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Abstract. In this article, the issue of the best uniform cubic approximation of circular arcs with
parametrically defined polynomial curves is considered. By a proper choice of the Bézier points, the
best uniform approximation of degree 3 to a circular arc is given in explicit form. The approximation
is constructed so that the error function is the Chebyshev polynomial of degree 6; the error function
equioscillates 7 times; the approximation order is 6. The numerical examples demonstrate the
efficiency and simplicity of the approximation method as well as satisfying the properties of the best
uniform approximation and yielding the best approximation of least deviation and the highest possible
accuracy.

Keywords. Bézier curves; Best uniform approximation; Circular arc; High accuracy; Approximation
order; Equioscillation.

MSC. 41A10; 65D07; 65D17

Received: January 31, 2016 Accepted: June 11, 2016

Copyright © 2016 Abedallah Rababah. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

1. Introduction
Throughout this paper, we consider the circular arc c of angular width 2θ as follows, see
Figure 1:

c : t 7→ (cos(t),sin(t)), −θ ≤ t ≤ θ, where θ ∈ [−π,π].

It is not possible to exactly represent a circle with a polynomial curve. It is representable only
using rational Bézier curves. Therefore, approximating a circular arc with highest possible
accuracy is a very important issue. Thus, it is of high demand to find a parametrically defined
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polynomial curve p : t 7→ (x(t), y(t)), 0 ≤ t ≤ 1, where x(t) and y(t) are polynomials of degree 3,
that approximates c with “minimum” error. The proper distance function to measure the error
between p and c is the Euclidean error function:

E(t) :=
√

x2(t)+ y2(t)−1. (1)

E(t) will be replaced by the following error function

e(t) := x2(t)+ y2(t)−1. (2)

Since e(t)= 0 is the implicit equation of the unit circle; this implies that the e(t) error function
is a suitable measure to test if x(t) and y(t) satisfy this equation and to measure the error.
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Figure 1. A circular arc.

Both error functions share the same roots and critical points, see Propositions I and II.

The approximation problem in this paper is to find p : t 7→ (x(t), y(t)), 0 ≤ t ≤ 1, where x(t)
and y(t) are polynomials of degree 3, that approximates c and satisfies the following three
conditions:

(1) p minimizes max
t∈[0,1]

|e(t)|,
(2) e(t) equioscillates 7 times over [0,1], and

(3) p approximates c with order 6.

The solution to this problem is graphed in Figure 3, and the corresponding error is graphed
in Figure 4.

2. Previous Works
Bézier introduced in [1] a cubic parametric curve by interpolating the end points and a point
in the middle of the circular arc. A quarter of a circle is approximated by a cubic curve by
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Blinn using the values and tangents at the end points in [2]. A general cubic scheme of order 6
is presented by de Boor, Höllig and Sabin in [3]. They used values of positions, tangents,
and curvatures at the endpoints. Dokken, Dæhlen, Lyche and Mørken constructed cubic
approximation for the circle of order 6 in [4]. Different types of cubic approximations of circular
arcs of order 6 are considered by Goldapp in [6]. The author partially proved the conjecture of
high order approximation in [10]; the circular arc is given as an example, see also [5, 9, 11, 14]
and the papers therein.

The method in this paper represents a circular arc in a very easy way while satisfying the
approximation conditions of best uniform approximation. The numerical results of this method
are superior over the above mentioned methods, see the numerical comparisons in Section 6.

3. Preliminaries
A monic polynomial Q6(u) of degree 6 satisfies, see [15],

max
u∈[−1,1]

|Q6(u)| ≥ 1
32

. (3)

The monic Chebyshev polynomial, T̃6(u), u ∈ [−1,1], is the unique polynomial of degree 6 that
satisfies the equality in (3) and equioscillates 7 times between ± 1

32 .

The Bézier curve p(t) of degree 3 (see Figure 2), is given by, see [7],

p(t)=
3∑

i=0
piB3

i (t)=:
(
x(t)
y(t)

)
, 0≤ t ≤ 1, (4)

where p0, p1, p2 and p3 are the Bézier points, and B3
0(t) = (1 − t)3, B3

1(t) = 3t(1 − t)2,
B3

2(t)= 3t2(1− t), and B3
3(t)= t3 are the Bernstein polynomials of degree 3.

Since it is intended to represent the circular arc with polynomial curve with minimum
error, it is not important where the errors occur, at the end points with Gk-continuity, like
in [12, 13], or elsewhere; it is important to keep this error as small as possible than where
the error occurs. To represent a circular arc of the unit circle, the Bézier points are chosen
to explore symmetry properties of the circle. So, let p0 = (−α0 cos(θ),−β0 sin(θ)

)
, then by the

symmetry p3 =
(−α0 cos(θ), β0 sin(θ)

)
. Let p1 =

(
γ,−ζ) then by symmetry p2 =

(
γ,ζ

)
. By making

the substitution α=α0 cos(θ), β=β0 sin(θ), then the proper choice for the Bézier points should
be, see Figure 2,

p0 =
(−α
−β

)
, p1 =

(
γ

−ζ
)
, p2 =

(
γ

ζ

)
, p3 =

(−α
β

)
. (5)

