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1. Introduction
Dispersion of solute or tracer particles has been a means to transfer in different flow regimes
since Taylor [16]. A drug or a dye injected in a flow gets transported by means of dispersion,
which includes convection and diffusion as well. Aris [1] also has developed models for pulsatile
flows. Later a generalized model was developed large time by Sankarasubramanian and Gill [12].
Interphase mass transfer for large time was included by Sankarasubramanian and Gill [13].
A catalytic irreversible reaction of first order was assumed at the wall. Wall absorption was
included for studying dispersion by Jiang and Chen [4].

Drug induced in the blood flow is transported through dispersion and studying wall
absorption becomes very important. In this view many studies have been conducted.
The catheter based drug delivery needs to understand dispersion in an annular region.
Sankarasubramanian and Gill [13], Rao and Deshikachar [11] have developed theoretical
model to describe the above said process and they have analysed that axial dispersion decreases
with increase in inner radius. Axial mass transport by an asymptotic analysis was studied by
Pedley and Kamm [8] by considering annular region. Numerical solution was obtained. A steady
annular flow with reference to catheterized artery was considered, and dispersion of solute with
chemical reaction at boundary was modelled by Sarkar and Jayaraman [14].

A catheterized artery creates an annular region in which catheter can be used to induce
solute particles and blood flow could be Newtonian or non-Newtonian. In this regard Sarkar and
Jayaraman [15] have studied generalized dispersion in concentric annular region with effects of
absorption coefficient at the wall. Many authors have studied wall reaction at the wall using
Newtonian or non-Newtonian flow (Nagarani et al. [7], Ramana and Sarojamma [9], Rana and
Murthy [10]). Debnath et al. [2] assumed a three layered fluid flow and studied wall absorption.
Multiphase flow is studied by Tiwari and Deo [17].

Umadevi et al. [18] have studied effect of particle drug considering two phase flow for blood in
concentric annular region. Madhura et al. [5] have studied mass transfer in a doubly connected
region by assuming annular region between eccentric cylinders. Venkataswamy et al. [19] have
studied effect of viscoelastic flow by considering Jeffrey fluid with magnetic effect and analyzed
mass transfer. Recently an analysis of stokes flow is conducted by Mourya et al. [6] assuming
micropolar fluid.

In the present studies non-Newtonian nature of the blood flow is considered and modelled as
a micropolar fluid. The effect of micro-rotation of suspended particles is studied. The generalized
dispersion model of Sankarasubramanian and Gill [13] has been adopted for the current
situation and analytical solution for mean concentration and the coefficients arising out of mass
transfer at large time is calculated.

2. Mathematical Formulation
The blood vessel is modelled as a long cylindrical tube in which a catheter is inserted creating a
concentric annular region as shown in the physical configuration.
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Figure 1. Physical configuration

The flow is assumed between the cylinders. The radius of outer cylinder is assumed to be and
as the reference length. Flow is assumed to fully developed and steady, under these conditions
the governing equations for a micropolar fluid are given by (Hayat and Ali [3]),

▽·⃗v = 0, (2.1)

ρ[⃗v ·▽v⃗]=−▽ p+k(▽× q⃗)− (µ+k)▽2 q⃗, (2.2)

ρ j′[⃗v ·▽q⃗]=−2kq⃗+k(▽× v⃗)−γ(▽×▽× q⃗)+ (α+β+γ)[▽(▽· q⃗)], (2.3)

where v⃗ and q⃗ are velocity and micro-rotation vectors and µ, k, α, β, γ are material constants.
For a fully developed flow, the above equations after non-dimensionalisation with the

following quantities r∗ = r
R0

, w∗ = w
u0

, u∗ = u
u0

are given by

∂u
∂r

+ u
r
+ ∂w
∂z

= 0, (2.4)

N
{
∂w
∂r

+ w
r

}
+ ∂2u
∂r2 + 1

r
∂u
∂r

= (1−N)
∂p
∂z

, (2.5)

2q⃗+ ∂u
∂r

−
(
1−N

m2

)
∂

∂r

[
w
r
+ ∂w
∂r

]
= 0, (2.6)

where ∂p
∂z is the pressure gradient, N = k

µ+k and m2 = R2
0k(2µ+k)
γ2(µ+k) .

