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1. Introduction
Let R be a commutative ring with unity, and Z(R) be its set of all zero-divisors. The concept of
a zero-divisor graph of a commutative ring R was first introduced by Beck [5], where all the
elements of the ring R were taken as the vertices of the graph. Anderson and Livingston [3]
modified this concept by taking the zero-divisor graph Γ(R) whose vertices are the non zero
zero-divisors of a commutative ring R and two distinct vertices x and y are adjacent if and only
if xy= 0. The zero-divisor graph of a commutative ring has been studied extensively by several
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authors, e.g. ([1], [2], [4]). Redmond [11] introduced the concept of ideal-based zero-divisor graph
of a commutative ring R and he proved some interesting results of this graph. Then the study
of ideal-based zero-divisor graph is carried on by Maimani, Pouranki and Yassemi in [10]. Later,
Dheena and Elavarsaran studied ideal-based zero-divisor graph of a near ring in [6] and [7]. In
this paper, we study a generalized zero-divisor graph of a commutative ring with respect to an
ideal.

For the sake of completeness, we state some definitions and notations used throughout this
paper. Let R be a commutative ring and I be an ideal of R. For a ∈ R, 〈a〉 is the ideal of R
generated by a. An ideal I 6= R is called a prime ideal if ab ∈ I implies that a ∈ I or b ∈ I . An
ideal I 6= R is called a semi prime ideal if a2 ∈ I implies that a ∈ I . As usual, the ring of integers
and ring of integers modulo n will be denoted by Z and Zn, respectively. Let G be a (simple)
undirected graph. We denote the vertex set and the edge set of G by V (G) and E(G). We say
that G is connected if there exists a path between any two distinct vertices. Any vertex u of G
is called an end vertex if degree of u is one. A subgraph of G is a graph having all its points
and lines in G. For any set S of vertices of G, the induced subgraph is the maximal subgraph
of G with vertex set S. The distance between two vertices x and y of G denoted by d(x, y) is
the length of a shortest path connecting them (d(x, x) = 0 and if such a path does not exist,
then d(x, y)=∞). The diameter of G denoted by diam(G)= sup{d(x, y) | x, y distinct vertices of
G}. A cycle of G is a path that begins and ends on the same vertex. The length of a cycle is its
number of edges (or vertices). The cycle of length n is called a n-cycle and denoted by Cn. The
girth of G denoted by gr(G) is the length of a shortest cycle in G (if G contains no cycle, then
gr(G) =∞). A vertex v of a connected graph G is a cut vertex of G if G − {v} is disconnected.
Thus a vertex v of a connected graph G is a cut vertex of G if and only if there exists vertices
u and w distinct from v such that v lies on every u—w path of G. A graph G is complete if
any two distinct vertices are adjacent. A complete bipartite graph is a graph G which may be
partitioned into two disjoint non-empty vertex sets A and B such that two distinct vertices are
adjacent if and only if they are in distinct vertex sets. We denote the complete bipartite graph
by Km,n, where |A| = m and |B| = n (we allow m and n to be an infinite cardinal). The core of G
is the union of all cycles of G. For any vertices x, y in G, if x and y are adjacent, we denote it by
x— y.

In this paper, we generalize the notion of ideal-based zero-divisor graph of a commutative
ring. Throughout this paper, all rings are commutative (non-trivial), not necessarily with unity
unless otherwise stated. In our discussion, we assume I 6= R for an ideal I of R.

In section 2, we give some definitions and preliminary results. In section 3 , we discuss
connectedness and cut vertices of ΓG

I (R). Moreover, in section 4, we discuss when ΓG
I (R) is a

complete bipartite graph and in section 5, we give the conclusion of the paper.

