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detail.
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1. Introduction
We come across several works on convection in Newtonian nanofluids that are not ferromagnetic
in nature like Chamkha et al. [6], Agarwal and Bhadauria [1], Buongiorno [5], Kim et
al. [11], Oztop and Abu-Nada [16], Putra et al. [17], Siddheshwar et al. [23], Siddheshwar
and Meenakshi [22], and Tzou [25,26] and references cited therein. Chamkha et al. [6] explores
the literature on MHD convection of nanofluids in various geometries and presents the available
physical properties in the paper. The non-linear thermal stability of a horizontal layer in a
nanofluid which incorporates the effect of Brownian motion with thermophoresis can be seen in
the works of Agarwal and Bhadauria [1], and Tzou [25,26]. Buongiorno [5] describes the effect of
thermophoresis in nanofluids mechanistically and develops a new correlation structure for heat
transfer. Kim et al. [11] describes the effect of nanoparticle addition on the convective instability
and concludes that the heat transfer coefficient of a nanofluid is enhanced by all parameters
with respect to the volume fraction of the nanoparticles. Oztop and Abu-Nada [16] deals with the
natural convection in partially heated rectangular enclosures filled with nanofluids and found
that aspect ratio is one of the parameter in enhancing heat transfer. Putra et al. [17] deals with
the natural convection of nanofluids in horizontal cylinder and investigates the dependence of
heat transfer enhancement on various parameters such as geometry, concentration and material
of the nanoparticles. Detailed discussion is made on the onset of convection and the amount of
heat transfer in Newtonian nanoliquids compared to that in the absence of nanoparticles by
Siddheshwar et al. [23], and Siddheshwar and Meenakshi [22].

Also, we can see many problems on convection in ferromagnetic liquids that does not involve
nanoparticles in it, e.g., Auernhammer and Brand [3], Alam et al. [2], Gotoh and Yamada [8],
Kaloni and Lou [10], Laroze et al. [13], Maruthamanikandan [14], Odenbach [15], Shivakumara
et al. [20], Siddheshwar and Abraham [21], Stiles and Kagan [24], Yamaguchi et al. [27] and
references cited therein. But there are very few works on convection which consists of both ferro
and nano, namely, Krauzina et al. [12], Sheikholeslami and Chamkha [18], Sheikholeslami [19]
in which the effect of variable viscosity has not been included.

In this paper, we consider the above type of problem, that is, convection in ferromagnetic
nanofluids using Lorenz model, under the effect of variable viscosity which depends on both
magnetic field as well as temperature. The linear stability analysis is carried out in the
current problem and the plots are drawn for the variation of Rnfs versus variable viscosity and
wavenumber. After the study of linear stability, we have also reached to the stage of Lorenz
model in both linear and nonlinear forms, of which the later enables us to determine the heat
transport in the forthcoming research works.

2. Mathematical Formulation
We consider a depth, d of ferro-nanofluid layer with nano-sized Fe3O4-magnetite particles
dispersed in the Newtonian system, parallel to the horizontal plane of large extent, subject to a
temperature gradient along z-axis and gravity acting in downward direction ( g⃗ =−gk̂).
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Figure 1. Physical configuration

We mainly focus on the study of two-dimensional flows only (independent of y), and
the viscosity considered in the problem is temperature and magnetic field dependent.
The magnetic fluid properties are assumed to be those of an electrically non-conducting
superparamagnet and the properties of nanofluids are extracted from the previous studies
(Brinkman model [4], Hamilton-Crosser model [9] and Mixture theory). H = H0k̂ is an external
magnetic field applied vertically along z-axis and H0 is the uniform magnetic field. The imposed
temperatures at the lower and upper boundaries are, Tz=0 = T0+∆T and Tz=d = T0, respectively.
Under the assumption of the Boussinesq approximation and small scale convective motions,
following are the equations, governing the current problem:

Equation of continuity:

∇· q⃗ = 0 (2.1)

Equation of momentum:

