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1. Introduction
Rational recursive systems are also called rational difference equation systems. These systems
have been studied in many branches of mathematics as well as other sciences for the years.
There are many applications in several branches of science [1, 2, 3, 4, 7, 9]. These types seem
very simple and some of their properties can also be observed and conjectured by computers
simulations, however, it is extremely difficult to prove completely the properties observed and
conjectured by computers simulation, for example, see [5, 6, 10]. In this study, we consider the
following systems by using the results in [8]

xn+1 = A yn−1

yn(yn−2 + zn−2)
+ B

yn−1 + zn−1
, yn+1 = B

yn−1 + zn−1
, (1.1)

zn+1 = C
xn−1 − yn−1

− B
yn−1 + zn−1

, (0≤ n), (1.2)

with initial values x−1, x0, y−2, y−1, y0, z−2, z−1, z0, A,B,C ∈R+, (x−1 6= y−1, x0 6= y0) and

xn+1 = A yn−1

yn(yn−3 + zn−3)
+ B

yn−2 + zn−2
, yn+1 = B

yn−2 + zn−2
, (1.3)
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zn+1 = C
xn−2 − yn−2

− B
yn−2 + zn−2

, (0≤ n), (1.4)

with initial values x−2, x−1, x0, y−3, y−2, y−1, y0, z−3, z−2, z−1, z0, A,B,C ∈ R+, (x−2 6= y−2, x−1 6=
y−1, x0 6= y0).

Firstly, we give basic preliminary definitions and a theorem. Let I1, I2 and I3 be some
intervals of real numbers and let F1 : I2 × I3 → I1,F2 : I2 × I3 → I2 and F3 : I1 × I2 × I3 → I3 be
three continuously differentiable functions. For every initial condition (xs, ys, zs) ∈ I1× I2× I3, it
is obvious that the system of difference equations (1.3)

xn+1 = F1(yn, zn), yn+1 = F2(yn, zn), zn+1 = F3(xn, yn, zn) (1.5)

has a unique solution {xn, yn, zn}.

• A solution {xn, yn, zn} of the system of difference equations (1.3) is periodic if there exist a
positive integer p such that

xn+p = xn, yn+p = yn, zn+p = zn,

the smallest such positive integer p is called the prime period of the solution of difference
equation system (1.3).

• A point (x̄, ȳ, z̄) ∈ I1 × I2 × I3 is called an equilibrium point of system (1.3), if

x̄ = F1( ȳ, z̄), ȳ= F2( ȳ, z̄), z̄ = F3(x̄, ȳ, z̄).

• The equilibrium point (x̄, ȳ, z̄) of the difference equation system (1.3) is called stable (or
locally stable), if for every ε> 0, there exist δ> 0 such that for all (xs, ys, zs) ∈ I1 × I2 × I3

with

‖(xs, ys, zs)− (x̄, ȳ, z̄)‖ < δ implies ‖(xn, yn, zn)− (x̄, ȳ, z̄)‖ < ε
for all n ≥ 0. Otherwise equilibrium point is called unstable.

• The equilibrium point (x̄, ȳ, z̄) of the difference equation system (1.3) is called
asymptotically stable (or locally asymptotically stable), if it is stable and there exist
γ> 0 such that for all (xs, ys, zs) ∈ I1 × I2 × I3 with

‖(xs, ys, zs)− (x̄, ȳ, z̄)‖ < γ implies lim
n→∞‖(xn, yn, zn)− (x̄, ȳ, z̄)‖ = 0.

• The equilibrium point (x̄, ȳ, z̄) of the difference equation system (1.3) is called global
asymptotically stable, if it is stable and for every (xs, ys, zs) ∈ I1 × I2 × I3 we have

lim
n→∞‖(xn, yn, zn)− (x̄, ȳ, z̄)‖ = 0.

• Let I1 × I2 × I3 be an interval of real numbers. For all initial values x−2, x−1, x0 ∈ I1,
y−3, y−2, y−1, y0 ∈ I2 and z−3, z−2, z−1, z0 ∈ I3, (x−2 6= y−2, x−1 6= y−1, x0 6= y0), if we have

lim
n→∞‖(xn, yn, zn)‖ = (x̄, ȳ, z̄),

then the equilibrium point (x̄, ȳ, z̄) of the system of difference equations (1.3) is global
attractor [7, 9].
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2. Main results
In this section all results have been obtained by using [8]. The following theorems show us the
period of solutions of the systems (1.1)-(1.2) and (1.3)-(1.4).