2. Definitions and Preliminaries
Redmond [11] introduced the definition of the ideal-based zero-divisor graph of a commutative
ring R as follows:

Communications in Mathematics and Applications, Vol. 8, No. 3, pp. 333–343, 2017



On a Generalized Zero-divisor Graph of a Commutative Ring. . . : P.P. Baruah and K. Patra 335

Definition 2.1 ([11]). Let R be a commutative ring with unity and let I be an ideal of R. Then
the ideal-based zero-divisor graph of R, denoted by ΓI(R), is the (simple) undirected graph
whose vertex set is {a ∈ R − I | ab ∈ I for some b ∈ R − I}, and two distinct vertices a and b
are adjacent if and only if ab ∈ I . If I = {0}, then ΓI(R) is the zero-divisor graph Γ(R) which is
defined by Anderson and Livingston in [3].

Here, we define a generalized zero-divisor graph of a commutative ring with respect to an
ideal as follows:

Definition 2.2. Let R be a commutative ring and let I be an ideal of R. We define a generalized
zero-divisor graph of R with respect to I , denoted by ΓG

I (R), as the (simple) undirected graph
whose vertex set is {a ∈ R− I | there exists b ∈ R− I such that a1b1 ∈ I for some a1 ∈ 〈a〉− I and
for some b1 ∈ 〈b〉− I}, and two distinct vertices a and b are adjacent if and only if a1b1 ∈ I for
some a1 ∈ 〈a〉− I and for some b1 ∈ 〈b〉− I . If I = {0}, then ΓG

I (R) is denoted by ΓG(R).

By definitions it follows that every vertex and every edge of ΓI (R) is a vertex and an edge of
ΓG

I (R), respectively. But converse is not true, which can be shown by the following examples.
Thus ΓI(R) is a subgraph of ΓG

I (R).

Example 2.1. (i) Let R =Z8 and I = {0}. We have 2 ∈ 〈1〉 and 2 ·4= 0. Thus 1 is a vertex of
ΓG(R); but 1 is not a vertex of Γ(R), as 1 ·a 6= 0 for all a ∈ R − {0}. Also, we have 2 ∈ 〈2〉,
4 ∈ 〈6〉 and 2 ·4 = 0. Thus 2—6 is an edge of ΓG(R); but 2—6 is not an edge of Γ(R), as
2 ·6 6= 0.

(ii) Let R =Z8 and I = {0,4}. Then, we have 2 ∈ 〈2〉, 2 ∈ 〈3〉 and 2 ·2= 4 ∈ I . Thus 2—3 is an
edge of ΓG

I (R), but 2—3 is not an edge of ΓI(R) as 2 ·3= 6 ∉ I .

Remark 2.1. Suppose that I is an ideal of a commutative ring R such that ab ∈ I for all
a,b ∈ R− I . Then the generalized zero-divisor graph ΓG

I (R) with respect to I and ideal-based
zero-divisor graph ΓI(R) will coincide. In support of this remark, we consider the following
example.

Example 2.2. Let us take the commutative ring R =
{[

0 a
0 0

]∣∣∣a ∈Z3

}
and I =

{[
0 0
0 0

]}
. We

have
[
0 a
0 0

]
·
[
0 b
0 0

]
=

[
0 0
0 0

]
for all

[
0 a
0 0

]
,
[
0 b
0 0

]
∈ R −

[
0 0
0 0

]
. Then the graphs ΓG(R) and

Γ(R) will coincide. The graphs ΓG(R) and Γ(R) are shown in Figure 1, where A =
[
0 1
0 0

]
and

B =
[
0 2
0 0

]
. 
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Theorem 2.1. Let I be a nonzero ideal of a commutative ring R. Then ΓG
I (R) is an empty graph

if and only if I is a prime ideal of R.

Proof. Suppose that ΓG
I (R) is an empty graph. If possible assume that I is not a prime ideal

of R. Then there exists two elements a,b ∈ R− I such that ab ∈ I . So the vertex set of ΓG
I (R) is

non-empty, a contradiction. Hence I is a prime ideal of R.
Conversely, suppose that I is a prime ideal of R. Then ab ∈ I implies a ∈ I or b ∈ I . So the

vertex set of ΓG
I (R) is empty. Hence ΓG

I (R) is an empty graph.

Remark 2.2. Theorem 2.1 is equivalent to saying that ΓG
I (R) is an empty graph if and only if

R/I is an integral domain.

Theorem 2.2 ([11]). Let R be a commutative ring with unity and let I be an ideal of R. Then
ΓI(R) is connected and diam(ΓI(R))≤ 3.

