Some Combinatorial Identities of q-Harmonic and q-Hyperharmonic Numbers

Can Kızılateş 1 and Naim Tuglu 2

1 Department of Mathematics, Bülent Ecevit University, Zonguldak, Turkey
2 Department of Mathematics, Gazi University, Ankara, Turkey

*Corresponding author: cankizilates@gmail.com

Abstract. In this paper, by means of q-difference operator we derive q-analogue for several well known results for harmonic numbers. Also we give some identities concerning q-hyperharmonic numbers.

Keywords. Harmonic numbers; hyperharmonic numbers; q-harmonic numbers; q-hyperharmonic numbers; q-difference operator

MSC. 05A19; 05A30; 11B65

Received: November 23, 2015 Accepted: December 8, 2015

1. Introduction

The classical harmonic numbers are defined by for $n \in \mathbb{N}$

$$H_n = \sum_{k=1}^{n} \frac{1}{k},$$

and $H_0 = 0$. They have interesting applications in many areas, such as, number theory, combinatorics and analysis of algorithms. These numbers have been studied extensively.

In [1], for $n \geq 1$ some properties are following:

$$\sum_{k=1}^{n-1} H_k = n(H_n - 1), \quad (1.1)$$
Some Combinatorial Identities of q-Harmonic and q-Hyperharmonic Numbers: C. Kızılateş and N. Tuglu

\[\sum_{k=1}^{n-1} kH_k = \frac{n^2}{2} \left(H_n - \frac{1}{2} \right), \]
(1.2)

\[\sum_{k=m}^{n-1} \binom{k}{m} H_k = \binom{n}{m+1} \left(H_n - \frac{1}{m+1} \right), \]
(1.3)

where $n^2 = n(n - 1)$ and m is nonnegative integer.

In [2], Spivey proved some combinatorial identities related to harmonic numbers via finite differences. In [3], Chu studied finite and infinite series involving the classical harmonic numbers. The harmonic numbers and their generalizations have been studied in several papers; among other references, see [4-6,17-21]. For example in [4], Choi presented further identities about certain interesting finite series associated with binomial coefficients, harmonic numbers and generalized harmonic numbers. In [5], Conway and Guy defined hyperharmonic number of order r, $H_n^{(r)}$, for $n, r \geq 1$ by the following recurrence relations:

\[H_n^{(r)} = \frac{1}{n} \sum_{k=1}^{n} H_k^{(r-1)}, \]

where $H_n^{(0)} = \frac{1}{n}$ and if $n \leq 0$ or $r < 0$, $H_n^{(r)} = 0$.

In [6], Benjamin et al. gave some combinatorics properties of hyperharmonic numbers by taking repeated partial sums of the harmonic numbers. In [21], Bahşi and Solak defined a special matrix whose entries are hyperharmonic numbers and gave some properties of this matrix via hyperharmonic numbers. Recently, in [22], Tuglu et al. defined harmonic and hyperharmonic Fibonacci numbers. Moreover they gave some combinatorial identities for the harmonic Fibonacci numbers by using the difference operator. Now we briefly summarize basic properties of q-calculus. Let n be a positive integer and $q \in (0, 1)$. The q-integer $[n]_q$ and q-factorial $[n]_q!$ are respectively defined by

\[[n]_q = \frac{1-q^n}{1-q} = 1 + q + q^2 + \ldots + q^{n-1}, \]

\[[n]_q! = \begin{cases} 1 & \text{if } n = 0, \\ [n]_q[n-1]_q[\ldots][1]_q & \text{if } n = 1,2,\ldots. \end{cases} \]

The q-binomial coefficients $\binom{n}{k}_q$ is given by

\[\binom{n}{k}_q = \frac{[n]_q!}{[n-k]_q! [k]_q!}; \quad 1 \leq k \leq n \]

with $\binom{0}{0}_q = 1$ and $\binom{n}{k}_q = 0$ for $n < k$ [7]. The well known q-analogue of Pascal’s rule are following:

\[\binom{n}{j}_q = \binom{n-1}{j}_q + q^j \binom{n-1}{j-1}_q \]

\[\binom{n}{j}_q = \binom{n-1}{j}_q + q^{n-j} \binom{n-1}{j-1}_q. \]
For more details and properties related to q-calculus we refer to [7,8].

q-analogues of H_n are given by Dilcher, for $n \geq 0$

$$H_n(q) = \sum_{j=1}^{n} \frac{1}{[j]_q}$$

and

$$\tilde{H}_n(q) = \sum_{j=1}^{n} \frac{q^j}{[j]_q}$$

where $H_0(q) = \tilde{H}_0(q) = 0$ (see [9]).

