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1. Introduction
The term crossed module was introduced by J.H.C. Whitehead in his work on combinatorial
homotopy theory [8]. Actor crossed module of algebroid was defined by M. Alp in [2]. Actions
and automorphisms of crossed modules was studied by Norrie, Alp and Wensley [1, 6]. Wreath
products of various kinds have been used over the fifty years ago or so for solving a remarkable
variety of problems of group theory. In [5] by Neumann provided a certain amount of information
on the structure of wreath products. The structure of the automorphism group of a standard
wreath product has been determined by Houghton [4]. Panagopoulos gave in [7] the structure of
the group of central automorphisms of the standard wreath products.
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The rest of the paper is organized as follows. In the second section we present basic concepts
and notations of wreath products and crossed modules. The third section is dedicated to central
automorphisms of crossed modules and wreath products groups; and we obtain some results for
central automorphisms of crossed module (W1,W2,∂) when W1, W2 are wreath products groups.

2. Definitions and Notations
Let A be a group and S a non-empty set. The cartesian power, AS of A is the set of all functions
from S to A with multiplication defined componentwise. So, AS = { f | f : S → A}, and if f , g ∈ AS ,
then ( f g)(s)= f (s)g(s), for all s ∈ S. If we have a group B of permutations of S, we can identify
B in a natural way with a group of automorphisms of AS . Namely, if b ∈ B, f ∈ AS , and f b

denotes the image of f under the automorphism corresponding to b, then f b(s)= f (sb−1), for all
s ∈ S. Thus, the automorphisms corresponding to elements of B are transitions of the functions
in AS , or permutations of the factors, if AS is considered as a cartesian product. We consider
a group W̄ which is the splitting extension of AS by this group B of automorphisms. That
is, W̄ = {(b, f ) | b ∈ B and f ∈ AS} and multiplication in W̄ is defined by (b, f )(c, g) = (bc, f c g),
b, c ∈ B; f , g ∈ AS. If we denote by 1 the function in AS for which 1(s) = 1 ∈ A for every s ∈ S,
then the set of all elements (b,1), b ∈ B, forms a subgroup of W̄ isomorphic to B, which again
we identify with B. Similarly, the set of all elements (1, f ) with f ∈ AS forms a subgroups of
W̄ which we identify with AS . With these conventions, AS is a normal subgroup of W̄ , and is
complemented by B. Elements of W̄ can be factorized in a unique way as products bf , with
b ∈ B and f ∈ AS ; and the automorphism of AS induced by b ∈ B is just the restriction to AS of
the inner automorphism of W̄ induced by transformation by b. In a particular case that S is
the set B itself, and the action of B is given by multiplication on the right, then if f ∈ AB and
b ∈ B, f b is given in terms of f by f b(β)= f (βb−1) for all β ∈ B. In this case the group we have
the structure of unrestricted wreath product AwrB, of A by B makes as follows [5]: By defining
the support σ( f ) by σ( f )= {b ∈ B | f (b) 6= 1}, then the functions whose supports are finite sets
form the subgroup A(B) of AB. This subgroup admits the automorphisms induced by B, and so
in AwrB we have the subgroup B · A(B) which is the restricted wreath product AwrB. If B is
finite, the restricted and unrestricted wreath products coincide. The direct power A(B) which
goes into the making of AwrB will be denoted throughout by F, and the cartesian power AB in
AwrB will be denoted by F̄. We call these groups the base groups in W and W̄ respectively, and
we refer to B as the top group, A as the bottom group.

We label the coordinate subgroups in F, F̄ by elements of B in the obvious way, if b ∈ B, then

Ab = { f ∈F | f (β)= 1 if β 6= b}

= { f ∈ F̄ | f (β)= 1 if β 6= b}

= { f ∈F |σ( f )⊆ {b}}.

However, to avoid confusion, we write Ae instead of A1 for the coordinate subgroup
corresponding to 1 ∈ B. When we wish to identify Ab with A we use the natural isomorphism
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νb : Ab → A given by νb( f )= f (b) for all f ∈ Ab. The diagonal D̄ ofF̄ is defined to be the set of
all constant function: D̄ = { f ∈ F̄ | f (β)= f (1), for all β ∈ B}. D̄ lies in F if and only if B is finite,
but we make the convention that again the diagonal D of F is the set of all constant functions
in F, i.e., D = { f ∈F | f (β)= f (1), for all β ∈ B}.