ρnf

[
∂q⃗
∂t

+ (q⃗ ·∇)q⃗
]

=−∇p+∇· (µnf (H⃗,T)(∇−→q +∇−→q Tr))+µ0(
−→
M ·∇)

−→
H − [ρnf − (ρβ)nf (T −T0)]gk̂ (2.2)

Equation of energy:
∂T
∂t

+ (q⃗ ·∇)T =αnf∇2T (2.3)

Maxwell’s equations:

∇·B = 0, ∇× H⃗ = 0, B =µ0(M⃗+ H⃗) (2.4)

Magnetic equation of state:

M⃗ = M0 +χm(H⃗−H0)−K(T −T0) (2.5)

where q⃗ is the velocity vector, t is the time, p is the pressure, µ0 is the magnetic permeability,
M is the magnetization, B is the magnetic induction, Tr is the transpose, M0 is the average
value of magnetization, K is the pyromagnetic coefficient and χm is the magnetic susceptibility.

Variable viscosity of nanofluid:

µnf (H⃗,T)=µ∗(H0,T0)[e−δT (Tb−T0)+δH (H⃗b−H0)], (2.6)
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where δT , δH > 0 are very small, µ∗(H0,T0) is the reference viscosity at H = H0 and T = T0.

The properties of ferro-nanofluids are obtained using the below:

Phenomenological laws:
µnf

µ f
= 1

(1−χ)2.5 (Brinkman model [4]) (2.7)

knf

k f
=

(
knp
k f

+2
)
−2χ

(
1− knp

k f

)
(

knp
k f

+2
)
+χ

(
1− knp

k f

) (Hamilton-Crosser model [9]) (2.8)

Mixture theory:

αnf =
knf

(ρCp)nf
,

ρnf

ρ f
= (1−χ)+χρnp

ρ f
,

(ρCp)nf

(ρCp) f
= (1−χ)+χ (ρCp)np

(ρCp) f
,

(ρβ)nf

(ρβ) f
= (1−χ)+χ (ρβ)np

(ρβ) f
, (2.9)

where µ f — variable viscosity, k f — thermal conductivity, ρ f — density, Cpf — heat capacity,
and β f — thermal expansion coefficient of the basefluid. Similarly, µnf , knf , ρnf , Cpnf , βnf

and µnp, knp, ρnp, Cpnp, βnp holds for nanofluid and nanoparticle respectively, αnf — thermal
diffusivity of nanofluid and χ — nanoparticle volume fraction.

Consider the solution of basic state in the below form:

q⃗b = (0,0), p = pb(z), ρ = ρb(z), g⃗ =−gk̂, H⃗b = Hb k̂, M⃗b = Mb k̂, Tb = T0 +∆T
(
1− z

d

)
. (2.10)

Using the above in Maxwell’s equation (2.4):

Hb(z)+Mb(z)= c, (2.11)

where c is the constant of integration.
Using equations (2.10) and (2.11) in magnetic equation of state (2.5) and solving for Hb and

Mb, we have

H⃗b =
[
H0 + K∆Tz

(1+χm)d

]
k̂, M⃗b =

[
M0 − K∆Tz

(1+χm)d

]
k̂, (2.12)

and consider the superimposed perturbed state in the below form:

q⃗ = q⃗b + q⃗′, p = pb + p′, ρ = ρb +ρ′, H⃗b = Hb k̂+ H⃗′, M⃗b = Mb k̂+ M⃗′, T = Tb +T ′. (2.13)

Now, we shall introduce stream function, ψ (due to consideration of two-dimensional flows) as
follows:

u′ =−∂ψ
∂z

, w′ = ∂ψ

∂x
, (2.14)

which satisfies the continuity equation (2.1).
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Eliminating the pressure in the equation of momentum and non-dimensionalizing the resulting
equation along with the energy equation, we have

1
Prnf

[
∂

∂τ
(∇2ψ)+ J(ψ,∇2ψ)