The following example shows that non-isomorphic commutative rings may have isomorphic
generalized zero-divisor graph.

Example 2.3. Let R1 =Z2 ×Z2 and I1 = {(0,0)} and R2 =Z2[X ]/〈X2〉 and I2 = {〈X2〉}. Then the
graphs ΓG(R1) and ΓG(R2) are as follows, where a = (0,1), b = (1,0), c = (1,1), p = 1+〈X2〉,
q = x+〈X2〉 and r = 1+ x+〈X2〉.
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The next example shows that the graph structures ΓI(R) and ΓG
I (R) are not isomorphic.

Example 2.4. Let R =Z2×Z4 and I = 〈(0,2)〉. Then the graphs ΓI(R) and ΓG
I (R) are as follows,

where a = (0,1), b = (1,0), c = (1,1), d = (0,3), e = (1,2) and f = (1,3). 
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Figure 3

In this paper, we show that ΓG
I (R) is connected with diameter at most three. If ΓG

I (R) has a
cycle, we show that the girth of ΓG

I (R) is at most four. Also, we investigate the existence of cut
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vertices of ΓG
I (R). Moreover, we examine certain situations when ΓG

I (R) is a complete bipartite
graph.

To avoid trivialities when ΓG
I (R) is the empty graph, we will implicitly assume when

necessarily that I is not a prime ideal of R. For any subset U and ideal I of a commutative ring
R, we define [I : U]= {r ∈ R | rU ⊆ I}. Then [I : U] is an ideal of R containing I . If U = {a}, then
[I : {a}] is simply denoted by [I : a]. Any undefined notation or terminology is standard as in [8]
or [9].

3. Some Basic Properties of ΓG
I (R)

Some characteristics of ΓG
I (R) are studied in this section. We show that ΓG

I (R) is connected with
diameter at most 3. If ΓG

I (R) has a cycle, we show that the girth of ΓG
I (R) is at most 4. We also

investigate the existence of cut vertices of ΓG
I (R).

Theorem 3.1. Let I be an ideal of a commutative ring R. If a—b is an edge of ΓG
I (R) for any

a,b ∈V (ΓG
I (R)), then b— c is an edge of ΓG

I (R) for each c ∈ R− I or a—d is an edge of ΓG
I (R) for

some d ∈ b− I .

Proof. Suppose that a—b is an edge of ΓG
I (R) for any a,b ∈V (ΓG

I (R)). Suppose that b— c is not
an edge of ΓG

I (R) for some c ∈ R− I . Then a1b1 ∈ I for some a1 ∈ a− I and for some b1 ∈ b− I and
b1c ∉ I . Let d = b1c. Then d ∈ b− I . Since I is an ideal of R, (a1b1)c ∈ I . This implies a1(b1c) ∈ I .
Thus a1d ∈ I . Hence a—d is an edge of ΓG

I (R).

Theorem 3.2. Let I be an ideal of a commutative ring R. Then ΓG
I (R) is connected and

diam(ΓG
I (R))≤ 3.

Proof. Let a and b be any two distinct vertices of ΓG
I (R). Consider the following cases:

Case 1: If a1b1 ∈ I for some a1 ∈ 〈a〉− I and for some b1 ∈ 〈b〉− I , then a—b is an edge of ΓG
I (R).

Case 2: Let a1b1 ∉ I for all a1 ∈ 〈a〉− I and for all b1 ∈ 〈b〉− I . Then a1
2 ∉ I and b1

2 ∉ I for all
a1 ∈ 〈a〉− I and for all b1 ∈ 〈b〉− I . Since a,b ∈V (ΓG

I (R)) there exists a2 ∈ a− I , b2 ∈ b− I
and x1, y1 ∈ R− (I ∪ {a2,b2}) such that x1a2 ∈ I and y1b2 ∈ I . If x1 = y1, then a— x1 —b
is a path of length 2. So assume that x1 6= y1. If x1 y1 ∈ I , then a— x1 — y1 —b is a path
of length 3. If x1 y1 ∉ I , then 〈x1〉∩〈y1〉* I . Now for each c ∈ 〈x1〉∩〈y1〉− (I ∪ {a2,b2}),
we have ca2 ∈ 〈c〉〈a2〉 ⊆ 〈x1〉〈a2〉 ⊆ I and cb2 ∈ 〈c〉〈b2〉 ⊆ 〈y1〉〈b2〉 ⊆ I . Hence a— c—b is
a path of length 2.