Theorem 2.1. Suppose that {xn, yn, zn} are the solutions of the difference equation system (1.1)-
(1.2). All solutions of the system (1.1)-(1.2) are periodic with period 6 if and only if A = C.

Proof. From the system (1.1)-(1.2), it is obtained the following equalities

xn+1 = A yn−1

yn(yn−2 + zn−2)
+ B

yn−1 + zn−1
,

yn+1 = B
yn−1 + zn−1

,

zn+1 = C
xn−1 − yn−1

− B
yn−1 + zn−1

,

xn+2 = A yn

B
+ B

yn + zn
,

yn+2 = B
yn + zn

,

zn+2 = C
xn − yn

+ B
yn + zn

,

xn+3 = A
yn−1 + zn−1

+ B(xn−1 − yn−1)
C

,

yn+3 = B(xn−1 − yn−1)
C

,

zn+3 = Cyn(yn−2 + zn−2)
A yn−1

− B(xn−1 − yn−1)
C

,

xn+4 = A
yn + zn

+ B(xn − yn)
C

,

yn+4 = B(xn − yn)
C

,

zn+4 = BC
A yn

− B(xn − yn)
C

,

xn+5 = A(xn−1 − yn−1)
C

+ BA yn−1

Cyn(yn−2 + zn−2)
,

yn+5 = BA yn−1

Cyn(yn−2 + zn−2)
,

zn+5 = C(yn−1 + zn−1)
A

− BA yn−1

Cyn(yn−2 + zn−2)
,

xn+6 = A
C

(xn − yn)+ A
C

yn = A
C

xn,

yn+6 = A
C

yn, zn+6 = C
A

(yn + zn)− A
C

yn.
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From A = C, all solutions of the system (1.1)-(1.2) are periodic with 6 period. Thus we have

xn+6 = xn, yn+6 = yn, zn+6 = zn.

Theorem 2.2. Suppose that {xn, yn, zn} are the solutions of the difference equation system (1.3)-
(1.4). All solutions of the system (1.3)-(1.4) are periodic with period 8 if and only if A = C.

Proof. From the system (1.3)-(1.4), it is obtained the following equalities

xn+1 = A yn−1

yn(yn−3 + zn−3)
+ B

yn−2 + zn−2
,

yn+1 = B
yn−2 + zn−2

,

zn+1 = C
xn−2 − yn−2

− B
yn−2 + zn−2

,

xn+2 = A yn

B
+ B

yn−1 + zn−1
,

yn+2 = B
yn−1 + zn−1

,

zn+2 = C
xn−1 − yn−1

− B
yn−1 + zn−1

,

xn+3 = A
yn−2 + zn−2

+ B
yn + zn

,

yn+3 = B
yn + zn

,

zn+3 = C
xn − yn

− B
yn + zn

,

xn+4 = A
yn−1 + zn−1

+ B(xn−2 − yn−2)
C

,

yn+4 = B(xn−2 − yn−2)
C

,

zn+4 = Cyn(yn−3 + zn−3)
A yn−1

− B(xn−2 − yn−2)
C

,

xn+5 = A
yn + zn

+ B(xn−1 − yn−1)
C

,

yn+5 = B(xn−1 − yn−1)
C

,

zn+5 = CB
A yn

− B(xn−1 − yn−1)
C

,

xn+6 = A(xn−2 − yn−2)
C

+ B(xn − yn)
C

,

yn+6 = B(xn − yn)
C

,
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zn+6 = C(yn−2 + zn−2)
A

− B(xn − yn)
C

,

xn+7 = A(xn−1 − yn−1)
C

+ AByn−1

Cyn(yn−3 + zn−3)
,

yn+7 = AByn−1

Cyn(yn−3 + zn−3)
,

zn+7 = C(yn−1 + zn−1)
A

− AByn−1

Cyn(yn−3 + zn−3)
,

xn+8 = A
C

(xn − yn)+ A
C

yn = A
C

xn,

yn+8 = A
C

yn, zn+8 = C
A

(yn + zn)− A
C

yn.

From A = C, all solutions of the system (1.3)-(1.4) are periodic with 8 period. Thus we have

xn+8 = xn, yn+8 = yn, zn+8 = zn.