]
= Rnf M1a2J

(
θ,
∂ϕ

∂z

)
+a

[
f (z)∇4ψ+2

∂

∂z
( f (z))(∇2ψ)− ∂2

∂z2 ( f (z))
(
∂2ψ

∂x2 − ∂2ψ

∂z2

)]
+Rnf a2

[
(1+M1)

∂θ

∂x
−M1

∂2ϕ

∂x∂z

]
, (2.15)

∂θ

∂τ
= ∂ψ

∂x
+a∇2θ− J(ψ,θ). (2.16)

Non-dimensionalizing the magnetic equation of state and using the resultant in Maxwell’s
equation, we have

M3
∂2ϕ

∂x2 + ∂2ϕ

∂z2 − ∂θ

∂z
= 0, (2.17)

where

Prnf =
µnf

ρnfαnf
, is the nanofluid Prandtl number,

Rnf =
(ρβ)nl g∆Td3

αnlµnl
, is the nanofluid Rayleigh number,

M1 = µ0K2∆T
(ρβ)nl gd(1+χm)

, is the buoyancy magnetization parameter,

M3 =
(
1+M0

H0

)
(1+χm) , is the non-buoyancy magnetization parameter,

t, θ = dimensionless time and temperature respectively,

J(m,n)= ∂m
∂x

∂n
∂z

− ∂m
∂z

∂n
∂x , is the Jacobian,

∇2ψ= ∂2ψ

∂x2 + ∂2ψ

∂z2 , is the Laplacian,

a = ratio of thermal diffusivity of nanofluid to basefluid,

∇4ψ= ∂4ψ

∂x4 +2
∂4ψ

∂x2∂z2 + ∂4ψ

∂z4 ,

ϕ= magnetic scalar potential,
f (z)= e−V (1−z),

V =
(
δT − δHK

(1+χm)

)
∆T. (2.18)

Boundary conditions: We consider the following boundary conditions (Finlayson [7]):

θ =ψ= ∂2ψ

∂z2 = ∂ϕ

∂z
= 0, at z = 0 and 1. (2.19)
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3. Linear Stability Analysis
We shall assume the following solutions, which satisfies the aforesaid boundary conditions:

ψ(x, z)=ψ0 sin(κx)sin(πz), (3.1)

θ(x, z)= θ0 cos(κx)sin(πz), (3.2)

ϕ(x, z)=ϕ0 cos(κx)cos(πz), (3.3)

where κ is the wavenumber.
Using the solutions (3.1)-(3.3) in dimensionless equations (2.15)-(2.17), we arrive at

the stationary nanofluid Rayleigh number, Rnfs, for the onset of convection:

Rnfs =
2δ2(κ2M3 +π2)

κ2[κ2(1+M1)M3 +π2]
F(V ), (3.4)

where

F(V )= δ4V1 −2δ2V2 + (k2 −π2)V3, (3.5)

V1 =
∫ 1

0
f (z)sin2(πz)dz, (3.6)

V2 =
∫ 1

0

∂

∂z
[ f (z)]sin2(πz)dz, (3.7)

V3 =
∫ 1

0

∂2

∂z2 [ f (z)]sin2(πz)dz, (3.8)

and δ2 = (π2 +κ2).

4. Lorenz Model
As per the boundary condition (2.19), one can assume the functions as shown below:

ψ(x, z,τ)=−1
κ

a1(τ)sin(κx)sin(πz), (4.1)

θ(x, z,τ)= a2(τ)cos(κx)sin(πz)+a3(τ)sin(2πz), (4.2)

ϕ(x, z,τ)= a4(τ)cos(κx)cos(πz)+a5(τ)cos(2πz), (4.3)

where a1(τ), a2(τ), a3(τ), a4(τ) and a5(τ) are amplitudes of convection.
Using (4.1)-(4.3) in equations (2.15)-(2.17), we arrive at a system of ordinary differential

equations known as generalized Lorenz model for linear study:
1

2Prnf F(V )
a′

1(τ)=−aa1(τ)
δ2 − ra2a2(τ), (4.4)

a′
2(τ)=−aδ2a2(τ)−a1(τ), (4.5)

a′
3(τ)=−4aπ2a3(τ), (4.6)

where M13 = πκ2M1M3
π2+κ2(1+M1)M3

and r = Rnf
Rnfs

.