Thus we conclude that ΓG
I (R) is connected and diam(ΓG

I (R))≤ 3.

Theorem 3.3. Let I be an ideal of a commutative ring R. If x—a— y is a path in ΓG
I (R), then

I ∪ {a1} is an ideal of R for some a1 ∈ 〈a〉− I or x—a— y lies on a cycle C i of ΓG
I (R) with length

i ≤ 4.

Proof. Suppose that x—a— y is a path in ΓG
I (R). Then there exists a1,a2 ∈ 〈a〉−I and x1 ∈ 〈x〉−I ,

y1 ∈ 〈y〉− I such that x1a1 ∈ I and y1a2 ∈ I . Consider the following cases:
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Case 1: If x′y′ ∈ I for some x′ ∈ 〈x〉− I and for some y′ ∈ 〈y〉− I , then C3 : x—a— y— x is a cycle
of length 3 and hence x—a— y lies on the cycle C3 of length 3.

Case 2: Let x′y′ ∉ I for all x′ ∈ 〈x〉 − I and for all y′ ∈ 〈y〉 − I . Suppose that a1 = a2. Then
I ∪ {a1} ⊆ [I : x1]∩ [I : y1]. If [I : x1]∩ [I : y1] = I ∪ {a1}, then I ∪ {a1} is an ideal of R.
Otherwise, there exists a z ∈ [I : x1]∩ [I : y1] such that z ∉ I ∪ {a1}. Then zx1 ∈ I and
zy1 ∈ I . Thus C4 : x—a— y— z— x is a cycle of length 4 and hence x—a— y lies on
the cycle C4 of length 4. Suppose that a1 6= a2. Then, we have 〈x1〉∩〈y1〉* I . Then for
each z ∈ 〈x1〉∩〈y1〉− I , we have za1 ∈ 〈x1〉〈a1〉 ⊆ I and za2 ∈ 〈y1〉〈a2〉 ⊆ I . Clearly, either
a1 6= a or a2 6= a. Without loss of generality assume that a1 6= a. Then x—a1 — y is a
path and C4 : x—a— y—a1 — x is a cycle of length 4, and hence x—a— y lies on the
cycle C4 of length 4.

Thus, we conclude that I ∪ {a1} is an ideal of R for some a1 ∈ a− I or x—a— y lies on a cycle C i

of ΓG
I (R) with length i ≤ 4.

The bound for the length of the cycle is sharp in Theorem 3.3, as the following example
shows.

Example 3.1. Consider the commutative ring R =Z2×Z4 and I = 〈(0,2)〉. Then the graph ΓG
I (R)

is as follows where a = (0,1), b = (1,0), c = (1,1), d = (0,3), e = (1,2) and f = (1,3). 
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We have I∪ {b1} is not an ideal of R for any b1 ∈ b− I and d —b—a does not lie on any cycle
of length 3.

Corollary 3.1. Let I be an ideal of a commutative ring R with |V (ΓG
I (R))| ≥ 3. If I ∪ {a} is not

an ideal of R for any a ∈ R− I , then every edge of ΓG
I (R) lies on a cycle C i of ΓG

I (R) with length
i ≤ 4 and ΓG

I (R) is a union of 3-cycles or 4-cycles.

Proof. Suppose that I∪ {a} is not an ideal of R for any a ∈ R− I . Since |V (ΓG
I (R))| ≥ 3, the graph

ΓG
I (R) contains at least three vertices. Since ΓG

I (R) connected, every path of ΓG
I (R) of length 2

lies on a cycle C i of ΓG
I (R) with length i ≤ 4 by Theorem 3.3. Thus every edge of ΓG

I (R) lies on a
cycle C i of ΓG

I (R) with length i ≤ 4 and hence ΓG
I (R) is a union of 3-cycles or 4-cycles.