Solving the above equations analytically assuming no-slip condition at the boundary given by

w = 0, u = 0 on r = k and r = 1. (2.7)

The exact solution is given by

w = A y1(r)+By2(r)+Cy3(r)+aP, (2.8)

u =
(
2−N

m2

)
[Aφ1(r)+Bφ2(r)+Cφ3(r)]−aP

[
2r+ 1

r

(
2−N

m2

)]
+P. (2.9)

The constants are listed in Appendix.

3. Mathematical Model for Dispersion
The species transport equation in non-dimensional form is given by

∂c
∂t

+w
∂c
∂z

= 1
r
∂

∂r

(
r
∂c
∂r

)
+ 1

Pe2
∂2c
∂z2 , (3.1)

where Pe is the Peclet number.
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The trace is induced in the flow. Initial and boundary conditions are given by

C (0, r, z)=β2(z)β1(r), (3.2)

where β2(z)= δ(z)
PeR2

0
, δ(z)is the Dirac delta function and β1(r)=

{
1, k < r ≤ a,
0, a < r ≤ 1.

Boundary conditions at the catheter wall and arterial wall are as follows:
∂c
∂r

= 0 on r = k, (3.3)

∂c
∂r

=−βc on r = 1. (3.4)

Following Jiang and Chen [4], the concentration can be assumed in the following series form:

C (r, t, z)=
∑

fn(t, r)
∂ncm

∂zn , (3.5)

where cm =
∫ 2π

0
∫ 1

k cr dr dθ∫ 2π
0

∫ 1
k cr dr dθ

= 2
1−k2

∫ 1
k cr dr.

Here fn can be determined from the equation (3.1), substituting the equation (3.2) to equation
(3.4).
Mean concentration can be obtained by truncating equation (3.5) in the form,

∂cm

∂t
= M0(t)cm +M1(t)

∂cm

∂z
+M2(t)

∂2cm

∂z2 . (3.6)

In the above model M0(t) is called the exchange parameter and arises due to first order equation
at the wall. M1(t) is the convective coefficient on which the coefficient which is inclusive
of convection, diffusion and exchange. Substitution of equation (3.5) in equation (3.1) and
making use of equation (3.6), equating coefficients of ∂cm

∂t , n = 0,1,2,3, . . . following equations
are generated:

∂ fn

∂t
− ∂2 fn

∂r2 − 1
r
∂ fn

∂r
+w(r) fn−1 − 1

Pe2 fn−2 +
n∑

i=0
fn−iMi = 0, n = 0,1,2,3, . . . , (3.7)

with f−1 = 0= f−2.
We can find Mn as,

Mn(t)= 2
1−k2

{
∂

∂r
[ fn(τ,1)]−

∫ 1

k
rw(r) fn(t, r)dr

}
+ δn,2

Pe2 , n = 0,1,2,3, . . . , (3.8)

where δn,2 =
{

1, n = 2,
0, otherwise.

The initial and boundary conditions reduces to,

cm(0, z)= 2
1−k2

∫ 1

k
rB1(r)dr, (3.9)

C(0, r, z)= f0(0, z)cm(0, z), (3.10)

f0 (0, r)= 1−k2

2

(
B1(r)∫ 1

k rB1(r)dr

)
, (3.11)

∫ 1

k
r fn(t, r)dr = δn,0

(
1−k2

2

)
, (3.12)

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1341–1353, 2023



Effect of Micropolar Fluid Flow on Unsteady Convective Diffusive Mass Transfer. . . : I. Ramarao et al. 1345

∂ f i

∂r
(t,1)=−β f i (τ,1) ,

∂ f i

∂r
(t, r)= 0, i = 0,1,2. (3.13)

Using the transformation,

f0(t, r)= g0(t, r)e−
∫ t

0 M0(η)dη, (3.14)

and solving the resulting equation,
∂g0

∂t
= ∂2 g0

∂r2 + 1
r
∂g0

∂r
(3.15)

subject to

g0 (0, r)= 1−k2

2

(
B1(r)∫ 1

k B1(r)dr

)
, (3.16)

∂g0

∂r
=−βg0 on r = 1,

∂g0

∂r
= 0 on r = k.