Theorem 2.3. Suppose that {xn, yn, zn} are the solutions of the difference equation system (1.1)-
(1.2) with initial values x−1 = a, x0 = b, y−2 = c, y−1 = d, y0 = e, z−2 = f , z−1 = g, z0 = h, A,B,C
(x−1 6= y−1, x0 6= y0) ∈ R+. For n ≥ 0, all solutions of the system (1.1)-(1.2) are periodic with
period 6

x6n+1 = Ad
e(c+ f )

+ B
d+ g

,

y6n+1 = B
d+ g

,

z6n+1 = A
a−d

− B
d+ g

,

x6n+2 = Ae
B

+ B
e+h

,

y6n+2 = B
e+h

,

z6n+2 = A
b− e

+ B
e+h

,

x6n+3 = A
d+ g

+ B(a−d)
A

,

y6n+3 = B(a−d)
A

,

z6n+3 = Ae(c+ f )
Ad

− B(a−d)
A

,

x6n+4 = A
e+h

+ B(b− e)
A

,

y6n+4 = B(b− e)
A

,

z8n+4 = B
e
− B(b− e)

A
,
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x6n+5 = (b− e)+ Bd
e(c+ f )

,

y6n+5 = Bd
e(c+ f )

,

z6n+5 = (d+ g)− Bd
e(c+ f )

,

x6n+6 = b,

y6n+6 = e,

z6n+6 = h.

if and only if A = C.

Proof. Let us use the principle of mathematical induction on n. For n = 0, it is easy to see.
Assume that it is true for all positive integers n. From the system (1.1)-(1.2), it is obtained the
following equalities

x6n+7 = A y6n+5

y6n+6(y6n+4 + z6n+4)
+ B

y6n+5 + z6n+5
= Ad

e(c+ f )
+ B

d+ g
,

y6n+7 = B
y6n+5 + z6n+5

= B
d+ g

,

z6n+7 = C
x6n+5 − y6n+5

− B
y6n+5 + z6n+5

= A
a−d

− B
d+ g

,

x6n+8 = A y6n+6

B
+ B

y6n+6 + z6n+6
= Ae

B
+ B

e+h
,

y6n+8 = B
y6n+6 + z6n+6

= B
e+h

,

z6n+8 = C
x6n+6 − y6n+6

+ B
y6n+6 + z6n+6

= A
b− e

+ B
e+h

,

x6n+9 = A
y6n+5 + z6n+5

+ B(x6n+5 − y6n+5)
C

= A
d+ g

+ B(a−d)
A

,

y6n+9 = B(x6n+5 − y6n+5)
C

= B(a−d)
A

,

z6n+9 = Cy6n+6(y6n+4 + z6n+4)
A yn−1

− B(x6n+5 − y6n+5)
C

= Ae(c+ f )
Ad

− B(a−d)
A

,

x6n+10 = A
y6n+6 + z6n+6

+ B(x6n+6 − y6n+6)
C

= A
e+h

+ B(b− e)
A

,

y6n+10 = B(x6n+6 − y6n+6)
C

= B(b− e)
A

,

z6n+10 = BC
A y6n+6

− B(x6n+6 − y6n+6)
C

= B
e
− B(b− e)

A
,

x6n+11 = A(x6n+5 − y6n+5)
C

+ BA y6n+5

Cy6n+6(y6n+4 + z6n+4)
= (b− e)+ Bd

e(c+ f )
,
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y6n+11 = BA y6n+5

Cy6n+6(y6n+4 + z6n+4)
= Bd

e(c+ f )
,

z6n+11 = C(y6n+5 + z6n+5)
A

− BA y6n+5

Cy6n+6(y6n+4 + z6n+4)
= (d+ g)− Bd

e(c+ f )
,

x6n+12 = A
C

x6n+6,

y6n+12 = A
C

y6n+6,

z6n+12 = C
A

(y6n+6 + z6n+6)− A
C

y6n+6.

From A = C, all solutions of the system (1.1)-(1.2) are periodic with 6 period. Thus we have

x6n+12 = b, y6n+12 = e, z6n+12 = h.

Therefore we have the required formulates on n.

Theorem 2.4. Suppose that {xn, yn, zn} are the solutions of the difference equation system (1.3)-
(1.4) with initial values x−2 = a, x−1 = b, x0 = c, y−3 = d, y−2 = e, y−1 = f , y0 = g, z−3 = h,
z−2 = p, z−1 = r, z0 = s, A,B,C (x−2 6= y−2, x−1 6= y−1, x0 6= y0) ∈R+. For n ≥ 0, all solutions of the
system (1.3)-(1.4) are periodic with period 8

x8n+1 = A f
g(d+h)