Theorem 3.4. Let I be an ideal of a commutative ring R with |V (ΓG
I (R))| ≥ 3. If I∪ {a} is not an

ideal of R for any a ∈ R− I , then every pair of vertices in ΓG
I (R) lies on a cycle C i of ΓG

I (R) with
length i ≤ 6.
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Proof. Suppose that I ∪ {a} is not an ideal of R for any a ∈ R − I . Since |V (ΓG
I (R))| ≥ 3, the

graph ΓG
I (R) contains at least three vertices. Let x, y be any two distinct vertices of ΓG

I (R).
If x— y is an edge of ΓG

I (R), then x— y lies on a cycle C i of ΓG
I (R) with length i ≤ 4 by

Corollary 3.1. If x—a— y is a path in ΓG
I (R), then x—a— y lies on a cycle C i of ΓG

I (R) with
length i ≤ 4 by Theorem 3.3. If x—a—b— y is a path in ΓG

I (R), then we have the cycles
x—a—b— c— x and y—b—a—d — y, where c 6= a and d 6= b by Theorem 3.3. This implies
C6 : x—a—d — y—b— c— x is a cycle of length 6 in ΓG

I (R). Thus every pair of vertices in ΓG
I (R)

lies on a cycle C iof ΓG
I (R) with length i ≤ 6.

Theorem 3.5. Let I be an ideal of a commutative ring R. If ΓG
I (R) has a cycle, then any cycle

C i of length i ≥ 5 is not an induced subgraph of ΓG
I (R) and gr(ΓG

I (R))≤ 4.

Proof. Suppose that ΓG
I (R) has a cycle C i : x1 — x2 — x3 — x4 — x5 — · · · — xi — x1 of length i ≥ 5

which is an induced subgraph of ΓG
I (R). Then x1 — x2 — x3 is a path which lies on a cycle C i of

ΓG
I (R) with length i ≥ 5. Thus I ∪ {x′2} is an ideal of R for some x′2 ∈ x2− I by Theorem 3.3. Since

x4 — x5 is an edge there exists x′4 ∈ 〈x4〉− I and x′5 ∈ 〈x5〉− I such that x′4x′5 ∈ I . Since I ∪ {x′2}
is an ideal, we have x′2x′4 = x′2 = x′2x′5. Thus x′2(x′4x′5) ∈ I . This implies (x′2x′4)x′5 ∈ I . This implies
x′2x′5 ∈ I . This implies x′2 ∈ I , which is a contradiction. Thus any cycle C i of length i ≥ 5 is not an
induced subgraph of ΓG

I (R), and hence gr(ΓG
I (R))≤ 4.

Remark 3.1. Let I be an ideal of a commutative ring R. Then ΓG
I (R) cannot be realized as a

cycle C i of length i ≥ 5 by Theorem 3.5.

Theorem 3.6. Let I be an ideal of a commutative ring R. Then the following results hold:

(i) if R is a commutative ring with unity, then ΓG
I (R) has no cut vertices;

(ii) if R is a commutative ring without unity and I is a nonzero ideal of R, then ΓG
I (R) has no

cut vertices.

Proof. Suppose that the vertex u of ΓG
I (R) is a cut vertex. Let a—u—b be a path in ΓG

I (R).
Since u is a cut vertex, u lies in every path connecting a and b.

(i) Suppose that R is a commutative ring with unity. Then for any a, c ∈ V (ΓG
I (R)), there

exists a path a—1—b in ΓG
I (R). Thus u ( 6= 1) is not a cut vertex of ΓG

I (R). Suppose that u = 1.
Then there exists a1 ∈ 〈a〉− I , b1 ∈ 〈b〉− I and x1, x2 ∈ R − I such that a1x1 ∈ I and b1x1 ∈ I ,
which shows that a1,b1 ∈ V (ΓI(R)). Since ΓI(R) is connected, there exists y1, y2 ∈ R− (I ∪ {u})
such that a1 — y1 —b1 or a1 — y1 — y2 —b1 is a path in ΓI(R) by Theorem 2.2. This implies
a— y1 —b—1—a or a— y1 — y2 —b—1—a is a cycle in ΓG

I (R), which contradicts that u = 1 is
a cut vertex.