Lorenz model for non-linear study is as:
1

2Prnf F(V ) a
′
1(τ)=−aa1(τ)

δ2 − ra2a2(τ)(1−M13a3(τ)),

a′
2(τ)=−aδ2a2(τ)−a1(τ)−πa1(τ)a3(τ),

a′
3(τ)=−4aπ2a3(τ)+ π

2 a1(τ)a2(τ).

 (4.7)
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5. Results and Discussions
The variations of Rnfs has been plotted versus variable viscosity and wave number (see
Figures 2–4). Figures 2 and 3 show the variation of Rnfs with variable viscosity for variant
values of BMP and NBMP respectively and it is found that Rnfs decreases with increase in both
BMP and NBMP which in turn indicates the destabilization of the system and early onset of
convection.

Figure 2. Plot of Rnfs vs variable viscosity, V for variant values of BMP, M1

Figure 3. Plot of Rnfs vs variable viscosity, V for variant values of NBMP, M3

Figure 4 shows the variation of Rnfs with wavenumber for variant values of variable viscosity
and for the fixed values of BMP and NBMP. Positive values of variable viscosity parameter
means the superiority of temperatura dependent viscosity where as negative values of variable
viscosity parameter means the superiority of magnetic field dependent viscosity. From the graph
it is clear that as variable viscosity parameter increases, termal Rayleigh number decreases
thereby indicating the early onset of convection. Comparably, when temperaturea dependent
viscosity rules, there is an early onset of convection and when magnetic field dependent viscosity
rules, there is a delay in onset of convection. So, it becomes evident that variable viscosity
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parameter can be used to regulate the stabilization of the fluid system. Henceforth, one can
conclude that, the early onset of convection takes place in temperatura dominance viscosity
compared to magnetic-field dominance viscosity.

Figure 4. Plot of Rnfs vs wave number, κ for variant values of variable viscosity, V

In the absence of variable viscosity and magnetic field, V = 0 and M1, M3 = 0, respectively.
V = 0 implies F(V )= δ4

2 and M1, M3 = 0 implies M13 = 0, both when applied in the Lorenz model
of non-linear sort (4.4)-(4.6), reverts back to Classical Lorenz system.

Acknowledgement
Both the authors are grateful to Prof. P. G. Siddheshwar and BNM Institute of Technology,
Bengaluru (affiliated to VTU, Belagavi) for their research support. S. Rajashree thank the
Department of Collegiate Education, Government of Karnataka for research support. We also
wish to thank the reviewers for their comments.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] S. Agarwal and B. S. Bhadauria, Convective heat transport by longitudinal rolls in dilute

nanoliquids, Journal of Nanofluids 3(4) (2014), 380 – 390, DOI: 10.1166/jon.2014.1110.

[2] E. Md. M. Alam, S. Huq, Md. S. Uddin and M. M. Rahman, Effect of sinusoidal thermal boundary
condition on unsteady magnetohydrodynamics convection in a square enclosure filled with Fe3O4-
water ferrofluid, International Journal of Statistics and Applied Mathematics 4(6) (2019), 111 –
127, URL: http://www.mathsjournal.com/pdf/2019/vol4issue6/PartB/4-6-4-854.pdf.

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1385–1394, 2023

http://doi.org/10.1166/jon.2014.1110
http://www.mathsjournal.com/pdf/2019/vol4issue6/PartB/4-6-4-854.pdf


Linear Study of Ferromagnetic Convection in Nanofluids. . . : S. Rajashree and N. P. Chandrashekara 1393

[3] G. K. Auernhammer and H. R. Brand, Thermal convection in a rotating layer of a magnetic fluid,
The European Physical Journal B – Condensed Matter and Complex Systems 16 (2000), 157 – 168,
DOI: 10.1007/s100510070261.