Many authors investigated q-harmonic numbers in various aspects [10–14, 23]. In [10], Mansour et al. examined q-analog of certain previously established combinatorial identities. In [11], Mansour derived q-analogue of harmonic number sums by using partial fraction approach. In [12], Mezö studied three different q-analogue of classical harmonic numbers. In [13], Chu and Yan derived several interesting identities concerning q-harmonic numbers by using the q-finite differences and derivative operator.

Recently in [14], Mansour and Shattuck defined q-analogue of the hyperharmonic numbers as follows:

$$H_n^{(r)}(q) = \sum_{t=1}^{n} q^t H_n^{(r-1)}(q)$$

where $H_n^{(0)}(q) = \frac{1}{q[n]_q}$. For $r = 1$ it will be seen that

$$\tilde{H}_n(q) = qH_n^{(1)}(q). \quad (1.4)$$

They considered a q-analogue of the hyperharmonic numbers and gave some combinatorics properties of these numbers.

The Carlitz-Gould q-difference operator is defined by

$$\Delta_q^1 f(x) = f(x+1) - f(x)$$

and

$$\Delta_q^{n+1} f(x) = \Delta_q^n f(x+1) - q^n \Delta_q^n f(x),$$

[15]. q-difference operator has very interesting property. For example in [16],

$$\Delta_q^\frac{m}{q} x^m = q^{x+1-m} [m]_q [x]_q^{m-1}$$

where $[x]_q = [x]_q [x-1]_q \ldots [x-m+1]_q$. The inverse of q-difference operator is defined by

$$\Delta_q^{-1} f(k)|_0^n = \sum_{k=0}^{n} f(x) \delta_q x = \sum_{k=0}^{n-1} f(k)$$
Some Combinatorial Identities of q-Harmonic and q-Hyperharmonic Numbers: C. Kızılateş and N. Tuglu

[15]. Since definition of q-difference operator, we can easily obtain

\[\sum q^x [x]^m_q \delta_q x = q^m [x]^m+1_q (m + 1)_q, \quad (1.5) \]

\[\sum_{k=0}^{n-1} q^k [k]^m_q \tilde{H}_k(q) = \frac{[n]^m+1_q}{(m + 1)_q} \left(q^m \tilde{H}_n(q) - \frac{q^{2m+1}}{(m + 1)_q} \right). \quad (2.1) \]

Proof. Let \(u_q(k) = \tilde{H}_k(q) \) and \(\Delta_q v_q(k) = q^k [k]^m_q \) be in (1.6). Definition of q-difference operator and (1.5), \(\Delta_q u_q(k) = \frac{q^{k-1}}{(k + 1)_q} \) and \(v_q(k) = q^m [k]^m+1_q (m + 1)_q \). Then by using the equation (1.6),

\[\sum_{k=0}^{n-1} q^k [k]^m_q \tilde{H}_k(q) = q^m \frac{[n]^m+1_q}{(m + 1)_q} \tilde{H}_n(q) - \frac{q^{m+1}}{(m + 1)_q} \sum_{k=0}^{n-1} q^k [k]^m_q \delta_q k \]

\[= q^m \frac{[n]^m+1_q}{(m + 1)_q} \tilde{H}_n(q) - \frac{q^{m+1}}{(m + 1)_q} \left(\frac{q^m [k]^m+1_q (m + 1)_q}{0} \right) \]

\[= \frac{[n]^m+1_q}{(m + 1)_q} \left(q^m \tilde{H}_n(q) - \frac{q^{2m+1}}{(m + 1)_q} \right). \]

Corollary 2.2. For \(n \geq 1 \), we have

\[\sum_{k=0}^{n-1} q^k \tilde{H}_k(q) = [n]_q (\tilde{H}_n(q) - q). \quad (2.1) \]

Proof. By putting \(m = 0 \) in Theorem 2.1 one has

\[\sum_{k=0}^{n-1} q^k \tilde{H}_k(q) = [n]_q (\tilde{H}_n(q) - q). \]

Remark 2.3. Setting \(q = 1 \) in (2.1), we obtain equation (1.1).

Corollary 2.4. For \(n \geq 1 \), we have

\[\sum_{k=0}^{n-1} q^k [k]_q \tilde{H}_k(q) = \frac{[n]_q^2}{[2]_q} \left(q \tilde{H}_n(q) - \frac{q^3}{[2]_q} \right). \quad (2.2) \]
Theorem 2.6. The following theorems are related to\[q\]-identities, which are easier to calculate than according to equation (2.4).

Remark 2.5. Setting \(q = 1\) in (2.2), we obtain equation (1.2).