(ii) Suppose that R is a commutative ring without unity and I is a nonzero ideal of R. Since
a—u—b is a path from a to b, there exists a1 ∈ 〈a〉− I , b1 ∈ 〈b〉− I and u1,u2 ∈ 〈u〉− I such
that a1u1 ∈ I and b1u2 ∈ I .

Case 1: Suppose that u1 = u2. If a1+I = u1+I , then a1b1 ∈ I . This implies a and b are adjacent.
If u2 + I = b1 + I , then a1b1 ∈ I . This implies a and b are adjacent. So assume that
a1 + I 6= u1 + I and u2 + I 6= b1 + I . Since I is nonzero, there is a i ∈ I such that i 6= 0.
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Since a1u1 ∈ I and b1u2 ∈ I , then it implies that a1(u1 + i),b1(u1 + i) ∈ I . If u = u1 + i,
then u 6= u1. Thus we have a—u1 —b is a path in ΓG

I (R). Otherwise a—(u1+ i)—b is
a path in ΓG

I (R). Therefore, there is a path from a to b that is not passing throw u,
which is a contradiction.

Case 2: Suppose that either u1 = u or u2 = u. Without loss of generality assume that u1 = u
and u2 6= u. Then a1u ∈ I and b1u2 ∈ I . This implies that a1u2 ∈ I and b1u2 ∈ I . Thus
a—u2 —b is a path in ΓG

I (R). Therefore, there is a path from a to b that is not passing
through u, which is a contradiction.

Case 3: Suppose that u1 6= u and u2 6= u such that u1 6= u2. If u1u2 ∈ I , then a—u1 —u2 —b is a
path in ΓG

I (R). Therefore, there is a path from a to b that is not passing throw u, which
is a contradiction. Otherwise, we have u1u2 ∉ I . If u1u2 = u, then a1u ∈ I and b1u ∈ I .
If a1 + I = u+ I , then a1b1 ∈ I . This implies a and b are adjacent. If u+ I = b1 + I ,
then a1b1 ∈ I . This implies a and b are adjacent. So assume that a1 + I 6= u+ I and
u+ I 6= b1 + I . Since I is nonzero, there is a i ∈ I such that i 6= 0. Since a1u ∈ I and
b1u ∈ I , then it implies that a1(u+ i), b1(u+ i) ∈ I . Then u+ i ∉ I and u 6= u+ i. Thus
we have a—(u+ i)—b is a path in ΓG

I (R). Therefore there is a path from a to b that
is not passing through u, which is a contradiction. If u1u2 6= u. Then a—u1u2 —b is
a path in ΓG

I (R). Therefore, there is a path from a to b that is not passing through u,
which is a contradiction.

Thus u can not be a cut vertex of ΓG
I (R).

Recall that, the core of a graph G is the union of all cycles of G.

Theorem 3.7. Let I be an ideal of a commutative ring R. If ΓG
I (R) has a cycle, then the core K

of ΓG
I (R) is a union of 3-cycles or 4-cycles. Moreover, any vertex in ΓG

I (R) is either a vertex of the
core K of ΓG

I (R) or is an end vertex of ΓG
I (R).

Proof. Suppose that ΓG
I (R) has a cycle. Then any cycle C i of length i ≥ 5 is not an induced

subgraph of ΓG
I (R) and gr(ΓG

I (R))≤ 4 by Theorem 3.5. Thus the core K of ΓG
I (R) is a union of

3-cycles or 4-cycles.
For the second statement we assume that |V (ΓG

I (R))| ≥ 3. Let u be any vertex of ΓG
I (R). Then

we have the followings and one of them is true.

Case 1: u is in the core K of ΓG
I (R).

Case 2: u is an end vertex of ΓG
I (R).

Case 3: a—u—b is a path in ΓG
I (R), where a is an end vertex, u ∉ K and b ∈ K .