 (3.17)

The solution is obtained as,

g0 =
∑ An

f1(µnk)
En(µnr)e−µ

2
0τ, (3.18)

where

An = µ2
n(1−k2) f1(µnk)

∫ 1
k rB1(r)En(µnr)dr

[(µ2
n +β2)E2

n(µn)−k2µ2
nE2

n(µnk)]
∫ 1

k rB1(r)dr
and

En(µnr)=Y0(µnr)J1(µnk)−Y1(µnk)J0(µnr).

Here µn are the Eigen values satisfying the condition,

µn[Y1(µnk)J1(µn)−Y1(µn)J1(µnk)]+β[Y0(µn)J1(µnk)−Y1(µnk)J0(µn)]= 0. (3.19)

Using the equations (3.14) and (3.16), the exchange coefficient is obtained in the form,

M0(τ)=
−

∞∑
n=0

An
J1(µnk)µn[Y1(µn)J1(µnk)−Y1(µnk)J1(µn)]e−µ

2
n t

∞∑
n=0

An
J1(µnk) [Y1(µn)J1(µnk)−Y1(µnk)J1(µn)]e−µ2

n t
. (3.20)

The equations pertaining to f1 and f2 are complicated, hence the computation is affected only
for large time analysis. Hence as t →∞, the above equations for f0 and M0 reduces to:

f0(∞, r)= (1−k2)
2

µ0[Y0(µ0r)J1(µ0k)−Y1(µ0k)J0(µ0r)]
{Y1(µ0)J1(µ0k)−Y1(µ0k)J1(µ0)}

, (3.21)

where µ0(∞)=−µ2
0.

For large time analysis, the equation (3.7) reduces to
∂2 f1

∂r2 + 1
r
∂ f1

∂r
+µ0 f1 = w(r) f0 +M1 f0 , (3.22)

∂2 f2

∂r2 + 1
r
∂ f2

∂r
−w(r) f1 + 1

Pe2 f0 +
2∑

i=0
f2−iMi (3.23)
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subject to
∂ f i

∂r
=−β f i at r = 1,

∂ f i

∂r
= 0 at r = k.

 (3.24)

Solving these for large time t →∞, the coefficients are obtained by

M1(∞)= −4µ0[Y1(µ0)J1(µ0k)−Y1(µ0k)J1(µ0)]
∫ 1

k rw(r)E0(µ0r) f0(r)dr
(1−k2)[(µ2

0 +β2){E0(µ0)}2 −k2µ2
0{E0(µ0k)}2]

, (3.25)

f1(r)=
∞∑

n=0

A1nEn(µnr)
J1(µnk)

, (3.26)

where

A1n =


∫ 1

k r{w(r)+M0} f0(r)En(µnr)dr
J1(µnk)(µ2

0−µ2)
, for n ≥ 1,

− J1(µnk)∫ 1
k r f0(r)E0(µ0r)dr

∑∞
n=1

A1n
J1(µnk)

∫ 1
k rEn(µnr)dr, for n = 0,

M2(τ)= 1
Pe2 −

∫ 1
k r[w(r)+M1]E0(µ0r) f1(r)dr∫ 1

k rE0(µ0r) f0(r)dr
. (3.27)

Using the above expressions for M0, M1 and M2 in truncated equation for mean concentration
where solution can be obtained as

cm = 1

2Pe
p
πT

eξ−
ψ2
4T , (3.28)

where

ξ(t)=
∫ t

0
M0(η)dη ,

ψ(t, z)= z+
∫ t

0
M1(η)dη ,

T(t)=
∫ t

0
M2(η)dη ,

and for large time,

ξ(t)→ M0(∞)t ,

ψ(t, z)→ z+M1(∞)t ,

T(t)→ M2(∞)t .