Proposition 2.1 ([4]). Expect when B has order two and A is a dihedral group of order 4m+2
or is of order two, the base group is characteristic in W .

In view of Proposition 2.1, we assume from now on that when B has order 2, A is not of the
type specified there, so that the base group is characteristic in the wreath product. We have
extension of automorphisms of A and B to automorphisms of their wreath product W as follows:

Proposition 2.2 ([4]). If α ∈Aut(A), we define α∗ ∈Aut(W) by (bf )α
∗ = bf α

∗
for all b ∈ B, f ∈F,

where f α
∗
(x)= ( f (x))α, for all x ∈ B, then the group A∗ of all such automorphisms is isomorphic

to Aut(A).

Proposition 2.3. If β ∈ Aut(B), we define β∗ ∈ Aut(W) by (bf )β
∗ = bβ f β

∗
for all b ∈ B, f ∈ F,

where f β
∗
(x)= f (xβ

−1
) for all x ∈ B, then the group B∗ of all such automorphisms is isomorphic

to Aut(B).

Theorem 2.4. (1) The automorphism group of the wreath product W of two groups A and B
can be expressed as a product Aut(W)= K I1B∗, where

• K is the subgroup of Aut(W) consisting of those automorphisms which leave B
elementwise fixed.

• I1 is the subgroup of Aut(W) consisting of those inner automorphisms corresponding
to transformation by elements of the base group F.

• B∗ is defined as in Proposition 2.3.

(2) The group K can be written as A∗H, where

• A∗ is defined as in Proposition 2.2.

• H is the subgroup of Aut(W) consisting of those automorphisms which leave both B
and diagonal elementwise fixed.

(3) The subgroups A∗HI1, HI1B∗, HI1, and I1 are normal in Aut(W) and Aut(W) is splitting
extension of A∗HI1 by B∗. Furthermore, A∗ intersects HB∗ trivially.

We recall some definitions and properties of the crossed module category. A crossed module
(T,G,∂) consist of a group homomorphism ∂ : T →G called the boundary map, together with an
action (g, t)→ g t of G on T satisfying

(1) ∂( gt)= g∂(t)g−1,

(2) ∂(s)t = sts−1,
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for all g ∈ G and s, t ∈ T . The automorphism group Aut N of a group N comes equipped with
the canonical homomorphism τ : N → Aut(N) which has image InnN , the group of inner
automorphism of N . The inner automorphism τ is one of the standard examples of crossed
module. Other standard examples of crossed modules are:

The inclusion of a normal subgroup N →G; a G-module M with the zero homomorphism
M →G; any epimorphism E →G with central kernel. We note at once certain consequences of
the definition of a crossed module:

(1) ker∂ lies in Z(T); the center of T ;

(2) ∂(T) is a normal subgroup of G;

(3) The action of G on T induces a natural (G/∂(T))-module structure on Z(T), and ker∂ is a
submodule of Z(T).

We say that (S,H,∂′) is a subcrossed module of the crossed module (T,G,∂) if

• S is a subgroup of T , and H is a subgroup of G;

• ∂′ is the restriction of ∂ to S;

• the action of H on S is included by the action of G on T .

A subcrossed module (S,H,∂) of (T,G,∂) is normal if

• H is a normal subgroup of G;

• gs ∈ S for all g ∈G , s ∈ S;

• htt−1 ∈ S for all h ∈ H; t ∈ T .

In this case we consider the triple (T/S,G/H, ∂̄), where ∂̄ : T/S →G/H is induced by ∂, and
the new action is given by gH(tS) = ( gt)S. This is the quotient crossed module of (T,G,∂) by
(S,H,∂).

A crossed module morphism 〈α,φ〉 : (T,G,∂) → (T ′,G′,∂′) is a commutative diagram of
homomorphisms of groups