+ B
e+ p

,

y8n+1 = B
e+ p

,

z8n+1 = A
a− e

− B
e+ p

,

x8n+2 = Ag
B

+ B
f + r

,

y8n+2 = B
f + r

,

z8n+2 = A
b− f

− B
f + r

,

x8n+3 = A
e+ p

+ B
g+ s

,

y8n+3 = B
g+ s

,

z8n+3 = A
c− g

− B
g+ s

,

x8n+4 = A
f + r

+ B(a− e)
A

,

y8n+4 = B(a− e)
A

,
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z8n+4 = g(d+h)
f

− B(a− e)
A

,

x8n+5 = A
g+ s

+ B(b− f )
A

,

y8n+5 = B(b− f )
A

,

z8n+5 = B
g
− B(b− f )

A
,

x8n+6 = (a− e)+ B(c− g)
A

,

y8n+6 = B(c− g)
A

,

z8n+6 = (e+ p)− B(c− g)
A

,

x8n+7 = (b− f )+ Bf
g(d+h)

,

y8n+7 = Bf
g(d+h)

,

z8n+7 = ( f + r)− Bf
g(d+h)

,

x8n+8 = c,

y8n+8 = g,

z8n+8 = s.

if and only if A = C.

Proof. Let us use the principle of mathematical induction on n. For n = 0, it is easy to see.
Assume that it is true for all positive integers n. From the system (1.3)-(1.4), it is obtained the
following equalities

x8n+9 = A y8n+7

y8n+8(y8n+5 + z8n+5)
+ B

y8n+6 + z8n+6
= A f

g(d+h)
+ B

e+ p
,

y8n+9 = B
y8n+6 + z8n+6

= B
e+ p

,

z8n+9 = C
x8n+6 − y8n+6

− B
y8n+6 + z8n+6

= A
a− e

− B
e+ p

,

x8n+10 = A y8n+8

B
+ B

y8n+7 + z8n+7
= Ag

B
+ B

f + r
,

y8n+10 = B
y8n+7 + z8n+7

= B
f + r

,

z8n+10 = C
x8n+7 − y8n+7

− B
y8n+7 + z8n+7

= A
b− f

− B
f + r

,
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x8n+11 = A
y8n+6 + z8n+6

+ B
y8n+8 + z8n+8

= A
e+ p

+ B
g+ s

,

y8n+11 = B
y8n+8 + z8n+8

= B
g+ s

,

z8n+11 = C
x8n+8 − y8n+8

− B
y8n+8 + z8n+8

= A
c− g

− B
g+ s

,

x8n+12 = A
y8n+7 + z8n+7

+ B(x8n+6 − y8n+6)
C

= A
f + r

+ B(a− e)
A

,

y8n+12 = B(x8n+6 − y8n+6)
C

= B(a− e)
A

,

z8n+12 = Cy8n+8(y8n+5 + z8n+5)
A y8n+7

− B(x8n+6 − y8n+6)
C

= g(d+h)
f

− B(a− e)
A

,

x8n+13 = A
y8n+8 + z8n+8

+ B(x8n+7 − y8n+7)
C

= A
g+ s

+ B(b− f )
A

,

y8n+13 = B(x8n+7 − y8n+7)
C

= B(b− f )
A

,

z8n+13 = CB
A y8n+8

− B(x8n+7 − y8n+7)
C

= B
g
− B(b− f )

A
,

x8n+14 = A(x8n+6 − y8n+6)
C

+ B(x8n+8 − y8n+8)
C

= (a− e)+ B(c− g)
A

,

y8n+14 = B(x8n+8 − y8n+8)
C

= B(c− g)
A

,

z8n+14 = C(y8n+6 + z8n+6)
A

− B(x8n+8 − y8n+8)
C

= (e+ p)− B(c− g)
A

,

x8n+15 = A(x8n+7 − y8n+7)
C

+ ABy8n+7

Cy8n+8(y8n+5 + z8n+5)
= (b− f )+ Bf

g(d+h)
,

y8n+15 = ABy8n+7

Cy8n+8(y8n+5 + z8n+5)
= Bf

g(d+h)
,

z8n+15 = C(y8n+7 + z8n+7)
A

− ABy8n+7

Cy8n+8(y8n+5 + z8n+5)
= ( f + r)− Bf

g(d+h)
,

x8n+16 = A
C

c,

y8n+16 = A
C

g,

z8n+16 = C
A

(g+ s)− A
C

g.

From A = C, all solutions of the system (1.3)-(1.4) are periodic with 8 period. Thus we have

x8n+16 = c, y8n+16 = g, z8n+16 = s.

Therefore we have the required formulates on n.
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3. Conclusion
The difference systems given in (1.1)-(1.2) and (1.3)-(1.4) can be generalized to high order
difference system. Thus the solutions and period of this new system can be examinated again.
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