[4] H. C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical
Physics 20 (1952), 571 – 571, DOI: 10.1063/1.1700493.

[5] J. Buongiorno, Convective transport in nanofluids, ASME Journal of Heat and Mass Transfer 128(3)
(2006), 240 – 250, DOI: 10.1115/1.2150834.

[6] A. J. Chamkha, S. K. Jena and S. K. Mahapatra, MHD convection of nanofluids: A review, Journal
of Nanofluids 4(3) (2015), 271 – 292, DOI: 10.1166/jon.2015.1166.

[7] B. A. Finlayson, Convective instability of ferromagnetic fluids, Journal of Fluid Mechanics 40(4)
(1970), 753 – 767, DOI: 10.1017/S0022112070000423.

[8] K. Gotoh and M. Yamada, Thermal convection in a horizontal layer of magnetic fluids, Journal of
the Physical Society of Japan 51(9) (1982), 3042 – 3048, DOI: 10.1143/JPSJ.51.3042.

[9] R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component
systems, Industrial and Engineering Chemistry Fundamentals 1 (1962), 187 – 191,
DOI: 10.1021/i160003a005.

[10] P. N. Kaloni and J. X. Lou, Convective instability of magnetic fluids, Physical Review E 70 (2004),
026313, DOI: 10.1103/PhysRevE.70.026313.

[11] J. Kim, Y. T. Kang and C. K. Choi, Analysis of convective instability and heat transfer characteristics
of nanofluids, Physics of Fluids 16 (2004), 2395 – 2401, DOI: 10.1063/1.1739247.

[12] M. T. Krauzina, A. A. Bozhko, G. F. Putin and S. A. Suslov, Intermittent flow regimes near
the convection threshold in ferromagnetic nanofluids, Physical Review E 51 (2015), 013010,
DOI: 10.1103/PhysRevE.91.013010.

[13] D. Laroze, P. G. Siddheshwar and H. Pleiner, Chaotic convection in a ferrofluid,
Communications in Nonlinear Science and Numerical Simulation 18(9) (2013), 2436 – 2447,
DOI: 10.1016/j.cnsns.2013.01.016.

[14] S. Maruthamanikandan, Instabilities in Ferromagnetic, Dielectric and Other Complex Liquids, PhD
Thesis, Bangalore University, India (2005), URL: https://people.bath.ac.uk/ensdasr/PAPERS/Ph.D.
%20Thesis%20-%20Mani.pdf.

[15] S. Odenbach, Microgravity experiments on thermomagnetic convection in magnetic fluids, Journal
of Magnetism and Magnetic Materials 149(1-2) (1995), 155 – 157, DOI: 10.1016/0304-8853(95)00360-
6.

[16] H. F. Oztop and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular
enclosures filled with nanofluids, International Journal of Heat and Fluid Flow 29(5) (2008), 1326
– 1336, DOI: 10.1016/j.ijheatfluidflow.2008.04.009.

[17] N. Putra, W. Roetzel and S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer 39
(2003), 775 – 784, DOI: 10.1007/s00231-002-0382-z.

[18] M. Sheikholeslami and A. J. Chamkha, Flow and convective heat transfer of a ferro-
nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable
magnetic field, Numerical Heat Transfer, Part A: Applications 69(10) (2016), 1186 – 1200,
DOI: 10.1080/10407782.2015.1125709.

[19] M. Sheikholeslami, Influence of coulomb forces on Fe3O4–H2O nanofluid thermal
improvement, International Journal of Hydrogen Energy 42(2) (2017), 821 – 829,
DOI: 10.1016/j.ijhydene.2016.09.185.