The circular arc c begins in the third quadrant, goes counter clockwise through fourth and first
quadrants and ends in the second quadrant. In order to have the Bézier curve p follow the same
path as c, the following conditions should be satisfied

α,β,ζ> 0, γ> 1. (6)

The Bézier curve p(t) in (4) with Bézier points in (5) is given by

p(t)=
(
x(t)
y(t)

)
=

(−α(
B3

0(t)+B3
3(t)

)+γ(B3
1(t)+B3

2(t))

β
(
B3

3(t)−B3
0(t)

)+ζ
(
B3

2(t)−B3
1(t)

) )
, 0≤ t ≤ 1. (7)
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Figure 2. Possible Bézier points of circular arc.

4. The Best Uniform Approximation

Theorem I. Consider the Bézier curve in (7) with the Bézier points in (5), where

β=β∗ := 1
4

(
−5+2

(
32−

p
1023

) 1
3 +2

(
32+

p
1023

) 1
3
)
= 0.8748473632, (8)

α=α∗ := 1
4

√
33
2

−16β2 = 0.5156472545, (9)

γ= γ∗ := 16
√

1+4β−3
√

33−32β2

12
p

2
= 1.484217064, (10)

ζ= ζ∗ := 4+β

3
= 1.624949121. (11)

Then p satisfies the following 3 conditions: p minimizes the uniform error max
t∈[0,1]

|e(t)| and

approximates c with order 6, and the error function e(t) equioscillates 7 times in [0,1].
More precisely, the error functions satisfy:

− 1
25 ≤ e(t)≤ 1

25 , − 1
26 / E(t)≤ 1

26 , for all t ∈ [0,1], (12)

where / means approximately less than or equal with error no more than 1
212 ; the exact values

are given in Proposition III.

Proof. Substituting the components of p(t) from equation (7) into equation (2) for the error
function e(t) gives

e(t)= 4(β−3ζ)2t6 −12
(
β−3ζ

)2 t5 +3
(
3α2 +7β2 +6αγ+3γ2 −34βζ+39ζ2) t4

−2
(
9α2 +11β2 +18αγ−42βζ+9

(
γ2 +3ζ2)) t3
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+3
(
5α2 +5β2 +8αγ−12βζ+3

(
γ2 +ζ2)) t2 −6

(
(α2 +αγ+β(β−ζ)

)
t+ (

α2 +β2 −1
)
.

The last one is a polynomial of degree 6. Substituting the values of α=α∗, β=β∗, γ= γ∗, ζ= ζ∗

from equations (8)-(11) and doing some simplifications gives

e(t)= 1
32

− 9
4

t+ 105
4

t2 −112t3 +216t4 −192t5 +64t6, t ∈ [0,1].

Making the substitution t = u+1
2 yields

e(u)=− 1
32

+ 9
16

u2 − 3
2

u4 +u6, u ∈ [−1,1].

The last polynomial is the monic Chebyshev polynomial T̃6(u), u ∈ [−1,1], which is the unique
polynomial of degree 6 that satisfies the equality in (3) and equioscillates 7 times between ± 1

25

for all u ∈ [−1,1]. This shows that e(t) equioscillates 7 times in [0,1], p approximates c with
order 6 and minimizes the uniform error max

t∈[0,1]
|e(t)|.

Since −1
25 ≤ e(t)≤ 1

25 , and E(t) is a bounded function, then we have

−1+
√

1− 1
25 ≤ E(t)≤−1+

√
1+ 1

25 .

Since
√

1+ 1
25 ≤ 1+ 1

26 , then we have E(t) ≤ 1
26 , for all t ∈ [0,1]. For the other inequality, since√

1− 1
25 ≈ 1− 1

26 with error no more than 1

213
(
1− 1

25

) 3
2
≤ 1

212 , then −1+
√

1− 1
25 ≈− 1

26 ; in this case,

we write E(t)'− 1
26 with error no more than 1

212 . This completes the proof of Theorem I.

Figure 3 shows the circular arc and the approximating Bézier curve with the Bézier polygon,
and Figure 4 shows the corresponding error.
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Figure 3. The circular arc and the best uniform approximation in Theorem I.
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Figure 4. Euclidean error of the solution in Theorem I.

One would not, in general, expect a cubic polynomial to approximate more than 2/3rd, the
angle 2θ = 241◦, of the circle more precisely than this.

5. Properties of the Approximating Bézier Curve

Proposition I. The roots of the error functions e(t) and E(t) are:

t1 = 1
2

(
1+cos

( π
12

))
= 0.982963,t2 = 1

2

(
1+cos

(
3π
12

))
= 0.853553,

t3 = 1
2

(
1+cos

(
5π
12

))
= 0.62941,t4 = 1

2

(
1−cos

(
5π
12

))
= 0.37059,

t5 = 1
2

(
1−cos

(
3π
12

))
= 0.146447,t6 = 1

2

(
1−cos

( π
12

))
= 0.0170371.