Mansour and Shattuck proved following theorem by using \(q\)-partial fraction methods (14). Now we give another proof for this theorem by using the \(q\)-difference operator.

Theorem 2.6. If \(0 \leq m \leq k\), then

\[
\sum_{k=m}^{n-1} q^{k-m} \binom{k}{m} \tilde{H}_k(q) = \binom{n}{m+1} \left[\tilde{H}_n(q) - \frac{q^{m+1}}{[m+1]_q} \right].
\]

Proof. Let \(u_q(k) = \tilde{H}_k(q)\) and \(\Delta_q u_q(k) = q^{k-m} \binom{k}{m}_q\) be in (1.6). From the definition of \(q\)-difference operator, \(\Delta_q u_q(k) = q^{k+1} \binom{k+1}{m+1}_q\) and \(v_q(k) = \binom{k}{m+1}_q\). Then by using the equation (1.6), we have

\[
\sum_{k=m}^{n-1} q^{k-m} \binom{k}{m} \tilde{H}_k(q) = \binom{n}{m+1} \tilde{H}_n(q) - \frac{q^{m+1}}{[m+1]_q} \sum_{k=m}^{n-1} q^{k-m} \binom{k}{m}_q
\]

\[
= \binom{n}{m+1} \tilde{H}_n(q) - \frac{q^{m+1}}{[m+1]_q} \binom{n}{m+1}_q
\]

Remark 2.7. Setting \(q = 1\) in (2.3), we obtain equation (1.3).

Definition of \(q\)-hyperharmonic numbers, for \(r = 2\) it will be seen that

\[
H_n^{(2)}(q) = \sum_{l=1}^{n} q^l \sum_{j=1}^{l} \frac{q^{j-1}}{[j]_q}
\]

The following theorems are related to \(H_n^{(2)}(q)\). These theorems contains some combinatorial identities, which are easier to calculate than according to equation (2.4).

Theorem 2.8. For \(0 \leq m \leq k\), we have

\[
\sum_{k=0}^{n-1} q^{k} \binom{k}{m}_q H_k^{(2)}(q) = \frac{q^{m}}{[m+1]_q} \left[n \frac{m+1}{[m+1]_q} H_n^{(2)}(q) - \frac{q^{m+1}}{[m+2]_q} \left(\tilde{H}_{n+1}(q) - \frac{q^{m+2}}{[m+2]_q} \right) \right].
\]

Proof. Let \(u(k) = H_k^{(2)}(q)\) and \(\Delta_q u(k) = q^k \binom{k}{m}_q\) be in (1.6). Then we obtain \(\Delta_q u(k) = q^k \tilde{H}_{k+1}(q)\) and \(v(k) = q^m \binom{k+1}{m+1}_q\). By using the equation (1.6), we obtain

\[
\sum_{k=0}^{n-1} q^{k} \binom{k}{m}_q H_k^{(2)}(q) = q^{m} \frac{m+1}{[m+1]_q} H_n^{(2)}(q) - \frac{q^{m-1}}{[m+1]_q} \sum_{o} q^{k-1} \binom{k+1}{m+1}_q \tilde{H}_{k+1}(q) \delta_q k
\]
\[q^m \left[\frac{[n]_q^{m+1}}{[m+1]_q} \right] H_n^{(2)}(q) - q^{m-1} \left[\frac{[n+1]_q^{m+2}}{[m+1]_q} \right] \tilde{H}_{n+1}(q) - \frac{q^{m+3} [n+1]_q^{m+2}}{[m+2]_q^2} \]

\[= \frac{q^m}{[m+1]_q} \left[n^{-1} \frac{[n+1]_q^{m+2}}{[m+1]_q} \tilde{H}_{n+1}(q) - \frac{q^{m+2} [n+1]_q^{m+2}}{[m+2]_q^2} \right]. \]

Corollary 2.9. For \(n \geq 1 \), we have

\[\sum_{k=0}^{n-1} q^k H_k^{(2)}(q) = [n]_q H_n^{(2)}(q) - \frac{[n+1]_q^2}{[2]_q} \left(\tilde{H}_{n+1}(q) - \frac{q^2}{[2]_q} \right). \]

Proof. By putting \(m = 0 \) in Theorem 2.8, we obtain

\[\sum_{k=0}^{n-1} q^k H_k^{(2)}(q) = [n]_q H_n^{(2)}(q) - \frac{[n+1]_q^2}{[2]_q} \left(\tilde{H}_{n+1}(q) - \frac{q^2}{[2]_q} \right). \]

Corollary 2.10. For \(n \geq 1 \), we have

\[\sum_{k=0}^{n-1} q^k H_k^{(2)}(q) = [n]_q H_n^{(2)}(q) - \frac{q [n+1]_q^2}{[2]_q} \left(H_{n+1}^{(1)}(q) - \frac{q}{[2]_q} \right). \]

Proof. The proof is trivial from the (1.4).