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1385–1394, 2023

http://doi.org/10.1007/s100510070261
http://doi.org/10.1063/1.1700493
http://doi.org/10.1115/1.2150834
http://doi.org/10.1166/jon.2015.1166
http://doi.org/10.1017/S0022112070000423
http://doi.org/10.1143/JPSJ.51.3042
http://doi.org/10.1021/i160003a005
http://doi.org/10.1103/PhysRevE.70.026313
http://doi.org/10.1063/1.1739247
http://doi.org/10.1103/PhysRevE.91.013010
http://doi.org/10.1016/j.cnsns.2013.01.016
https://people.bath.ac.uk/ensdasr/PAPERS/Ph.D.%20Thesis%20-%20Mani.pdf
https://people.bath.ac.uk/ensdasr/PAPERS/Ph.D.%20Thesis%20-%20Mani.pdf
http://doi.org/10.1016/0304-8853(95)00360-6
http://doi.org/10.1016/0304-8853(95)00360-6
http://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
http://doi.org/10.1007/s00231-002-0382-z
http://doi.org/10.1080/10407782.2015.1125709
http://doi.org/10.1016/j.ijhydene.2016.09.185


1394 Linear Study of Ferromagnetic Convection in Nanofluids. . . : S. Rajashree and N. P. Chandrashekara

[20] I. S. Shivakumara, N. Rudraiah and C. E. Nanjundappa, Effect of non-uniform basic temperature
gradient on Rayleigh–Benard–Marangoni convection in ferrofluids, Journal of Magnetism and
Magnetic Materials 248(3) (2002), 379 – 395, DOI: 10.1016/S0304-8853(02)00151-8.

[21] P. G. Siddheshwar and A. Abraham, Effect of time-periodic boundary temperatures/body force
on Rayleigh–Benard convection in a ferromagnetic fluid, Acta Mechanica 161 (2003), 131 – 150,
DOI: 10.1007/s00707-002-1004-z.

[22] P. G. Siddheshwar and N. Meenakshi, Amplitude equation and heat transport for Rayleigh–Bénard
convection in newtonian liquids with nanoparticles, International Journal of Applied and
Computational Mathematics 3 (2017), 271 – 292, DOI: 10.1007/s40819-015-0106-y.

[23] P. G. Siddheshwar, C. Kanchana, Y. Kakimoto and A. Nakayama, Steady finite-amplitude
Rayleigh–Bénard convection in nanoliquids using a two-phase model: Theoretical answer to the
phenomenon of enhanced heat transfer, ASME Journal of Heat and Mass Transfer 139(1) (2017),
012402, DOI: 10.1115/1.4034484.

[24] P. J. Stiles and M. Kagan, Thermoconvective instability of a horizontal layer of ferrofluid in a
strong vertical magnetic field, Journal of Magnetism and Magnetic Materials 85(1-3) (1990), 196 –
198, DOI: 10.1016/0304-8853(90)90050-Z.

[25] D. Y. Tzou, Instability of nanofluids in natural convection, ASME Journal of Heat and Mass
Transfer 130(7) (2008), 072401, DOI: 10.1115/1.2908427.

[26] D. Y. Tzou, Thermal instability of nanofluids in natural convection, International Journal of Heat
and Mass Transfer 51(11-12) (2008), 2967 – 2979, DOI: 10.1016/j.ijheatmasstransfer.2007.09.014.

[27] H. Yamaguchi, I. Kobori, Y. Uehata and K. Shimada, Natural convection of magnetic fluid in
a rectangular box, Journal of Magnetism and Magnetic Materials 201(1-3) (1999), 264 – 267,
DOI: 10.1016/S0304-8853(99)00022-0.

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1385–1394, 2023

http://doi.org/10.1016/S0304-8853(02)00151-8
http://doi.org/10.1007/s00707-002-1004-z
http://doi.org/10.1007/s40819-015-0106-y
http://doi.org/10.1115/1.4034484
http://doi.org/10.1016/0304-8853(90)90050-Z
http://doi.org/10.1115/1.2908427
http://doi.org/10.1016/j.ijheatmasstransfer.2007.09.014
http://doi.org/10.1016/S0304-8853(99)00022-0

	Introduction
	Mathematical Formulation
	Linear Stability Analysis
	Lorenz Model
	Results and Discussions
	References