Proof. Substituting ti in e(t) gives e(ti)= 0, i = 1, . . . ,6. Since e(t) is a polynomial of degree 6
and thus has 6 roots; these are all the roots. The error function E(t) has the same roots as e(t)
because E(t)= 0 iff

√
x2(t)+ y2(t)= 1 iff x2(t)+ y2(t)= 1 iff e(t)= 0.

Proposition II. The extreme values of e(t) and E(t) occur at the following parameter values:

t̃0 = 1, t̃1 = 1
2

(
1+

p
3p
2

)
= 0.933013, t̃2 = 3

4
, t̃3 = 1

2
,

t̃4 = 1
4

, t̃5 = 1
2

(
1−

p
3p
2

)
= 0.0669873, t̃6 = 0.

Proof. Differentiating e(t) gives a polynomial of degree 5. Substituting t̃1, . . . , t̃5 gives e′(t̃i)= 0,
i = 1, . . . ,5. Since e′(t) is of degree 5 then these are all interior critical points. Checking at the
end points adds t̃0 = 1, t̃6 = 0 to the critical points. Since

√
x2(t)+ y2(t) 6= 0, for all t ∈ [0,1], thus

differentiating E(t) and equating to 0 gives e′(t)p
x2(t)+y2(t)

= 0 iff e′(t)= 0. Thus e(t) and E(t) attain

the extrema at the same values. This completes the proof of the proposition.
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Proposition III. The values of e(t) and E(t) at t̃i are given by

e(t̃0)= e(t̃2)= e(t̃4)= e(t̃6)= 1
32

, e(t̃1)= e(t̃3)= e(t̃5)= −1
32

.

E(t̃0)= E(t̃2)= E(t̃4)= E(t̃6)= 0.0155048, E(t̃1)= E(t̃3)= E(t̃5)=−0.015749.

Thus
−1
32

≤ e(t)≤ 1
32

= 2(0.015625), −0.015749≤ E(t)≤ 0.0155048, t ∈ [0,1].

Proof. These equalities and inequalities can be proved by direct substitution into e(t) and
E(t).

Proposition IV. For every t ∈ [0,1], the errors of approximating the circular arc using the Bézier
curve in Theorem I are given by:

e(t)= 1
32

− 9
4

t+ 105
4

t2 −112t3 +216t4 −192t5 +64t6, for all t ∈ [0,1].

E(t)=̃ 1
64

− 9
8

t+ 105
8

t2 −56t3 +108t4 −96t5 +32t6, for all t ∈ [0,1].

Proof. The approximate equality for E(t) is proved from the equality for e(t) and applying the
equality E(t)= e(t)

2+E(t) .

6. Examples and Comparisons

Theorem I gives the best uniform approximation for θ = 120.5◦. What about other angles? Using
the subdivision algorithm guarantees this, but the error is not altered accordingly. To take
advantage of the small error of Theorem I, we divided the error function T̃6(t) by a constant and
by trial and test we got the constant 322 that when the equations are solved then the Bézier
points correspond to the quarter of the circle. Figure 5 shows the whole circle approximated by
rotating one quarter. The resulting error is graphed in Figure 6. It is shown in this paper that
our solution is the best uniform approximation, so it is anticipated that this fact is tested by
comparing the numerical results with the numerical results of other existing methods. In this
section, we compare between the different methods that are developed by many researchers to
approximate a quarter of a unit circle. Table 1 summarizes these values.

Table 1. Comparison between errors of approximating a quarter of circle using different methods.

Researcher(s) [Article] Error

Bézier [1] 3×10−4

Blinn [2] 4×10−4

de Boor, Höllig and Sabin [3] 2×10−3

Dokken, Dæhlen, Lyche and Mørken [4] 2×10−4

Goldapp [6] 2×10−4

Rababah [9, 10] 2×10−3

Rababah This article 4×10−5
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It is clear that the method developed in this article in Theorem I is superior over other
existing methods. This is a natural consequence of the construction of the method so that the
error function is the monic Chebyshev polynomial which has the least uniform deviation from 0.
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Figure 5. The figure of the full circle using 4 Bézier curves.
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Figure 6. The error of one out of four quarters of the full circle.

7. Conclusions
In this article, the best uniform approximation of circular arcs with parametrically defined
polynomial curves of degree 3 is given in explicit and closed form. The error function
equioscillates 7 times; the approximation intersects the circular arc 6 times with approximation
order 6. Numerical examples and comparisons are given in section 6 to demonstrate the
efficiency of the approximation method. The comparison shows that this approximation method
is superior over other existing methods. The approximation method is efficient, simple, satisfies
the properties of the best uniform approximation, and yields the best approximation of least
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deviation and highest possible accuracy. As further investigations, the following issues are
suggested.

(1) Defining splines with minimal defect with high approximation and compare their
performance with the splines with minimal defect that are studied in [8].

(2) Is it possible to use the results in this paper to find sharp embedding for holomorphic
based on Lorentz spaces and compare it with the results in [16].
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