T α //

∂
��

T ′

∂′
��

G
φ

// G′

such that for all x ∈G and t ∈ T ; we have α(xt)=φ(x) α(t). We say that 〈α,φ〉 is an isomorphism
if α and φ are both isomorphisms. We denote the group of automorphisms of (T,G,∂) by
Aut(T,G,∂). The kernel of the crossed module morphism 〈α,φ〉 is the normal subcrossed module
(kerα,kerφ,∂) of (T,G,∂), denoted by ker〈α,φ〉. The image im〈α,φ〉 of 〈α,φ〉 is the subcrossed
module (imα, imφ,∂′) of (T ′,G′,∂′). For a crossed module (T,G,∂); denote by Der(G,T). The set
of all derivations from G to T ; i.e., all maps χ : G → T such that for all x, y ∈G, χ(xy)= χ(x) xχ(y).
Each such derivation χ defines endomorphisms σ= (σx) and θ(= θx) of G,T respectively; given
by σ(x)) = ∂χ(x)x; θ(t) = χ∂(t)t and σ∂(t) = ∂θ(t); θχ(x) = χ∂(x); θ( xt) = σ(x)θ(t). We define a
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multiplication in Der(G,T) by the formula χ1 ◦χ2 = χ, where

χ(x)= χ1σ2(x)χ2(x) (= θ1χ2(x)χ1(x)).

This turns Der(G,T) into a semigroup; with identity element the derivation which maps each
element of G into identity element of T . Moreover, if χ= χ1 ◦χ2 then σ=σ1σ2. The whitehead
group D(G,T) is defined to be the group of units of Der(G,T), and the elements of D(G,T) are
called regular derivations.

Proposition 2.5. The following statements are equivalent:

(1) χ ∈ D(G,T);

(2) σ ∈Aut(G);

(3) θ ∈Aut(T).

The map ∆ : D(G,T)→Aut(T,G,∂) defined by ∆(X )= 〈σ,θ〉 is a homomorphisms of groups
and there is an action of Aut(T,G,∂) on D(G,T) given by 〈α,φ〉χ = αχφ−1; which makes
(D(G,T),Aut(T,G,∂),∆) a crossed module. This crossed module is called the actor crossed
module A(T,G,∂) of the crossed module (T,G,∂). There is a morphism of crossed modules
〈η,γ〉 : (T,G,∂)→A(T,G,∂) defined as follows. If t ∈ T , then ηt : G → T defined by ηt(x)= t xt−1

is a derivation, and the map t → ηt defines a homomorphism η : T → D(G,T) of groups. Let
γ : G →A(T,G,∂) be the homomorphism y → 〈αy,φy〉, where αy(t) = yt and φy(x) = yxy−1 for
t ∈ T and y, x ∈G.

3. Central Automorphisms of Crossed Modules and
Wreath Products Groups

Let (T,G,∂) be a crossed module. Center of (T,G,∂) is the crossed module kernel Z(T,G,∂) of
〈η,γ〉. Thus, Z(T,G,∂) is the crossed module (TG ,StG(T)∩Z(G),∂), where TG denotes the fixed
point subgroup of T ; that is, TG = {t ∈ T | xt = t for all x ∈ G}. StG(T) is the stabilizer in G of
T , that is: StG(T) = {x ∈ G | xt = t for all t ∈ T} and Z(T) is the center of G. Note that TG is
central in T . Let (T,G,∂) be a crossed module and (T ′,G′,∂) a normal subcrossed module its
and 〈α,φ〉 ∈Aut(T,G,∂). Then, 〈α,φ〉 induces a 〈ᾱ, φ̄〉 in Aut(T/T ′,G/G′, ∂̄) such that

∂̄ :
T
T ′ →

G
G′ , ∂̄(tT ′)= ∂(t)T ′ .

Definition 3.1. Let (T,G,∂) be a crossed module and Z(T,G,∂); center of it and < α,φ >∈
Aut(T,G,∂). If 〈ᾱ, φ̄〉 induced of 〈α,φ〉 in Aut

(
T

TG , G
StG (T)∩Z(G) , ∂̄

)
; is identity, then 〈α,φ〉 is called

central automorphism of crossed module (T,G,∂).

Theorem 3.2. If (α,θ) ∈AutC(W1,W2,∂), then

(a) α= k1i1, k1 ∈ K1, i1 ∈ I1 and the inner automorphism i1 is induced by an element g1 ∈ AB1
1

with g1 ∈ Z(AB1
1 ) and [b1, g1] ∈ Z(W1) for all b1 ∈ B1.