4. Results and Discussion
A catheterized artery is modeled as a concentric annular region bounded by cylindrical tubes of
radius kR0 and R0. There is a first order reaction present near artery wall and no slip condition
is assumed for velocity on both tubes. The solution obtained is numerically evaluated. The
Eigen values µn for n = 0,1,2,3, . . . are evaluated numerically by adopting Newton-Raphson
method. The coefficients of exchange, convection and dispersion are numerically evaluated and
graphically depicted. The effect of micro rotation parameter m on these coefficients is analysed.
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Figure 2. Plot of absorption coefficient against flux at the wall

The exchange coefficient is affected only due to reaction at wall and varies with absorption
parameter. Figure 2 shows variation of exchange coefficient M0 with absorption parameter β for
large time. The curve shows increasing behaviour and attains a constant value as β→∞. The
coefficient M0(τ), due to flux present at the wall of the tube. M0 will be negative on the account
of mass depletion across the wall. At large time, M0 and µ2

0 depends on β alone. Figure 2 shows,
absorption coefficient plotted against flux parameter β and different values of inner tube radius
k. As β increases, the absorption coefficient increases.

Figure 3. Convection coefficient vs flux parameter
for different inner tube radius

Figure 4. Concentration coefficient vs flux pa-
rameter for different micro-rotation
parameter

The negative convective coefficient decreases with increasing β and increases with increasing
inner radius k. The solute is convected across the tube and depends on velocity. At β= 0, the
convection happens with average velocity and later gets influenced by the flux at wall. Increase
in inner tube radius is to increase convective coefficient as the velocity increase in order to
maintain constant volume flow rate. This is evident in Figure 3. Figure 4 describes the effect of
micro-rotation parameter on the convective coefficient. As micro-rotation parameter increases,
the convection coefficient decreases due to resistance created by micro-rotation of particles.
Higher value of m indicates higher angular velocity to flow which reduce the solute being
convected.
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Figure 5. Dispersion coefficient vs flux parameter
for different micro-rotation parameter

Figure 6. Dispersion coefficient vs flux parameter
for different Peclet number

Figure 7. Dispersion coefficient vs flux parameter for different inner tube radius

Figure 5 depict the plot of dispersion coefficient which show combined effect of convection
and diffusion against the flux coefficient β. Figure 5 shows the validation of micro-rotation.
Figure 6 depicts effect of Peclet number and Figure 7 shows the effect of inner tube radius
k. The dispersion coefficient increases exponentially in all cases. Effect of micro-rotation is
to dispersion, hence as m increases, the dispersion increases. The micro-rotation augments
diffusion but accelerates convection as a result of which with increase in m, increases dispersion
coefficient.

Diffusion is inversely proportional to Peclet number. For a constant micro-rotation parameter,
diffusion increases with decreasing Peclet number and hence increase in dispersion coefficient
with decreasing Peclet number.

Increase in inner tube radius reduces area of cross section for the flow. Smaller radius
dispersion coefficient increases exponentially with flux from a lower initial value to higher
value. As k increases M2 is higher for low flux value but the pattern changes for larger flux at
the wall. The flux corresponds to diffusion towards the wall and as more solute moves towards
the wall lower k value provides larger fluid space to diffuse towards the wall.