Corollary 2.11. For \(n \geq 1 \), we have

\[H_{n-1}^{(3)}(q) = [n]_q H_n^{(2)}(q) - \frac{q [n+1]_q^2}{[2]_q} \left(H_{n+1}^{(1)}(q) - \frac{q}{[2]_q} \right). \tag{2.5} \]

Proof. The proof is trivial from the definition of \(q \)-hyperharmonic numbers.

Setting \(q = 1 \) in (2.5), we obtain

\[H_{n-1}^{(3)} = nH_n^{(2)} - \frac{(n+1)^2}{2} \left(H_{n+1} - \frac{1}{2} \right). \]

A \(q \)-analogue of hyperharmonic numbers can be expressed with the following conjecture.

Conjecture 2.12. For \(n \geq 1 \),

\[H_{n-1}^{(r+1)}(q) = (-1)^r \frac{q(r)_q^{r+1}}{[r]_q} \binom{n+r-1}{r} q^{r-1} \sum_{j=0}^{r-1} (-1)^j q^{j+1} \binom{n+j}{j+1} q^{j+1} H_{n+j}(q). \]

Theorem 2.13. For \(n \geq 1 \), we have

\[\sum_{k=m}^{n-1} \binom{k}{m} \frac{q_m}{H_k^{(2)}(q)} = \binom{n}{m+1} H_n^{(2)}(q) - q^{m+1} \binom{n+1}{m+2} H_{n+1}^{(1)}(q) - \frac{q^{m+1}}{[m+2]_q}. \tag{2.6} \]
Some Combinatorial Identities of \(q\)-Harmonic and \(q\)-Hyperharmonic Numbers: C. Kızılateş and N. Tuglu

Proof. Let \(u_q(k) = H_n^{(2)}(q)\) and \(\Delta_q v_q(k) = q^k \binom{m}{k} \) be in (1.6). Then we have \(\Delta_q u_q(k) = q^k \tilde{H}_{k+1}(q)\) and \(v_q(k) = \binom{k+1}{m+1} \). From (1.6), one has

\[
\sum_{k=m}^{n-1} q^{k-m} \binom{k}{m} H_k^{(2)}(q) = \binom{n}{m+1} H_n^{(2)}(q) - \sum_{k=m}^{n-1} q^k \binom{k+1}{m+1} \tilde{H}_{k+1}(q) \delta_q k
\]

\[
= \binom{n}{m+1} H_n^{(2)}(q) - q^m \sum_{k=m}^{n-1} q^{k-m} \binom{k+1}{m+1} \tilde{H}_{k+1}(q)
\]

\[
= \binom{n}{m+1} H_n^{(2)}(q) - q^m \left(\binom{n+1}{m+2} \tilde{H}_{n+1}(q) - \frac{q^{n+2}}{[m+2]_q} \binom{n+1}{m+2} \right)
\]

\[
= \binom{n}{m+1} H_n^{(2)}(q) - q^{m+1} \left(\binom{n+1}{m+2} \tilde{H}_{n+1}^{(1)}(q) - \frac{q^{n+1}}{[m+2]_q} \right). \tag*{\Box}
\]

Remark 2.14. Setting \(q = 1\) in (2.6), one has

\[
\sum_{k=m}^{n-1} \binom{k}{m} H_k^{(2)} = \binom{n}{m+1} H_n^{(2)} - \left(\binom{n+1}{m+2} H_{n+1} - \frac{1}{m+2} \right),
\]

where \(H_{n+1}\) is \((n+1)^{th}\) ordinary harmonic numbers.

3. Conclusion

In this paper, we studied some combinatorial identities of \(q\)-harmonic and \(q\)-hyperharmonic numbers by using the \(q\)-difference operator. On the other hand in [24], \(p, q\)-binomial coefficients is defined by

\[
\binom{n}{k}_{pq} = \frac{[n]_{pq}!}{[n-k]_{pq}! - [k]_{pq}!},
\]

where \([n]_{pq} = \frac{p^n - q^n}{p - q}\) and \([n]_{pq}! = [n]_{pq}[n-1]_{pq} \cdots [1]_{pq}\). It would be interesting study some combinatorial properties of \(p, q\)-harmonic and \(p, q\)-hyperharmonic numbers of order \(r\) by using the \(p, q\)-difference operator and research their properties.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

Some Combinatorial Identities of q-Harmonic and q-Hyperharmonic Numbers: C. Kızılateş and N. Tuglu