(b) θ = k2i2, k2 ∈ K2, i2 ∈ I2 and the inner automorphism i2 is induced by an element g2 ∈ AB2
2

with g2 ∈ Z(AB2
2 ) and [b2, g2] ∈ Z(W2) for all b2 ∈ B2.
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Proof. (a) Suppose that b1 ∈ B1 and bα1 ≡ b′(modAB1
1 ) for some b′ ∈ B1. We define, the map β1 by

β1 : B1 → B1 such that bβ1 = b′ for all b ∈ B1. β1 is an automorphisms of B1. If β∗
1 is the extension

of β1, then by (2)-(4) α=β∗
1 k1i1, k1 ∈ K1, i1 ∈ I1. But α is central, so we havebα1 ≡ b1(modZ(W1))

for all b1 ∈ B1. In addition, by [5], Z(W1) 5 AB1
1 , hence bβ1

1 = b1 for all b1 ∈ B1, that is the
automorphism β1 is trivial and so is trivial the automorphism β∗

1 . Thus, the automorphism α is
α= k1i1, k1 ∈ K1, i1 ∈ I1. Suppose that the automorphism i1 is induced by the element g1 ∈ A1

B1 .
So, g(x)= fx(x) for all x ∈ B1, fx ∈ A1

B1 and fx = x−1x(β∗1 )−1α for all x ∈ B1, by Theorem 2.4. But
β∗

1 = 1, so we have fx = x−1xα and if xα = xhx, hx ∈ Z(W1), then fx = hx ∈ Z(W1) for all x ∈ B1.
Thus, g ∈ Z(AB1

1 ). Moreover, bα1
1 = bk1 i1

1 = bi1
1 = b1[b1, g1] for all b1 ∈ B1. Since α ∈AutC(W1), it

follows that [b1, g1] ∈ Z(W1) for all b1 ∈ B1.

(b) The proof is similar to (a).

We consider for simpleness KC =AutC(W)∩K and IC =AutC(W)∩ I1.

Theorem 3.3. Let W1 and W2 be wreath products and (W1,W2,∂) crossed module. Then,
AutC(W1,W2,∂)= 〈K1C × I1C,K2C × I2C〉.

Proof. If (α,θ) ∈ AutC(W1,W2,∂), then α ∈ Aut(W1), ᾱ : W1
Z(W1) → W1

Z(W1) is identity, and by

Theorem 3.2, α= k1i1, where i1 is induced by an element g1 ∈ Z(AB1
1 ) with [b1, g1] ∈ Z(W1) for

all b1 ∈ B1. Therefore, we obtain

(b1 f )i1 = (b1 f )g1 = b1 f [b1 f , g1]= b1 f [b1, g1] f [ f , g1]= b1 f [b1, g1]

for all b1 ∈ B and f ∈ AB1
1 . So i1 ∈ AutC(W1) which together with α ∈ AutC(W1) we have

k1 ∈AutC(W1). Hence, AutC1(W1)= K1C I1C . Now, we prove that K1C∩ I1C = 1. Let i1 ∈ K1C∩ I1C

and i1 is induced by the element h ∈ AB1
1 . But i1 is in K1C . So, bi1

1 = b1. Therefore, h−1b1h = b1

or b1h = hb1 for all b1 ∈ B1. This means that h ∈ CW1(B1)= Z(B1)×D1, where D1 is the diagonal
of AB1

1 [4]. But h ∈ AB1
1 and this means that h ∈ D1. Now, we show that h ∈ Z(D1) = Z(W1).

Suppose that f ∈ AB1
1 . Then, f i1 = f [ f ,h], where [ f ,h] ∈ Z(W1). Let a ∈ A and the function

f ∈ AB1
1 with f (1) = a and f (x) = 1, for all x ∈ B1, x 6= 1. However, [ f ,h](1) = [ f (1),h(1)] and

[ f ,h](x) = [ f (x),h(x)] = 1 for all x ∈ B1, x 6= 1. Since [ f ,h] ∈ Z(W1) = Z(D1), it follows that
[ f (1),h(1)] = 1 or [a,h(1)] = 1, for all a ∈ A1. Thus, h(1) ∈ Z(A1) and h ∈ Z(W1). So, i1 = 1 and
K1C ∩ I1C = 1. But k1i1 = i1k1, where k1 ∈ K1C and i1 ∈ I1C , because the group AutC(W1) is
the centralizer in Aut(W1) of the group I(W1) of inner automorphisms of W1, and the proof is
completed. The proof of part K2C × I2C is straightforward.

In the following we shall need some proposition and lemma of Baumslag and Panagopoulos
[3, 7]. If G is a group and G′ its derived subgroup, then every inner automorphism of G
induces the identity on the group G

G′ . Let KG be the subgroup of Aut(G) which consists of those
automorphisms which induce the identity on G

G′ . Clearly, KG ≥ I(G) where I(G) is the group of
inner automorphisms. The group I(G) is in general different from KG .