Case 4: a—u—v—b or a—v—u—b is a path in ΓG
I (R), where a is an end vertex, u,v ∉ K

and b ∈ K .

In Cases 1 and 2, there is nothing to prove.
Suppose that Case 3 holds. Assume that a—u—b is a path in ΓG

I (R), where a is an end
vertex, u ∉ K and b ∈ K . Then, I∪{u1} is an ideal of R for some u1 ∈ 〈u〉−I by Theorem 3.3. Since
b ∈ K we have u—b— c—d —b or u—b— c—d — e—b is a path in ΓG

I (R). Then c1d1 ∈ I for
some c1 ∈ 〈c〉− I and for some d1 ∈ 〈d〉− I . Since I ∪ {u1} is an ideal of R, we have u1c1 = u1.
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Thus u1(c1d1) ∈ I . This implies (u1c1)d1 ∈ I . This implies u1d1 ∈ I . Thus u is a vertex of the
cycle u—b— c—d —u, which is a contradiction.

Suppose that Case 4 holds. Without loss of generality assume that a—u—v—b is a path in
ΓG

I (R), where a is an end vertex, u,v ∉ K and b ∈ K . Since b ∈ K , there is some c ∈ K such that
c 6= b and b— c lies on a cycle C i of ΓG

I (R) with length i ≤ 4. Then we have a—u—v—b— c is
a path in ΓG

I (R). Since diam(ΓG
I (R))≤ 3, we have v— c or u— c is an edge. If v— c is an edge,

then v ∈ K . Then u ∈ K by Case 3. Thus we get a contradiction. Again if u— c is an edge, then
u—v—b— c—u is a cycle. Thus u,v ∈ K , a contradiction.
Hence any vertex in ΓG

I (R) is either a vertex of the core K of ΓG
I (R) or is an end vertex of

ΓG
I (R).

Corollary 3.2. Let I be an ideal of a commutative ring R. If R has unity with |V (ΓG
I (R))| ≥ 3 or

if R has no unity and I is a nonzero ideal of R with |V (ΓG
I (R))| ≥ 3, then ΓG

I (R)= K , where K is
the core of ΓG

I (R).

Proof. Suppose that R has unity with |V (ΓG
I (R))| ≥ 3. Then ΓG

I (R) has no cut vertices by
Theorem 3.6(i), and hence ΓG

I (R) has no end vertex. Then every vertex of ΓG
I (R) is a vertex of

the core K of ΓG
I (R) by Theorem 3.7. Thus ΓG

I (R)= K . Next, suppose that R has no unity and I
is a nonzero ideal of R with |V (ΓG

I (R))| ≥ 3. Then ΓG
I (R) has no cut vertices by Theorem 3.6(ii),

and hence ΓG
I (R) has no end vertex. Then every vertex of ΓG

I (R) is a vertex of the core K of
ΓG

I (R) by Theorem 3.7. Thus ΓG
I (R)= K .

4. Complete Bipartite Graph
We have ΓG

I (R) is an empty graph if and only if I is a nonzero prime ideal of R. In this section,
we examine certain situations when ΓG

I (R) is a complete bipartite graph.

Theorem 4.1. Let I be a semi prime ideal of a commutative ring R. If ΓG
I (R) is a complete

bipartite graph then there exists prime ideals P and Q of R such that I = P ∩Q.

Proof. Suppose that ΓG
I (R) is a complete bipartite graph with partitions C and D. Suppose that

V1 = {x ∈ C is vertex of ΓG
I (R) | xy ∈ I for each y ∈ D} and V2 = {y ∈ D is vertex of ΓG

I (R) | xy ∈ I
for each x ∈ C}. Clearly, V1 and V2 are non-empty sets and V1∩ I =V2∩ I =;. Let P =V1∪ I and
Q =V2 ∪ I . Then I = P ∩Q. We need to show that P and Q are prime ideals of R.

First we show P is a prime ideal of R. Let x, y ∈ P .

Case 1: If x, y ∈ I , then x− y ∈ I and hence x− y ∈ P .

