exist for all p ∈ F(T).
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Assume that lim
n→∞d(xn, p)= r. From (3.6), we get

lim
n→∞d(xn+1, p)= r. (3.7)

By (3.5), we also have

d(xn,Tnxn)2 ≤ 1
(1−αn)(αn −k)

[
d(xn, p)2 −d(nn+1, p)2]. (3.8)

Since lim
n→∞d(xn, p) exist, we obtain

lim
n→∞d(xn,Tnxn)= 0. (3.9)

Next step, we prove that lim
n→∞d(xn,Txn)= 0. It follow from (1.3) and (3.9), we obtain

d(xn+1, xn)= d(αxn ⊕ (1−αn)Tnxn, xn)
≤ (1−αn)d(xn,Tnxn) → 0 as n →∞. (3.10)

Since T is an uniformly L-lipschitzian mapping, from (3.9) and (3.10) for any n ≥ 1, we have

d(xn,Txn)≤ d(xn, xn+1)+d(xn+1,Tn+1xn+1)+d(Tn+1xn+1,Tn+1xn)+d(Tn+1xn,Txn)
≤ d(xn, xn+1)+d(xn+1,Tn+1xn+1)+Ld(xn+1, xn)+Ld(Tnxn, xn)
= (1+L)d(xn, xn+1)+d(xn+1,Tn+1xn+1)+Ld(xn,Tnxn)
→ 0 as n →∞.

The proof is completed.

Next, we are ready to prove our results of an ∆-convergence theorem.

Theorem 3.4. Let C be a nonempty closed convex subset of a complete CAT(0) space X and
let T : C → C be an asymptotically k-strictly pseudo-contractive mapping with k ∈ [0, 1

2 ) and a
sequence {kn} in [1,∞) such that lim

n→∞kn = 1. Let {xn} be a sequence in C defined by (1.3) and
{αn} is a sequence in (0,1). Then the sequence {xn} is ∆-convergent to a fixed point of T.

Proof. The first, we prove that

W∆(xn)= ⋃
{un}⊆{xn}

A({un})⊆ F(T).

Let u ∈ W∆(xn). Then, there exists a subsequence {un} of {xn} such that A({un}) = {u}. By
Lemma 2.5, there exists a subsequence {vn} of {un} such that ∆−limnυn = υ ∈ C. By Theorem 3.3
and Theorem 3.2, we have υ ∈ F(T). Since lim

n→∞d(xn,υ) exists, so u = υ by Lemma 2.3. This show
that W∆(xn)⊆ F(T).

Next, we prove that ∆-converges to a point in F(T), it is sufficient to show that W∆({xn})
consists of exactly one point. Let {un} be a subsequence of {xn} with A({un}) = {u} and let
A({xn}) = {x}. We have already seen that u = υ and v ∈ F(T). Since u ∈ W∆(xn) ⊆ F(T), by
Theorem 3.3, lim

n→∞d(xn,u) exists. Hence, we obtain x = u by Lemma 2.3. This shows W∆(xn)= {x}.
This completes the proof.

Theorem 3.5. Let C be a nonempty closed convex subset of a complete CAT(0) space X . and let
T : C → C be an uniformly continuous asymptotically k-strictly pseudo-contractive mapping with
k ∈ [0, 1

2 ) and a sequence {kn} in [1,∞) such that lim
n→∞kn = 1. Let {xn} be a sequence in C defined
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by (1.3) and {αn} is a sequence in (0,1). Assume that Ts is semi-compact for some s ∈ N. Then
the sequence {xn} is converges strongly to a fixed point of T.

Proof. By Theorem 3.3, we have lim
n→∞d(xn,Txn)= 0. Since T is an uniformly continuous, then

d(xn,Ts(xn))≤ d(xn,T(xn))+d(T(xn),T2(xn))+ . . .+d(Ts−1(xn),Ts(xn))→ 0 as n →∞.

That is, {xn} is an approximate fixed point sequence for Ts. By Definition 2.6, there exists a
subsequence {xnk } of {xn} and p ∈ C such that limk→∞ xnk = p. Again, by the uniform continuity
of T , we obtain

d(T(p), p)≤ d(T(p),T(xnk ))+d(T(xnk ), xnk )+d(xnk , p)→ 0 as k →∞.

That is, p ∈ F(T). From again Theorem 3.3, we get lim
n→∞d(xn, p) exist, therefore p is the strong

limit of the sequence {xn} itself. The proof is completed.

4. Conclusion
In this work, we studied and proved strong and ∆-convergence theorems by using modified
Mann iteration process for an asymptotically k-strictly pseudo-contractive mapping in a CAT(0)
spaces.
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