Definition 3.4. A group G is called semicomplete if KG = I(G).
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Proposition 3.5. Let W̄ = AWrB (resp, W = AWrB), semicompleteand B, be abelian. Then, A
is directly indecomposable.

Proposition 3.6. The restricted wreath product of two groups A and B is nilpotent if and only
if A and B are nilpotent p-groups for the same prime p, with A of finite exponent and B finite.

Lemma 3.7. Let W = AWrB, where A is not of exponent 2 when |B| = 2. Then, Z2(W)= { f | f ∈
Z(AB) and [ f , x] ∈ Z(W) for all x ∈ B}.

Lemma 3.8. Let W = AWrB, with A of exponent 2 and |B| = 2. Then, Z2(W) = W , i.e., W is
nilpotent of class 2.

Lemma 3.9. If A and B are nontrivial and W = AWrB is nilpotent of class 2, then both A and
B are abelian.

Theorem 3.10. Let W1 = A1WrB1 and W2 = A2WrB2.

(1) If A i , 1≤ i ≤ 2 is not of exponent 2 when |B| = 2, then AutC(W1,W2,∂)= 〈K1C × I1C,K2C ×
I2C〉 with I1C

∼= Z2(W1)
Z(W1) and I2C

∼= Z2(W2)
Z(W2) .

(2) If A i , 1 ≤ i ≤ 2 is of exponent 2, A i 6= C2, 1 ≤ i ≤ 2 and |Bi| = 2, 1 ≤ i ≤ 2, then
AutC(W1,W2,∂)= 〈K1C × I1,K2C × I2〉.

Proof. By Theorem 3.3 and Lemmas 3.8, 3.9, the proof is straightforward.

Theorem 3.11. Let W1 = A1WrB1, W2 = A2WrB2 with A i = Bi , 1 ≤ i ≤ 2 nontrivial. Then,
AutC(W1,W2,∂)= Inn(W1,W2,∂) if and only if A i = Bi = C2, 1≤ i ≤ 2.

Proof. Suppose that the group B1 and B2 are infinite and AutC(W1,W2,∂)= Inn(W1,W2,∂). Then,
W1 and W2 are nilpotent of class 2 and so the restricted wreath products A1 by B1 and A2 by
B2 are nilpotent as subgroups of W1, W2 respectively. Then, B1 and B2 are finite according
by Proposition 3.6. But this is a contradiction. Let B1 and B2 be finite and AutC(W1,W2,∂) =
Inn(W1,W2,∂). Then, W1 and W2 are nilpotent of class 2 and from Lemma 3.7 and Proposition 3.6
we have that A1 and A2 are abelian p-groups of finite exponent and B1, B2 are abelian p-groups.
Furthermore, Z2(W1) = W1 and Z2(W2) = W2, so W ′

1 ≤ Z(W1) and W ′
2 ≤ Z(W2) and therefore

KW1 ≤ AutC(W1) and KW2 ≤ AutC(W2). Now, AutC(W1,W2,∂) = Inn(W1,W2,∂), Inn(W1) ≤ KW1

and Inn(W2) ≤ KW2 . Therefore, we obtain Inn(W1,W2,∂) = AutC(W1,W2,∂). So, W1 and W2 are
semicomplete and we conclude that A1 and A2 are directly indecomposable by Proposition 3.5.
We distinguish two cases for the group A1 and A2:

(1) Let A1 and A2 be infinite. Since A1 and A2 are abelian p-groups of finite exponent, it
follows that A1 and A2 are direct product of cyclic groups. This is a contradiction.

(2) Let A1 and A2 be finite. Since B1 and B2 are finite, it follows that W1 and W2 are
semicomplete if and only if A1 = A2 = B1 = B2 = C2 by [7]. But for the group W = C2wrC2

we have that AutC(W1,W2,∂)= Inn(W1,W2,∂).
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4. Conclusion
We studied the connections between wreath products, automorphisms and crossed modules. Also,
we investigated some results related to central automorphisms of crossed module (W1,W2,∂),
where W1, W2 are wreath products of groups. Hope that this work will develop a deep impact
on the upcoming research works in this particular field and at the same time, it will be very
helpful in the scholastic study of other concerned fields to open up new horizons of interest,
erudition and innovations.
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