Case 2: If x, y ∈V1, then for any z ∈V2, we have xz ∈ I and yz ∈ I . Clearly, z ∉ I . Then (x−y)z ∈ I .
If x− y ∈ I , then x− y ∈ P . Suppose that x− y ∉ I . We have x− y ∉ V2 and x− y 6= z.
Otherwise, if x− y ∈V2 or x− y= z, then due to (x− y)z ∈ I we get a contradiction. Now
(x− y)z ∈ I with x− y ∉ I and z ∉ I . Thus x− y ∈ C and z ∈ D. Therefore, x− y ∈V1, and
hence x− y ∈ P .

Case 3: Suppose that x ∈V1 and y ∈ I . Then x− y ∉ I and for any z ∈V2 we have xz ∈ I . Clearly,
z ∉ I . Then (x− yz) ∈ I . We have x− y ∉V2 and x− y 6= z. Now (x− y)z ∈ I with x− y ∉ I
and z ∉ I . Thus x− y ∈ C and z ∈ D. Therefore x− y ∈V1, and hence x− y ∈ P .
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Now suppose that r ∈ R and x ∈ P .

Case 1: If x ∈ I , then rx ∈ I and hence rx ∈ P .

Case 2: If x ∈V1, then for any z ∈V2 we have zx ∈ I . So (rx)z ∈ I . If rx ∈ I , then rx ∈ P . Suppose
that rx ∉ I . Clearly, z 6= rx. Then (rx)z ∈ I with rx ∉ I and z ∉ I . Thus rx ∈ C and z ∈ D.
Therefore rx ∈V1 and hence rx ∈ P .

Thus P is an ideal of R.
We now prove that P is a prime ideal of R. Let x, y ∈ R with xy ∈ P and x, y ∉ P . Since

P =V1∪ I , we have xy ∈V1 or xy ∈ I . So in both the cases, for any z ∈V2 we have (xy)z ∈ I . Thus
x(yz) ∈ I . If yz ∈ I , then by the definition of ΓG

I (R), y ∈ V1, which is a contradiction. Hence yz ∉ I
and so yz ∈V1. Therefore (yz)z ∈ I . This implies yz2 ∈ I . Since I is semi prime, we have z2 ∉ I .
Hence z2 ∈V2. So y ∈V1, and hence y ∈ P , a contradiction. Therefore P is a prime ideal of R.
Proceeding in the same manner we can show that Q is also a prime ideal of R.

The following example shows that in Theorem 4.1, the converse is not true in general.

Example 4.1. Consider the ring R = Z2 ×Z4. Then I = 〈(0,2)〉 is a semi prime ideal of R.
Consider the prime ideals P = 〈(0,1)〉 and Q = 〈(1,2)〉. Then, we have I = P ∩Q. But the graph
ΓG

I (R) is not complete bipartite, where a = (0,1), b = (1,0), c = (1,1), d = (0,3), e = (1,2) and
f = (1,3).  
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Γ�
�(R) Figure 5. ΓG

1 (R)

The following example shows that the Theorem 4.1 will fail if I is not a semi prime ideal.

Example 4.2. Consider the commutative ring R =
{[

0 0
a 0

]∣∣∣a ∈Z4

}
. Then I =

{[
0 0
0 0

]
,
[
0 0
2 0

]}
is an ideal of R and I is not semi prime. Then ΓG

I (R) is K1,1, but I cannot be written as

the intersection of two prime ideals. The graph ΓG
I (R) is as follows, where A =

[
0 0
1 0

]
and

B =
[
0 0
3 0

]
. 

 

  

 

 

 

 

 

Fig. 4.2 

A B 

       Γ�
�(R)

Type equation here

Figure 6. ΓG
1 (R)
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5. Conclusion
In this paper, we have defined a generalized zero-divisor graph ΓG

I (R) of a commutative ring
R with respect to an ideal I and have discussed some basic properties of ΓG

I (R). This chapter
is just an opening for making a bridge of generalization of zero-divisor graph. The study of
connectedness, cut vertices of this generalized graph will develop many ring-theoretic concepts.
We have also investigated some properties of prime and semi-prime ideals when ΓG

I (R) is a
complete bipartite graph.
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