Figures 9 and 10 represent velocity profile along radial direction and Figures 11 and 12
represent average concentration as a function of long time.
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Figure 8. Radial velocity profile for different inner tube radius

Figure 9. Radial velocity profile for different
micro-rotation parameter

Figure 10. Average axial concentration profile for
different values of flux at the wall

Figure 11. Average axial concentration profile for
different axial position

Figure 12. Average axial concentration profile for
different micor-rotation parameter

The velocity profile deviates little bit from being parabolic and skewed towards the wall.
Higher velocity is seen towards the wall as it is known that the particulate matter accumulate
around the axis. Effect of inner tube radius is not predominant and observed only near the
inner wall. The effect of micro-rotation parameter is more on velocity. As m increases from
Figure 6 and 8, the velocity close to the inner wall remains zero and increase to a large value
near the outer wall. As rotation is high, the impedence is seen near inner wall where micro-sized
particles accumulate and more fluid will be present near outer wall.
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Mean concentration is mainly affected by the flux near the wall and the peak in the curve
shifts towards left as β increases. Peak for β= 5 is around 0.6 where as for β= 8 it is at t = 0.5.
Initially concentration increases and around time t = 1.0, concentration reduces to almost zero.
Figure 11 shows mean concentration for different axial positions. The concentration near the
entrance shows very high value compared to mid of the tube in the axial direction. The depletion
of concentration is seen along the axis due to convection. Figure 12 shows mean concentration
for different micro-rotation parameter which shows increasing tendency with increase in m.
This is due to accelerated convection in presence of micro-rotation.

5. Conclusions
The study highlights the effect of micro-rotation on the dispersion of solute particles in a
micropolar fluid flowing in a concentric annular region. The method adopted is large-time
analysis developed by Sankarasubramanian and Gill. The physical configuration considered
is due to insertion of a catheter in an artery. Since rate of flow is based on requirement of
surrounding tissue, area of cross-section decreases due to insertion, there will be an increase in
the pressure gradient and hence velocity. These factors also have an effect on species transport.
As the geometry and processes are complicated; exact solution is not possible. For the large
time, average concentration is obtained by the series expansion technique. The three major
coefficients of mass transfer and average axial concentration is analysed. M0 is due to diffusion,
and velocity does not affect it. M1 is the convective coefficient, maximum effect of micro-rotation
is on M1. As micro-rotation increases M1 increases. M2 is convective diffusion, called dispersion,
which is also affected by micro-rotation. The velocity profile shows a shift towards the outer
wall due to micro-rotation. The coefficients of mass transfer and average axial concentration
are evaluated and plotted. M0 is independent of flow and purely diffusive, M1 and M2 velocity
dependent, M1 being convective and M2 being the combined effect of convection and diffusion.
The effect of the inner tube radius is discussed. Convection increases as micro-rotation increases,
and convective transfer becomes dominant. Micro-rotation shifts the flow towards the wall and
is effective in transferring more solute towards the wall.
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a = (1−N)m2

2−N
,
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y1(r)=∑ m2krk+1

(k+2)!k!
,

y2(r)=∑ m2krk+1

(k+2)!k!
{
log r+ψ1(k)

}
,

ψ1(k)=
k∑

i=2
− 1

i+2
−

k−2∑
i=0

1
(i+2)2 ,

y3(r)=∑ m2krk+1

(k+2)!k!
{
(log r)2 +2ψ(k) log r+ψ2(k)

}
,

ψ2(k)=
k∑

i=2

1
(i+2)2+

k−2∑
i=0

1
(i+2)2 ,

φi(r)=
∫ (

y′′i +
1
r

y′i −
1
r2 yi

)
dr, for i = 1,2,3, . . . ,

f1i =φi(1)−φi (R0) ,

f1 = 2
(
2−N

m2

)
(1−R0)+1− 1

R0
,

b22 = f12 y1(k)− f11 y2(k),

c33 = b23b32 −b22b33,

b23 = f13 y1(k)− f11 y3(k),

c3 = b1b23 −b2b22,

b1 = f1 y1(k)− f11,

b32 = f12 y1(1)− f11 y2(1),

b2 = f1 y1(1)− f11,

b33 = f13 y1(1)− f11 y3(1),

A = f1 −C f13 −Bf12

f11
,

B = b1 −b23C
b22

,

C = c3

c33
.
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